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ABSTRACT: 

 

The last decade has witnessed a great advance in deep space exploration, such as the rover missions to Mars. Semantic information on 

the Martian surface is garnering more attention, for its ability to distinguish the surface landforms for rover traverse planning and 

facilitating 3D reconstruction. The state-of-the-art studies on semantic segmentation exclusively leveraged transformer-based methods, 

and the results have been verified to outperform the traditional convolutional neural networks. However, few datasets concerning the 

Martian surface have been generated, and the publicly available network models were all trained on the common Earth dataset. 

Constructing a pixel-wise semantic segmentation dataset requires lots of human labor, especially for training a large transformer 

network. Furthermore, the results of semantic segmentation were typically used for intuitive visualization but seldom exploited in the 

3D reconstruction pipeline. To address these problems, this paper presents the following three contributions: (1) introducing an 

approach to generate a large dataset for Mars in a semi-automatic way; (2) development of a novel variant of transformer designed for 

multi-view semantic segmentation to improve the accuracy; (3) development of a semantic-aware dense image matching method for 

improved matching performances assisted with the semantic information. Experimental results using the dataset collected at the 

Zhurong landing site on Mars have shown superior performances of the proposed methods as compared with traditional methods. 

 

 

1. INTRODUCTION 

Semantic reconstruction of the Martian surface is garnering more 

attention, for its ability to present semantic information in three-

dimensional (3D) space, thereby facilitating deep space 

exploration missions from the aspects of rover traverse planning, 

risk precautions, and 3D products (Li et al., 2022; Wu et al., 

2022). However, the retrieval of the semantic information or 

semantic segmentation from the 2D image is still an active topic, 

especially for the Martian surface. 

 

Although many mature semantic segmentation networks such as 

ViT (Dosovitskiy et al., 2020), and Swin-Transformer (Liu et al., 

2021) are publicly available, they have predominantly been 

trained on conventional Earth datasets, which hinder direct usage 

without transfer learning. The latest large learning model, namely 

segment anything model (SAM) (Kirillov et al., 2023), argued it 

is a zero-shot neural network. While the semantic classes of these 

segment masks are unavailable, and the utilization of these masks 

is hence limited to distinguishing characteristic regions. In 

addition, a conventional neural network designed for 

segmentation tasks typically takes one image as the input and 

conducts accuracy evaluation individually. Even if the neural 

network is capable of yielding proper semantic labels with 

favorable evaluation metrics, the perspective-invariant trait is not 

guaranteed or even concerned. Specifically, these inconsistently 

segmented labels do not conform to the scenario in the real world, 

which may confuse the downstream visualization or utilization 

involving multi-view images to achieve semantic reconstruction 

(Wan et al., 2021). 

 

Since deep-learning is inherently a data-driven method, training 

with a segmentation dataset constructed with planetary images is 

also indispensable. But it is still challenging for two-fold reasons: 
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one is constructing a pixel-wise semantic segmentation dataset 

requires substantial human labor, and the number of planetary 

images is severely limited (Ma et al., 2023). In 2019, ESA 

pioneered the public LabelMars project (Schwenzer et al., 2019) 

to organize a large labeled dataset based on thousands of images 

from Spirit, Opportunity, and Curiosity. The dataset was then 

challenged by NASA for its overly specialized categorization and 

the resulting small volume. The AI4MARS dataset (Swan et al., 

2021) was thus proposed based on similar data, but with more 

intuitive labels, namely, sand, bedrock, soil, and big rock. The 

associated depth data was also provided, which enhances the 

versatility of the dataset. Even they claimed that the dataset is 

comprised of ~35K images, only ~18k images are available, and 

the detailed distribution of each class is unavailable. The 

involving tremendous human labor in generating such a dataset 

makes it hard to be further augmented with more images from the 

latest rovers. Simulation strategies are hence considered, and Ma 

et al. (2023) used the OAISYS simulator to add some rocks to the 

designed surface to generate a large dataset. But the images vary 

from the real scene on Mars a lot. 

 

Rather than simply visualizing the semantic labels in a 3D 

reconstruction result, a recent trend in semantic reconstruction is 

to exploit the semantic cues to achieve semantic-aware 

algorithms (Zhao et al., 2023; Zheng et al., 2022). Naseer et al. 

(2017) tested the semantic-aware idea by boosting the feature 

matching between the images over a long period or with harsh 

perspective conditions. The superiority of the semantic-aware 

loop closure detection has also been verified (Zheng et al., 2022), 

which embedded the semantic labels into the similarity 

measurement network and led to robust 3D reconstruction results. 

Zhao et al. (2023) leveraged the segmentation results as guidance 

and improved the height estimation for single-view UAV images, 
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thereby illustrating the effectiveness of retrieving dense 3D 

information with the assistance of semantic segmentation. 

However, multi-view semantic-aware dense image matching is 

hardly discussed due to the lack of consistent semantic segments.  

 

To this end, three contributions are made by this paper to achieve 

semantic reconstruction on the Martian surface. Firstly, we 

introduce an approach to generate a large volume dataset in a 

semi-automatic way, which not only contains the semantic label, 

but the 3D information (depth and position). Then, a siamese-like 

Swin-Transformer is proposed specifically designed for multi-

view semantic segmentation tasks. Further constrained by the 

control points calculated through the tie-point matching 

algorithm, the network could be trained in a semi-self-supervised 

fashion, considering all kinds of transformations. Finally, a 

semantic-aware dense image matching is presented, which 

verifies the correctness of the retrieved semantic information and 

makes an attempt to incorporate the semantic cues with the RGB 

information to achieve better disparity images as well. 

 

2. TRANSFORMER-BASED METHOD FOR 

SEMANTIC SEGMENTATION AND 

RECONSTRUCTION 

2.1 Overview 

As shown in Figure 1, the proposed approach comprises three 

consecutive phases. In the first step, a training dataset targeting 

semantic segmentation for planetary surfaces is constructed. The 

3D original-textured and semantic-masked mesh models are first 

generated through a rigorous photogrammetric process facilitated 

by some manually labeled images. With the virtual cameras 

defined by interior orientation (IO) and exterior orientation 

parameters (EO), the original RGB image, the semantic image, 

the XYZ image, and the depth image could be obtained. Secondly, 

the siamese swin-transformer is trained pair-wisely on the 

obtained dataset. With the tie-points calculated between the input 

images, the contrastive learning could progress in a self-

supervised manner hence avoiding labeling issues (i.e., missing 

small rocks and sand dunes on the far side). The semantic labels 

are then fed into the dense image matching pipeline, together 

with the original RGB image, to refine the disparity image by 

introducing the adapted strategy to each semantic class and the 

boundary. 

 

2.2 Semi-automatic Dataset Construction 

Despite directly augmenting the 2D images through perspective 

transformations (i.e., translation, rotation, scale transform), a 

more realistic approach to boosting the volume of the dataset is 

proposed. The core idea of the semi-automatic semantic dataset 

construction is to fully exploit the 3D reconstruction results of 

the images, which relies on the premise that the traverse of the 

rover is typically continued or at least several images share some 

overlapping regions. Following the ad hoc structure from motion 

(SfM) pipeline (Agarwal et al., 2009; Schonberger and Frahm, 

2016), the bundle adjustment could perform based on the tie-

points among these images, and the 3D textured mesh model is 

formed from the dense point clouds calculated from the multi-

view stereo (MVS) algorithm (Vu et al., 2012). The semantic-

masked 3D model could also be obtained with some manually 

labeled images. 

 

In the real world, numerous 2D images could be obtained from a 

3D world given a virtual camera 𝑷  defined by both intrinsic 

orientation parameter 𝑲 and extrinsic orientation parameters 𝑬.  

 

 

 
Figure 1. Overview of the proposed workflow. 

 

�̃� = 𝑷�̃� = 𝑷𝑬�̃� = 𝑲𝑹[𝑰|−𝑪]�̃� (1) 

 

where 𝑬 is composed by the rotation 𝑹 and the translation 𝑪. �̃� 

and �̃� denote the homogeneous coordinates of the 2D point 𝒙 and 

its corresponding 3D point 𝑿 , respectively. 𝑰  stands for the 

identity matrix. The camera matrix 𝑲  could be further 

decomposed to describe its relationship with the focal length 𝑓 

and the principal point (𝑐𝑥 , 𝑐𝑦). 

 

𝑲 = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] (2) 

 

To simulate this real imaging process in the computer, the camera 

matrix is further enriched with the field of view (FoV), near and 

far viewpoints, to define a view frustum, thus eliminating the 

outside content. Through this pipeline, a series of virtual images 

could be rendered given all the above information, as shown in 

Figure 2. With the knowledge about both the 3D model and the 

camera, each pixel could be further enriched with the normalized 

viewing depth of each pixel and its 3D coordinates (𝑋, 𝑌, 𝑍).  

By imposing the same camera on the original and the semantic-

masked mesh model, the aligned RGB and the semantic images 

could be acquired simultaneously. The semantic-masked images 

are then transformed into label images according to the color of 

the semantic mask. Even if the original labels are still labeled by 

humans, the automatic simulation algorithm surmounted the 

problem of a small number of images and significantly reduced 

labor costs. Furthermore, the dataset is versatile and could assist 

all kinds of 2D/ 3D vision tasks. 
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Figure 2. The illustration of the semi-automatic dataset 

construction. 

 

2.3 Siamese Transformer for Semantic Segmentation 

Recently, transformers and their variants have been commonly 

used for semantic segmentation tasks. We propose a new variant 

of the transformer for multi-view semantic segmentation, as 

illustrated in Figure 2. The backbone of the network is the state-

of-the-art Swin-Transformer structure (Liu et al., 2021), which 

incorporates the merits of both convolutional-based and 

transformer-based networks and thus possesses the ability to 

consider in both local and global fashion.  

 

Given the existence of overlapping regions in the available 

planetary images, it is natural to consider leveraging this 

constraint to supervise the segmentation. An intuitive way is to 

feed the original and transformed images to the neural network 

and transform the retrieved labels. The contrastive loss could then 

be established by measuring the similarities between these 

segmentation results. However, this strategy could not satisfy any 

two images sharing overlapping observations, whose pixel-wise 

transformation is hard to obtain. And wrapping an image during 

the training consumes a large amount of memory. The tie-points 

are hence introduced to find the corresponding points between 

the images. Instead of conducting the matching on original 

images directly, the images are transformed into the semantic 

masked to guide the tie-points distributed on the certain class and 

filter some inevitable wrong matches. To further involve more 

images for constraint in the training stage, the input image pairs 

are designed. For each image, the overlapped images inside the 

dataset are randomly chosen to form the counterpart image, as 

shown in Figure 3. 

 

The loss function 𝓛𝑎𝑙𝑙 is thus comprised of two parts. While the 

first part  𝓛𝐿𝑎𝑏𝑒𝑙  examines the cross-entropy loss between the 

images and the supervised labels, the second part 𝓛𝑐𝑜𝑟𝑟𝑒 

punishes the inconsistent segmentation between the input images. 

After several warm-up epochs, the weight of the first part is 

expected to decrease and make images supervise each other to 

mitigate the not thoroughly labeled issue due to the complexity 

of the landforms. It is worth noting that as some unlabelled 

landforms may be retrieved during the training, the tie-points 

should be calculated based on the union of the prediction and the 

labeled masks. 

𝓛𝑎𝑙𝑙 =  𝓛𝐿𝑎𝑏𝑒𝑙 + 𝓛𝑐𝑜𝑟𝑟𝑒 (3) 

 

With respect to the prediction, the network could function in 

either a single- or multi-image version, as the two inputs share 

the same segmentation network. 

 

2.4 Semantic-aware Dense Image Matching 

Before deep learning based method, texture-aware dense image 

matching was attempted by utilizing the boundaries extracted 

automatically by the Sobel or Canny operator (Hu et al., 2016; 

Rothermel et al., 2012). Still, this algorithm fails to retrieve 

reasonable boundaries when it comes to the textureless planetary 

images, and severely suffers from dashed edges and noisy 

problems, as shown in Figure 4. While the boundary of the 

segments is not only continuous but also meaningful, the canny 

edges lead to unreasonable noises. Moreover, the texture-aware 

algorithm defines the texture by the gradient and the standard 

deviation of the intensities and adjusts the parameters 

accordingly. Due to the substantial differences among the camera 

sensors, the defined texture may not be ubiquitous enough. 

Fortunately, these two issues could be tackled properly by 

gauging the acquired consistent semantic labels.  

 

The previous texture-aware algorithm is first extended to a 

semantic version. Specifically, instead of adapting the involving 

parameters according to the metrics of the intensities, they are 

now fine-tuned by the semantic labels. Furthermore, the feature 

descriptor of each pixel could be established considering the trait 

of each semantic class and the distance to the semantic 

boundaries. Semantic label similarity is measured and aggregated 

            ’    ff                       j               . A  f   

the perception, which is also decisive for the descriptor (Wang et 

al., 2022), the minimum region size is predefined for each 

semantic class. With the knowledge that insufficient texture 

requires a larger perception to construct a distinctive descriptor 

and small ones are preferred by the discontinuities, the minimum 

size is grown adaptively. The improved features and parameters 

are then injected into the conventional pipeline to calculate the 

pixel-wise disparity image. 
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Figure 3. Illustration of the architecture of the Siamese Swin-transformer. 

 

 
Figure 4. Illustration of the superiority of the semantic edge. The 

first column shows the original semantic-masked image, and the 

second and the third column represent the edges retrieved by 

Sobel/Canny operator and the semantic segmentation, 

respectively. 

 

3. EXPERIMENTAL EVALUATION 

3.1  Dataset Description 

In this paper, the image dataset collected at the Zhurong landing 

site (Wu et al., 2021; Wu et al., 2022) on Mars is leveraged to 

evaluate the proposed approach. The images were collected by 

the Navigation and Terrain Camera (NaTeCam) onboard the 

Zhurong rover, comprising 2048 × 2048  pixels. Label files, 

recording the shooting time, position to the lander, and IO/EO 

parameters of each image, were also provided. The images within 

the same rover station are 360° panorama observations of the 

surroundings, which possess a nearly 30°  perspective angle 

difference from the neighbor images.  

 

Nine representative classes are defined, namely, soil, rock, sand, 

crater, shadow, wheel track, rover, far side, and other mechanism 

material (Rothrock et al., 2016), as shown in Figure 5. ~500 

original images were carefully labeled by human labor, dated 

from 18th May 2021 to 14th March 2021. 

 

 
Figure 5. Illustration of the labeled semantic classes based on 

six representative images. 
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3.2 Experiment Results 

3.2.1 Dataset Construction Results 

The 3D mesh models are first generated through SfM and MVS 

pipeline. However, holes and over-interpolation may occur due 

to the inevitable occlusion problem resulting from the perspective 

of the rover. The examples of these situations are visualized in 

Figure 6. The virtual cameras are thus defined on the basis of the 

original cameras to avoid these defects. Empirically, the distance 

between the position of the virtual and the original camera should 

be within 8 meters in the direction away from the rover. The 

rotation and the IO parameters could be more flexible with a 

favorable position. Even the algorithm is limited by the quality 

of the 3D mesh, the amount of the images is enriched 20 times to 

~10 K in a 3D manner. It is worth noting that the number of 

virtual cameras for one 3D model is not a constant number. The 

semantic labels are also considered to balance the sample of each 

class, and the amount is hence adapted automatically. 

Considering the memory of the GPU, the images are then 

cropped into patches of 512 × 512 pixels through three levels 

of scale pyramids. 

 
Figure 6. Illustration of the defects of the 3D mesh model. 

 

3.2.2 Semantic Segmentation Results 

The training was implemented with the PyTorch framework 

(Paszke et al., 2019) on a single NVIDIA GTX 3090 GPU. 

AdamW optimizer (Loshchilov and Hutter, 2017) was used for 

faster convergence. Beginning with the publicly available 

pretrained tiny version of the Swin-transformer (Swin-T) (Liu et 

al., 2021), the training was processed 80 epochs, with an initial 

3𝑒−4 learning rate. With respect to the tie-points, the state-of-

the-art SuperGlue algorithm (Sarlin et al., 2020) is utilized for 

two-fold reasons. Firstly, it shows the superior capability to 

retrieve abundant tie-points even for textureless image pairs 

suffering from large perspective variations. And it is a GPU-

based algorithm whose efficiency is guaranteed. 

The representative results are shown in Figure 7, comparing our 

results with the manual labels and the results yielded by the 

retrained Swin-T based on our dataset. Intuitively, the transfer 

learned segmentation results are aligned well with the manually 

labeled ones, and some small rocks missed by humans are also 

retrieved. The large regions are all segmented to the correct 

semantic class, even for the wheel track and crater class suffering 

from the insufficient issue. This is mainly attributed to the semi-

automatic dataset construction approach, which renders more 

simulated images for these seldomly observed landforms. It is 

worth noting that the crater here is not exactly the same as the 

ones defined in the satellite images (Wang and Wu, 2019), which 

is just a depressed area in the terrain. However, these results still 

suffer from wrong and incomplete segmentations. 

 

Benefiting from the self-supervision strategy, the prediction 

results generated from our approach are typically better than the 

traditional Swin-T model in the aspect of the accuracy and the 

details of the segments. While the incorrect segmentations are all 

solved, more rocks could be segmented as well. The complete 

detection of the rock leads to a comprehensive understanding of 

the terrain, which not only facilitates the rover to decide the path 

intelligently, but also provides more reliable data support for the 

following scientific analysis. The results also indicate that the 

over-fitting issue of the neural network could be effectively 

avoided by the cross-check between the overlapping images. 

 

To quantitively analyze the results, the three commonly-used 

indexes, namely, mean intersection over union (MIoU), mean 

pixel accuracy (MPA), and frequency weighted accuracy 

(FWAcc), are analyzed. As suggested by Table 1, both networks 

possess favorable accuracy, while our approach is a little bit 

better in terms of the mIoU. However, these metrics are not that 

rigorous due to the aforementioned label issues.  

 

 
Figure 7. A representative semantic segmentation result, 

indicating the superiority of the proposed Siamese-like Swin-T. 

The segmented results are overlaid on the original images. The 

first two columns present the original images and the manually 

labeled images. The last two columns are the results generated 

from the Swin-T after transfer learning and our approach. 

 

Experiment mIoU MPA FWAcc 

Swin-T 86.08 94.33 96.03 

Ours 88.25 95.78 96.91 

Table 1. Quantitative analysis of the semantic segmentation 

results. 
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Furthermore, the evaluation of the transformed images is also 

performed to test the transform-invariant strength of our 

approach. Three experiments involving all the translation, 

rotation, scale, and real-world transformations are exhibited in 

Figure 8. Two highlighted regions are marked by the white and 

blue ellipse, respectively. Despite the incomplete or incorrect 

retrieval problem, the semantic labels in the ellipses calculated 

by the Swin-T are not strictly aligned across the experiments. 

While the Siamese Swin-T tends to maintain a similar pattern 

even with more segmented rocks.  

 

3.2.3 Dense Matching Results 

Figure 9 shows the dense image matching results based on the 

semantic segmentation results. The proposed semantic-aware 

dense image matching is compared with the original and the 

texture-aware ones. Generally, the original dense image 

matching could give reasonable disparity results. But the speckle 

effect in the sand region is obvious, and the boundary region 

between the soil and sand region is facing severe discontinue and 

incorrect issues. Even the texture-aware algorithm slightly 

improves the results with narrowed no data region, the incorrect 

disparity still exists, especially for the second experiment. By 

introducing the correct retrieved semantic information, the 

disparities are strictly aligned with the semantic boundary with 

further closed gaps, and the speckle effects in the sand region are 

mitigated. 

 

 
Figure 8. Illustration of the invariant ability of the Siamese Swin-

T. The segmented results are overlaid on the original images. The 

first two columns present the original images and the manually 

labeled images. The last two columns are the results generated 

from the Swin-T after transfer learning and our approach. 

 

4. CONCLUSIONS 

In this paper, we present an effective approach to generate a large 

and versatile training dataset semi-automatically by introducing 

the original 3D information. A new variant of the Swin 

transformer is proposed targeting multi-view semantic 

segmentation, which fully exploits the overlapping information 

to supervise the segmentation in a self-supervised manner. 

Semantic-aware dense image matching is hence performed, 

incorporating the semantic segments to guide the adaptively 

matching. The performance of the proposed approach is validated 

with the real Martian dataset at the Zhurong landing site, 

indicating that abundant training data could be generated and 

further guarantee the accuracy of the multi-view semantic 

segmentation and reconstruction.  

 

Our future efforts will focus on incorporating the 3D information 

in the dataset to improve the semantic results, and exploring more 

elegant approaches to achieve semantic 3D reconstruction. 

 
Figure 9. The evaluation of the proposed semantic-aware dense 

image matching algorithm. The three columns are corresponding 

to the three representative regions. 
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