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ABSTRACT: 

Signage visibility along transportation corridors is critical for drivers in terms of road safety, traffic flow, and enforcement. Traffic 

signs that are easy to recognize by drivers and autonomous vehicles can help in avoiding accidents and improve safety. Nowadays, 

Mobile Mapping Systems (MMS) equipped with LiDAR units can scan road network components and its surrounding environment at 

a normal driving speed while collecting accurate geospatial data. Most traffic signs have well-defined geometric characteristics (e.g., 

linear or planar features) which can be identified in the 3D LiDAR data acquired by MMS. Therefore, MMS LiDAR data are an ideal 

source to recognize traffic signs. In addition to traffic sign detection, MMS can also identify vegetation along the right-of-way and 

evaluate signage visibility. Thus, this paper presents a framework for using MMS LiDAR data for traffic sign and vegetation detection 

which is a prerequisite for signage visibility analysis. For signage and vegetation detection, two alternative strategies are adopted: 1) a 

morphological approach and 2) a learning-based approach. For the geometric/morphological approach, Multi-Class Simultaneous 

Segmentation (MCSS) is utilized in this study. As for the learning-based strategy, semantic segmentation of LiDAR data are performed 

using Super Point Graph (SPG). Lastly, signage visibility analysis is conducted based on the occlusion rate assessed from different 

driver’s viewpoints. 

1. INTRODUCTION 

Recent studies have shown that improving sign visibility will 

enhance driver awareness, reduce driver errors, and improve better 

compliance with traffic regulations (Smith et al., 2016; Oviedo-

Trespalacios et al., 2019). These findings highlight the 

significance of proper signage visibility as a fundamental 

component of road infrastructure management and safety 

assessment (Babić et al. 2022). Recognized traffic signs not only 

contribute to heightened driver awareness but also play a pivotal 

role in facilitating the safe operation of autonomous vehicles. As 

a result of advances in technology, Mobile Mapping Systems 

(MMS) equipped with LiDAR units have emerged as effective 

tools capable of swiftly scanning road environments at normal 

driving speed while capturing exceptionally precise 3D point 

cloud data. Leveraging the geometric characteristics inherent to 

most traffic signs, such as linear and planar features, MMS LiDAR 

data have proven to be an ideal resource for identifying and 

evaluating the visibility of traffic signs (Zhang et al., 2019; Hirt 

et. al., 2022). Furthermore, MMS can also detect vegetation along 

the road right-of-way and assess the occlusion of signage caused 

by vegetation (Huang et al., 2017). Uncontrolled vegetation, as 

shown in Figure 1, can pose safety hazards for various reasons. 

Vegetation, weeds, brush, and tree limbs obscure or hinder 

driver’s view of the road ahead, traffic control devices, 

approaching vehicles, wildlife, livestock, pedestrians, and 

bicycles (US Department of Transportation, 2008). 

Due to advances in computer vision techniques such as semantic 

segmentation (Loce et al., 2013) and deep learning algorithms 

(Abduljabbar et al., 2019), researchers made significant progress 

in analyzing and enhancing signage visibility along transportation 

corridors (Choi et al., 2022). Semantic segmentation techniques 

have become increasingly important in the analysis of 

transportation corridors. By classifying the components of the 

road network into distinct objects, these techniques provide 

valuable insights for various applications, including road 

maintenance, autonomous driving, and transportation safety 

(Balado et al.,2019).   

 

 

 

 
Figure 1. Illustration of a road sign (red circle) obscured by 

vegetation along the highway. 

 

The aim of this study is to utilize MMS LiDAR data for traffic 

sign and vegetation detection which serves as a fundamental 

prerequisite for comprehensive signage visibility analysis. As 

illustrated in Figure 2, the proposed workflow encompasses two 

alternative strategies which are: 1) a geometric/morphological 

approach and 2) a learning-based approach. Initially, a 

geometric/morphological approach, namely Multi-Class 

Simultaneous Segmentation (MCSS) (Habib et al., 2016), will be 

employed to segment transportation corridor components based 

on the geometric features. For the learning-based semantic 

segmentation technique, the Super Point Graph (SPG) (Landrieu 

et al., 2018; Lin et al., 2022) is adopted in this study. Next, we 

compare how well morphological and learning-based strategies 

predict and detect signage and vegetation points. Overall, the 

objective of this research is to evaluate and compare the 

performance of morphological and learning-based strategies in 

identifying signage and vegetation points, analyzing the 

performance of semantic segmentation as well as evaluating the 

versatility of semantic segmentation in identifying various objects 

in the environment. 
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Figure 2.  Proposed framework for comparative analysis of 

geometric/morphological and learning-based strategies for 

detecting signage occlusions. 

 

2. MATERIALS AND METHODS 

In this study, four datasets were acquired along a highway area 

using two Mobile Mapping Systems (MMS). These systems were 

developed by the Digital Photogrammetry Research Group 

(DPRG) at Purdue University. This section begins by introducing 

the developed Mobile Mapping Systems followed by a description 

of the acquired highway datasets. 

 

2.1 Data Acquisition Systems  

The MMS LiDAR datasets were acquired by a mapping-grade 

system, Purdue Wheel-based Mobile Mapping System-High 

Accuracy (PWMMS-HA), and a survey-grade system, Purdue 

Wheel-based Mobile Mapping System-Ultra High Accuracy 

(PWMMS-UHA) as shown in Figure 3. The PWMMS-HA is 

equipped with four LiDAR units (three Velodyne HDL-32E and 

one Velodyne VLP-16 High Resolution). Three FLIR 

Grasshopper cameras are mounted in the front-left, front-right, 

and rear of the vehicle. For direct georeferencing, an Applanix 

POS LV 220 unit is installed. The Velodyne HDL-32E has a range 

accuracy of ±2 cm, while the VLP-16 has a range accuracy of ±3 

cm (Velodyne, 2023a; Velodyne, 2023b). The GNSS/INS unit has 

a post-processing positional accuracy of ±2 cm, along with an 

attitude accuracy of 0.020° for roll/pitch and 0.025° for heading 

(Applanix, 2023). On the other hand, the PWMMS-UHA is 

equipped with two LiDAR units (Riegl VUX-1HA and Z+F 

Profiler 9012). Two FLIR Flea2 FireWire cameras are mounted in 

the rear of the vehicle together with a NovAtel ProPak6 GNSS 

receiver for direct georeferencing. The range accuracy of the Riegl 

VUX-1HA and Z+F Profiler 9012 is ±5 mm and ±3 mm, 

respectively (Riegl, 2023; Z+F, 2023). The GNSS/INS unit on the 

PWMMS-UHA has a post-processing positional accuracy of ±1–2 

cm, and its attitude accuracy is ±0.003° for pitch/roll and ±0.004° 

for heading (Novatel, 2023). 

 

 

 
 

Figure 3. MMS LiDAR systems used in the study – PWMMS-HA 

(Top) and PWMMS-UHA (Bottom). 

 

2.2 I-65 Highway Datasets 

Four LiDAR datasets were acquired along the I-65 state highway 

(West Lafayette, Indiana, US) in two different regions of interest 

(ROI) as presented in Figure 4. The datasets for ROI 1 were 

acquired on February 23, 2021, during the leaf-off season, while 

the datasets for ROI 2 were acquired on June 8, 2020, during the 

leaf-on season. Further details regarding the acquired datasets are 

listed in Table 1.  

 

 
 

Figure 4.  Closer view of ROIs located along the I-65 state 

highway area (West Lafayette, Indiana, US). 

 

Platform 
ROI 

ID 
Collection 

Date 
*Number of 

Points 
Dimension 

PWMMS-HA 

ROI 1 February 23, 2021 1,341,784 58 m � 97 m 

ROI 2 June 8, 2020 3,805,240 56 m � 246 m 

 

PWMMS-UHA 

 

ROI 1 February 23, 2021 663,275 58 m � 97 m 

ROI 2 June 8, 2020 1,665,884 56 m � 246 m 

*The number of points is after outlier removal and distance-based down-

sampling of 5 cm. 

Table 1. Description of the four datasets located in two different 

ROIs acquired by the Mobile Mapping Systems. 
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3. METHODOLOGY 

This section presents the methodology for signage visibility 

analysis using semantically-segmented features from morph-

ological and learning-based approaches. The MMS LiDAR data 

were pre-processed for noise removal and distance-based 

downsampling of 5 cm. For point cloud segmentation, two 

techniques are adopted which are: 1) Multi-Class Simultaneous 

Segmentation (MCSS) and 2) Super Point Graph (SPG). For 

semantic annotation, the following classes are defined: 1) Bridge 

deck, guardrail, and beam/girder; 2) Bridge abutment and wing 

wall; 3) Bridge pier; 4) Man-made terrain; 5) Natural terrain; 6) 

Vegetation; 7) Buildings; 8) Scanning artifacts (e.g., moving 

vehicles and noise); and 9) Remaining hardscape, such as 

guardrails, traffic signs, light poles, etc.  

As for the geometric/morphological approach, the point cloud is 

structured using an octree for MCSS (Habib et al., 2016). Then, 

Local Point Density (LPD)/Local Point Spacing (LPS) are 

estimated based on randomly selected portion of the entire point 

cloud and a user-defined local neighborhood size. The LPD/LPS 

estimation results of the selected points are used to represent the 

entire point cloud. Then, seed regions are generated from 

randomly selected seed points. Once the seed regions are defined, 

a Principal Component Analysis (PCA) is conducted to classify 

each seed region into planar, linear/cylindrical, or scattered 

neighborhood. The eigenvalues (��,��,��) are sorted in a 

descending order (�� ≥  �� ≥  ��). Each point is evaluated to 

describe the local neighborhood by choosing the largest value in 

Equations 1 to 3 (Demantké et al., 2011). Next, a region-growing 

is conducted to group neighboring points that belong to the same 

feature type. 

 

Linearity:  
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Scattering:  
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For planar and pole-like features, a Least Squares Adjustment 

(LSA) is conducted to assess the model-fitting quality as 

represented by its a-posteriori variance factor (���), which 

indicates the normal distance between the points within the seed 

region and the best-fitted model. Instead of starting the region-

growing from the randomly established points, it starts from the 

best-fitted models with the minimum a-posteriori variance factor. 

Seed regions representing planar and pole-like features are sorted 

in ascending orders based on the estimated a-posteriori variance 

factor. During the region-growing process, the feature parameters 

are updated when a certain number of new points are introduced 

to the features. In this process, an outlier removal is conducted. 

Once all the seed regions are processed, a sequential region-

growing segmentation is conducted for all non-segmented and 

rough regions. Lastly, a manual annotation process is conducted 

to assign labels to the derived segments.  

For the learning-based approach, Super Point Graph (SPG) 

(Landrieu et al., 2018) is adopted for semantic segmentation. For 

computational efficiency, a pruning process is conducted by 

voxelization and representing each non-empty voxel with a single 

point in the pruned point cloud. An unoriented graph is established 

to represent the spatial structure of the point cloud. The adjacency 

graph is defined by finding the k-nearest neighboring points using 

a KD-tree structure for each point. For every point, a local 

neighborhood is determined by finding its k-nearest neighbors. 

Then a PCA analysis is conducted to evaluate the geometric 

characteristics for each local neighborhood as mentioned in 

Equations 1 to 3. In addition, verticality of the neighborhood is 

defined according to Equation 4. 

 

����� ∝ ∑ �� ��������
��� , for � = 1,  2,  3 and ‖��‖ = 1 (4) 

  

Based on the geometric characteristics of local neighborhoods, the 

point cloud is partitioned into several regions using the $%-cut 

pursuit algorithm (Landrieu et al., 2017a; Landrieu et al., 2017b).  

After geometric partitioning, super points are defined to represent 

each geometrically homogeneous partition. A Voronoi adjacency 

graph of the entire point cloud is defined to establish the adjacency 

relationship between super points. Once the super point graph is 

constructed, PointNet (Qi et al., 2017) is adopted to compute a 

descriptor for each super point. Here, handcrafted features are 

utilized in this stage which are: 1) geometric features (linearity, 

planarity, scattering, and verticality) and 2) trajectory features (2D 

distance to trajectory and relative height to ground). For the final 

stage, a contextual segmentation is conducted through a graph 

convolution to classify each super point based on its embedding 

as well as its surroundings within the super point graph. In 

addition, a quality control (QC) proposed by Lin et al. (2022) for 

road infrastructure is conducted in this work. Based on the 

trajectory information, the QC process refines the prediction for 

man-made terrain and scanning artifacts. In addition, predictions 

with low confidence levels are reported as “unclassified”. 

As for the signage visibility analysis, the occlusion rate is 

estimated by forming a pyramid using the signage boundary points 

as a base while the trajectory point is assumed to be the driver’s 

viewpoint. Here, the vegetation intruding the pyramid is 

considered as occluding points. The occlusion rate computation, 

as presented in Equation 5, begins with projecting the occluding 

points onto the sign. Then, a 2D grid within the sign boundary is 

generated with a user-defined cell size which in this case is set as 

0.1 m. After counting the occupied cells by occluding points, the 

occlusion rate is estimated as shown in Equation 5. In this work, 

we consider an occlusion rate that is under 10 % as acceptable for 

clear sign visibility. 

 

Occlusion Rate = Area of Occupied Grid Cells
Bounding Area of the Sign  (5) 

  

4. EXPERIMENTAL RESULTS 

 

This section begins by presenting the comparative analysis of 

MCSS and SPG semantic segmentation results for detecting 

signage and vegetation points. Next, signage visibility analysis is 

conducted for PWMMS-HA and PWMMS-UHA. 

 

4.1 Comparative Analysis of MCSS and SPG 

 

In this section, a comparative analysis is conducted based on the 

prediction performance of MCSS and SPG. For SPG, the model 

was trained on PWMMS-UHA bridge datasets fine-tuned with the 

PWMMS-HA highway dataset with both driving directions. The 

reference data are generated through manual annotation of the 

point cloud. The performance is first qualitatively evaluated using 

reference data through visual inspection of the results for the four 

LiDAR datasets in different ROIs acquired by PWMMS-HA and 

PWMMS-UHA. Then, to quantitatively evaluate the performance 

of the approaches, the following metrics are computed using the 

reference data: 1) True Positive (TP); 2) False Positive (FP); 3) 

False Negative (FN); 4) Precision; 5) Recall; 6) F1-Score; and 7) 

Overall Accuracy. Here, precision, recall, F1-Score, and overall 

accuracy are derived as Equations 6 to 9. 
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Figure 5.  Comparison of partitioning results derived from MCSS 

and SPG (left). Evaluation of prediction performance for MCSS, 

SPG before QC, and SPG after QC (right) using reference data 

(top right), for ROI 1 from PWMMS-HA. Misclassifications are 

highlighted by black dashed circles. 

 

Figure 5 shows the qualitative evaluation of the results for ROI 1 

from PWMMS-HA, where some vegetation points in the MCSS 

prediction result were incorrectly labeled as natural terrain. 

Similarly, the SPG prediction result before QC misclassified 

vegetation points as scanning artifacts, remaining hardscape, 

natural terrain, and bridge components. Furthermore, some 

remaining hardscape points were misclassified as scanning 

artifacts and natural terrain. For natural terrain points, it was 

misclassified as man-made terrain or scanning artifacts. The 

quantitative evaluation of ROI 1 using MCSS as presented in 

Table 2, showed an overall accuracy of 99%. This indicates that 

the MCSS approach achieved a high level of accuracy in 

classifying the point cloud data in ROI 1. Tables 3 and 4 

respectively, present a quantitative evaluation of SPG 

classification before and after QC. Before QC, the overall 

accuracy of the SPG approach was 91%. After QC, the accuracy 

showed a minimal improvement to 92%. This indicates that the 

QC had a negligible impact on enhancing the overall accuracy of 

the SPG prediction performance. 

 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.985 0.002 0.013 0.998 0.987 0.993 

Natural 

terrain 
0.941 0.045 0.013 0.954 0.986 0.970 

Vegetation 0.982 0.005 0.013 0.994 0.987 0.991 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.942 0.041 0.016 0.958 0.983 0.970 

Scanning 

artifacts 
0.994 0.000 0.006 1.000 0.994 0.997 

Overall 

accuracy  
99% 

Table 2. Quantitative evaluation of MCSS classification results 

for ROI 1 from the PWMMS-HA. 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – 

Pier 
0.000 1.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.841 0.122 0.037 0.874 0.958 0.914 

Natural 

terrain 
0.666 0.138 0.195 0.828 0.773 0.800 

Vegetation 0.956 0.014 0.029 0.985 0.970 0.978 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.412 0.043 0.545 0.905 0.430 0.583 
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Scanning 

artifacts 
0.861 0.119 0.020 0.878 0.977 0.925 

Overall 

accuracy 
91% 

Table 3. Quantitative evaluation of SPG classification results 

before QC for ROI 1 from the PWMMS-HA. 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.846 0.120 0.034 0.876 0.961 0.917 

Natural 

terrain 
0.679 0.123 0.198 0.847 0.774 0.809 

Vegetation 0.962 0.013 0.024 0.987 0.975 0.981 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.428 0.040 0.533 0.915 0.445 0.599 

Scanning 

artifacts 
0.850 0.128 0.021 0.869 0.975 0.919 

Overall 

accuracy 
92% 

Table 4. Quantitative evaluation of SPG classification results after 

QC for ROI 1 from the PWMMS-HA. 

As shown in Figure 6, in ROI 1 from the PWMMS-UHA dataset, 

the MCSS prediction result showed misclassifications where 

certain sections of natural terrain were incorrectly identified as 

vegetation, and vice versa. Similarly, the SPG prediction before 

QC showed misclassifications of natural terrain points as scanning 

artifacts and man-made terrain. Furthermore, there were incorrect 

classifications of remaining hardscape points as scanning artifacts, 

natural terrain, and bridge components. After the QC, 

misclassified areas were refined and reclassified as unclassified 

regions. Moreover, after QC, several points that were correctly 

classified were changed to unclassified points. Additionally, the 

F1-Score for the remaining hardscape class, which includes traffic 

signage, is 86%. As shown in Table 5, the overall accuracy is 98% 

for MCSS. The prediction performance metrics of SPG before and 

after QC are listed in Tables 6 and 7. The F1-Score for the 

remaining hardscape, which also includes traffic signs, was 

initially reported as 69%. However, after QC, it slightly decreased 

to 68%. In addition, there is no significant change in the F1-Scores 

for man-made terrain, natural terrain, remaining hardscape, and 

scanning artifacts after QC. 

 
Figure 6.  Comparison of partitioning results derived from MCSS 

and SPG (left). Evaluation of prediction performance for MCSS, 

SPG before QC, and SPG after QC (right) using reference data 

(top right), for ROI 1 from PWMMS-UHA. Misclassification is 

highlighted by black dashed circles. 

 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.978 0.000 0.021 0.999 0.979 0.989 

Natural 

terrain 
0.893 0.095 0.012 0.904 0.987 0.943 

Vegetation 0.988 0.004 0.008 0.996 0.992 0.994 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.819 0.054 0.127 0.938 0.866 0.900 

Scanning 

artifacts 
0.996 0.000 0.003 0.999 0.997 0.998 
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Overall 

accuracy 
98% 

Table 5. Quantitative evaluation of MCSS classification results 

for ROI 1 from the PWMMS-UHA. 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 1.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.942 0.037 0.020 0.962 0.979 0.970 

Natural 

terrain 
0.778 0.041 0.181 0.950 0.811 0.875 

Vegetation 0.985 0.005 0.010 0.995 0.990 0.993 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.537 0.359 0.104 0.600 0.838 0.699 

Scanning 

artifacts 
0.913 0.074 0.013 0.925 0.985 0.954 

Overall 

accuracy 
96% 

Table 6. Quantitative evaluation of SPG classification results 

before QC for ROI 1 from the PWMMS-UHA 

 TP FP FN Prec. Recall 
F1-

Score 

Bridge – 

Deck 
0.000 1.000 0.000 0.000 0.000 0.000 

Bridge – 

Beam/girder 
0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – 

Abutment & 

wing wall 

0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made 

terrain 
0.943 0.036 0.021 0.963 0.978 0.971 

Natural 

terrain 
0.784 0.040 0.176 0.951 0.817 0.879 

Vegetation 0.986 0.005 0.009 0.995 0.991 0.993 

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 

Remaining 

hardscape 
0.515 0.386 0.098 0.571 0.840 0.680 

Scanning 

artifacts 
0.929 0.060 0.012 0.940 0.988 0.963 

Overall 

accuracy 
96% 

Table 7. Quantitative evaluation of SPG classification results after 

QC for ROI 1 from the PWMMS-UHA 

The same comparative analysis was conducted for ROI 2. Figure 

7 shows the qualitative evaluation for results from the PWMMS-

HA data. In the MCSS prediction result, some vegetation points 

were misclassified as natural terrain. Similarly, the SPG prediction 

result before QC had errors in classifying scanning artifacts as 

bridge components. Moreover, vegetation and natural terrain 

before QC were changed to unclassified after QC. As for the 

quantitative prediction performance, the overall accuracy of the 

MCSS result is 90%, while the SPG approach exhibit a lower 

accuracy of 72% both before and after QC.  

The qualitative evaluation of the results from the PWMMS-UHA 

data is presented in Figure 8.  MCSS prediction result showed 

misclassifications where certain vegetation points were 

incorrectly labeled as natural terrain. On the other hand, the SPG 

prediction results before QC misclassified natural terrain points as 

scanning artifacts and man-made terrain. The same quantitative 

analysis was conducted for ROI 2 from the PWMMS-UHA. The 

overall accuracy is 96% for the MCSS prediction result. 

Moreover, the overall accuracy for SPG after QC is 76% which 

showed an improvement from 74% before QC. 
 

 
Figure 7.  Comparison of partitioning results derived from MCSS 

and SPG (left). Evaluation of prediction performance for MCSS, 

SPG before QC, and SPG after QC (right) using reference data 
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(top right), for ROI 2 from PWMMS-HA. Misclassification is 

highlighted by black dashed circles. 

 

 
Figure 8. Comparison of partitioning results derived from MCSS 

and SPG (left). Evaluation of prediction performance for MCSS, 

SPG before QC, and SPG after QC (right) using reference data 

(top right), for ROI 2 from PWMMS-UHA. Misclassification is 

highlighted by black dashed circles. 

 

4.2 Signage Visibility Analysis 

In this study, signage visibility analysis is conducted based on ROI 

2 which was acquired during the leaf-on seasons where there is a 

higher chance of the traffic sign being obscured by vegetation 

points. A comparison analysis of occlusion rates based on the 

distance from the sign to the driver's viewpoints for PWMMS-HA 

and PWMMS-UHA is conducted as shown in Figure 9. Based on 

the analysis, the occlusion rate for PWMMS-HA indicates that the 

drivers can only see the sign at a distance of 30 m. On the other 

hand, for PWMMS-UHA, the result indicates that the drivers can 

clearly see the sign at a distance of 50 m. The differences between 

the results from the two systems are caused by various numbers of 

onboard LiDAR sensors and scanning patterns for each type of the 

LiDAR sensors. Specifically, the point cloud from PWMMS-HA 

shows a more complete representation of the vegetation as 

illustrated in Figure 10, leading to a higher and more reliable 

occlusion rate. Based on the clear distance standard (US 

Department of Transportation, 2008), for a driver traveling at a 

speed of 60 mph, non-critical signs require to be visible from a 

minimum distance of 91 m. Therefore, the signage visibility 

analysis indicates that the sign is obscured by the vegetation in the 

presented example, posing safety hazards. 

 

 

 
Figure 9.  Comparison of occlusion rate based on the distance 

from the sign-to-driver’s viewpoint for PWMMS-HA in red and 

PWMMS-UHA in blue. 

 
Figure 10. Comparison of LiDAR point clouds between 

PWMMS-HA and PWMMS-UHA for the sample traffic sign in 

ROI 2. The sign, vegetation points, and natural terrain are shown 

in red, green, and blue, respectively. 

 

5. CONCLUSIONS 

In terms of classification results, the MCSS outperformed the SPG 

approach overall. However, it is worth noting that the MCSS 

technique requires manual interaction throughout the 

classification process. The performance of SPG before QC 

exhibited a limited ability to accurately classify several classes, 

such as natural and man-made terrain. In addition, performing QC 

in the SPG approach did not significantly improve the 

classification performance. For the conducted signage visibility 

analysis, different occlusion rates were observed for a given sign 

from the two mobile mapping systems. Compared to PWMMS-

UHA, the PWMMS-HA result produced a more reliable occlusion 

rate due to its ability to capture more complete point cloud for a 

better signage visibility analysis. Future study will focus on 

improving the overall accuracy for the deep learning-based 

approach as well as the QC. Furthermore, improving the quality 

of SPG geometric partitioning by integrating MCSS geometric 

segmentation as super points will be conducted. 
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