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ABSTRACT: 

 

3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature 

of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point 

cloud data plays a crucial role in obtaining a meaningful and accurate representation of the underlying 3D environment. In this paper, 

we propose an algorithm that builds on existing state-of-the-art techniques of 2D image segmentation and point cloud registration to 

enrich point clouds with semantic information. DeepLab2 with ResNet50 as backbone architecture trained on the COCO dataset is 

used for indoor scene semantic segmentation into several classes like wall, floor, ceiling, doors, and windows. Semantic information 

from 2D images is propagated along with other input data, i.e., RGB images, depth images, and sensor information to generate 3D 

point clouds with semantic information. Iterative Closest Point (ICP) algorithm is used for the pair-wise registration of consecutive 

point clouds and finally, optimization is applied using the pose graph optimization on the whole set of point clouds to generate the 

combined point cloud of the whole scene. 3D point cloud of the whole scene contains pseudo-color information which denotes the 

semantic class to which each point belongs. The proposed methodology use an off-the-shelf 2D semantic segmentation deep learning 

model to semantically segment 3D point clouds collected using handheld mobile LiDAR sensor. We demonstrate a comparison of the 

accuracy achieved compared to a manually segmented point cloud on an in-house dataset as well as a 2D3DS benchmark dataset. 

 

1. INTRODUCTION 

The use of LiDAR sensors on hand-held devices is becoming 

increasingly popular for applications like 3D mapping, 

augmented reality, and spatial planning. LiDAR sensor onboard 

a handheld mobile device provides raw data in the form of RGB 

color images and depth maps. 3D point cloud can be generated 

from RGB-D images which is a more nuanced form of 3D data 

representation. 3D point cloud data has information about the 

coordinates of feature points in a 3D coordinate system along X, 

Y, and Z directions and color information in the RGB channel. 

Semantic segmentation, also known as per-point classification, is 

a crucial task in point cloud scene understanding. It involves 

assigning an object label to each individual point in the point 

cloud, enabling comprehensive classification and analysis of the 

scene. The RGB image can be used to infer each pixel into an 

object class using a 2D Deep learning model for semantic 

segmentation. This approach can leverage the power of 2D deep 

learning techniques for semantic segmentation to enhance the 

richness of 3D point cloud data. By employing advanced 

algorithms and models, we are able to accurately assign semantic 

labels to individual points in the point cloud, thereby augmenting 

the information and facilitating a more detailed analysis and 

interpretation of the scene. 

 

In recent years, extensive research has been dedicated to the 

development of deep learning approaches for point cloud 

semantic segmentation. However, this research problem remains 

challenging due to several factors. Firstly, point clouds are 

characterized by their large, unordered, and sparse data nature, 

which renders traditional convolutional operations ineffective. 

Due to its large size and irregular point sampling density, 

segmentation losses consistency and accuracy (Lyu et al., 2020). 

Secondly, RGB-D dataset is highly susceptible to noise and 

outliers due to lower data quality generated using handheld 

mobile LiDAR. Thirdly, the data collected suffers from problems 

of occlusion, thus producing incomplete data. Fourthly, deep 

learning algorithms necessitate a significant amount of labeled 

training data to achieve optimal performance in real-world 

scenarios (Qi et al., 2017a; Qi et al., 2017b). Unfortunately, 

obtaining a sufficiently large annotated 3D dataset is often 

difficult. In contrast, 2D deep learning for semantic segmentation 

has seen significant advancements and benefits from the 

availability of abundant annotated 2D datasets.  

 

In this research paper, we propose a new algorithm that 

semantically enriches 3D point cloud data using 2D image 

semantic segmentation. The proposed algorithm incorporates a 

2D semantically segmented image, generated using Deep 

Learning for each color image, classified into several classes, 

such as walls, floors, ceilings, doors, windows, etc., before 

generating the point cloud. This step ensures that each point in 

the resulting point cloud contains information about the class to 

which it belongs. By including semantic information at an early 

stage, our algorithm circumvents the computationally intensive 

task of 3D segmentation, resulting in faster and more efficient 

processing. 2D image segmentation uses the state-of-the-art 

image segmentation algorithm on RGB images to produce a 

segmentation map. After we have collected and pre-processed all 

the required inputs, i.e., RGB image, depth image, confidence 

image, semantically segmented image, and sensor information, 

the 3D point cloud is generated using depth images for the whole 

dataset. Point clouds thus generated are in the camera coordinate 

system and lack correlation with the other point clouds of the 

dataset. These point clouds are then registered to produce a 

combined point cloud of the mapped environment. Completed 

point clouds have X, Y and Z coordinates, and attributes 

including R, G, B - true color and R’, G’, B’ – pseudo color. Thus, 

the main contribution of this work can be summarized as follows: 

- We propose a process to utilize the RGB-D dataset for 

adding 3D semantic class information to the 3D point 

cloud. 
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- The proposed methodology can freely utilize any off-

the-shelf 2D segmentation and classification algorithm 

for 3D point cloud segmentation. 

- Proposed methodology segments and classifies the data 

before creating a 3D point cloud, thereby enabling 

more accurate analysis, interpretation, and 

understanding of the underlying structure and features 

within the point cloud data. 

 

The algorithm also has the potential to reduce the time and effort 

required to create accurate semantically enriched 3D models of 

mapped environments. The proposed algorithm builds on 

existing techniques in image segmentation and point cloud 

registration, providing a novel and streamlined approach to 

indoor mapping and localization. By adding this additional 

information to the point cloud, the resulting data becomes more 

useful for applications that require object recognition, scene 

understanding, and localization. 

 

2. RELATED WORKS 

In this section, we discuss related works in the field of semantic 

segmentation of 2D and 3D datasets. Other related works which 

employ 2D semantics for 3D segmentation are also discussed 

which is crucial to understand our work. 

 

2.1 2D Semantic Segmentation 

Image segmentation has been a persistent problem in computer 

vision. It plays a crucial role in various visual understanding 

systems and applications, including medical image analysis, 

autonomous vehicles, video surveillance, and augmented reality 

(Minaee et al., 2021). Image segmentation can be categorized 

into semantic segmentation, instance segmentation, and panoptic 

segmentation. Semantic segmentation involves labeling pixels 

with object categories, while instance segmentation detects and 

delineates individual objects of interest. Several segmentation 

algorithms have been proposed, ranging from traditional methods 

like thresholding, region-growing, and clustering, to more 

advanced techniques such as active contours, graph cuts, and 

deep learning models (Otsu, 1979; Nock and Nielsen, 2004; 

Dhanachandra et al., 2015; Najman and Schmitt, 1994; Kass et 

al., 1988; Boykov et al., 2001; Plath et al., 2009). Deep learning 

models have revolutionized image segmentation with significant 

performance improvements, consistently achieving top accuracy 

rates on benchmark datasets (Armeni et al., 2017). This has led 

to a paradigm shift in the field of image segmentation. There has 

been a significant improvement in the performance of deep 

segmentation models over the past 7-8 years. Image 

segmentation has greatly benefited from deep learning with scope 

for improvement. 

 

2.2 3D Semantic Segmentation of Point Cloud 

3D semantic segmentation and labeling is a fundamental task for 

several use cases like scene understanding, autonomous driving, 

SLAM, etc. Annotating raw 3D point clouds obtained from 

sensors like LiDAR and Time of Flight (ToF) sensors provide 

fine details of semantics. There are two parts to this task 3D 

segmentation and classification of points to assign them an object 

class. 3D segmentation methods can be classified as edge-based, 

region-growing, model fitting, hybrid, and machine learning 

approaches (Grilli et al., 2017). This research area has benefited 

by harnessing the abilities of Deep learning also, but it has 

limitations due to coarse voxel predictions and a lack of global 

consistency in point clouds (Tchapmi et al., 2017). 3D 

segmentation remains challenging due to the order-less structure 

of the point cloud. Classification of 3D point clouds assigns each 

point with semantic information about the class. 3D point cloud 

classification has gained lots of interest among researchers in past 

years to classify LiDAR data using contextual information. 

(Weinmann et al., 2013; Guo et al., 2014; Niemeyer et al., 2014; 

Schmidt et al., 2015; Weinmann et al., 2014; Xu et al., 2014; 

Hackel et al., 2016). 

 

2.3 2D-3D Semantic Information Enrichment 

3D point cloud data segmentation and classification using 2D 

data can be broadly classified into two types: projection-based 

methods and fusion-based methods. Projection-based methods 

typically project 3D data onto a 2D image or set of images and 

then perform subsequent segmentation using image processing 

methods to enrich the semantic information. This approach 

benefits from the mature development of 2D semantic 

segmentation. Colored 3D point clouds have been projected onto 

RGB images in spherical projection and a convolutional neural 

network (CNN) is used for semantic segmentation of 3D point 

clouds (Castillo et al., 2021; Tabkha et al., 2019). Fusion-based 

techniques seek to combine original 3D point clouds with 2D 

semantic data to provide an enhanced semantic representation. 

These techniques often incorporate geometric processing 

methods with deep learning models. One method is to use deep 

learning models, such as PointNet (Qi et al., 2017a) or 

PointNet++ (Qi et al., 2017b), to extract features from the 3D 

point cloud and merge them with the semantic data collected 

from 2D photos. In order to project individual perspective views, 

Eder et al., (2020) segmented a spherical panoramic image into 

tangential icosahedral planes. These projections were then input 

into a pre-trained 2D semantic segmentation CNN for fusion. 

 

3. METHODOLOGY 

In this section, we will discuss the methodology employed in this 

research paper. We start with a discussion on the data that is 

required for this approach. In this paper, we have semantically 

enriched a 3D point cloud prepared using RGB-D images 

employing Deep learning for semantic segmentation of 2D 

images to a new image with each class of object represented as a 

unique color. Thus, a segmentation map or image is generated 

from RGB image of the scene. This segmentation map is used 

along with the RGB, depth and confidence images to generate a 

3D point cloud for each image of the data collected.  

 

 

Figure 1. Schematic of the overall methodology. 
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Therefore, for the data part, we require an acquisition system that 

can acquire 2D RGB images with depth data. There are a lot of 

sensor systems available which can be used to obtain RGB-D 

images such as Time of Flight (ToF) sensor, Stereo vision 

sensors, Structured Light sensors or LiDAR sensors. These 

sensors provide colored images having brightness information in 

three channels i.e. red, blue and green and a corresponding depth 

image which is an array of pixels with brightness values in the 

gray channel equivalent to the distance of each pixel from the 

sensor. 

 

3.1 Dataset Acquisition 

RGB-D data is collected using an Apple iPad pro 3rd Generation 

device. RGB color information is collected using the 12 mega-

pixel camera sensor onboard the iPad device with ƒ/1.8 aperture. 

In addition to a camera sensor iPad also has a Time-of-Flight 

(ToF) 3D LiDAR sensor which collects depth information about 

the environment. Figure 1 shows data collection and the sensor 

setup of the iPad pro which has a main camera, ultra-wide 

camera, and LiDAR sensor. Each colored image is supplied with 

a corresponding depth image with distance from the sensor as the 

value assigned to that pixel on the image. This information is 

crucial in generating a 3D point cloud of the scene captured as 

we can translate each image pixel to the corresponding depth to 

prepare a 3D point cloud. But this point cloud does not have 

proper transformation applied to it as each 3D point cloud is in 

its own camera coordinate system. Thus, it lacks positional and 

rotational information which can accurately place it in the world 

coordinate system. 

 

 

Figure 2. Data collection using a handheld LiDAR sensor on 

iPad. 

 

The Polycam application for 3D scanning with LiDAR was used 

to collect data by utilizing its capabilities to record and store 

RGB-D data. It also provides an additional confidence map that 

contains a score for each pixel in the corresponding depth map. 

This score denotes the accuracy of the depth calculated for the 

pixel. The confidence map is extremely useful and makes the task 

of removing ambiguous depth values from the recorded data 

effortless from the start. The confidence map has pixel values in 

the gray channel ranging from black to white. Black corresponds 

to zero or no confidence and white corresponds to 1 or maximum 

confidence. Thus, while preparing a point cloud this confidence 

map can be used to filter out the points with low confidence 

scores and generate a better initial point cloud for each image. 

 

Data collected using Polycam with Apple iPad Pro for the 

reconstructed scene contained 600 color images, 600 depth maps, 

and 600 confidence maps. This data is accompanied by ancillary 

text data which provides us with valuable information about the 

sensors’ intrinsic parameters, i.e., focal lengths in the x-direction 

and y-direction, x & y position of the principal point, width & 

height of the image, values of the elements of camera view 

matrix. The size of the RGB images is 1024 by 768, whereas the 

size of depth and confidence images is 256 by 192 which is 1/4th 

the size of colored images. The maximum depth that is recorded 

by the ToF LiDAR sensor is 5 meters. The data was recorded for 

a portion of the ground floor corridor of the Geomatics 

Engineering Building with a floor area of 120 meter2 and length 

of the corridor equal to 28 meters. This area was selected for the 

purpose of testing and analysis of the algorithm as it is a relatively 

uncomplicated indoor environment that does not contain 

cluttered or unorganized objects. S-pattern was utilized while 

capturing images by ensuring that at least 60% overlap between 

subsequent images. The data was checked for the presence of any 

blurry images. This ascertains the data to have enough distinct 

features even in a small set of images. 

 

 

Figure 3. Overview of the reconstructed indoor scene and the 

raw images. 

 

3.2 2D Semantic Segmentation 

To generate a segmentation map of the indoor environment we 

use deep learning for semantic segmentation. We employed 
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DeepLabv2 with ResNet for indoor scene segmentation. 

DeepLabv2 with ResNet is a state-of-the-art deep learning model 

designed for image semantic segmentation. Leveraging the 

backbone architecture of ResNet, DeepLabv2 shows a staggering 

improvement in performance for semantic segmentation tasks. 

DeepLabv2 employs atrous spatial pyramid pooling (ASPP) 

module, enabling it to amass multi-scale contextual information 

for accurate prediction at different scales and accurately 

delineating object boundaries. In addition to ASPP, DeepLabv2 

also incorporates a fully connected conditional random field 

(CRF) module as a post-processing step which assists in refining 

the segmentation map and optimizing the boundaries of 

segmented regions. Thus, DeepLabv2 with ResNet demonstrates 

its competency in undertaking complex semantic segmentation 

tasks.  

 

The model used was pre-trained on the large-scale COCO dataset 

for panoptic segmentation on more than 330,000 annotated 

images across 80 things and 91 stuff classes. This extensively 

trained model effectively generalizes and performs robustly in 

various real-world scenarios. Pre-trained DeepLabv2 model 

could classify each pixel into different classes but for our use 

case, we have used an already-trained model for inference in 

indoor scene semantic segmentation. A pre-trained deep learning 

model is used to demonstrate that the developed methodology 

can utilize any semantic segmentation deep learning model from 

an already available model garden, thus enhancing the utility of 

this approach. A segmentation map is generated using 

DeepLabv2 with ResNet which will act as an input while 

generating a 3D point cloud for each image. Figure 3 shows the 

segmented maps inferred using Deeplabv2 with ResNet50 from 

RGB color images with classification labels. 

 

 

Figure 4. Segmented maps from RGB images with label 

information. 

 

3.3 Point Cloud generation with Semantic Information for 

each Image 

Once we have gathered all the input data for an indoor scene, 

which are RGB images, Depth maps, confidence maps, 

segmentation maps, and ancillary data for each image, we can 

begin the process of 3d point cloud generation. The first step is 

to check for data consistency i.e., ensuring that each RGB image 

has its respective depth, confidence, and segmentation maps 

available and has the exact dimensions as the RGB image per the 

information derived from the ancillary data file. We will also 

remove blurry or out-of-focus images to get an adequate 3D point 

cloud. Once preliminary checks are over, we proceed to generate 

a 3D point cloud from 2D images. Data collected using a camera 

exists in a 2D pixel coordinate system I(x, y) with its origin at the 

top left corner and positive x and y directions towards right and 

down, respectively. To generate a 3D point cloud from the 2D 

image, first, the origin of the pixel coordinate system is 

transferred from the top left corner to the principal point (cx, cy) 

which is the intersection of the optical axis and image plane. This 

is done by subtracting cx from Ix and cy from Iy, where cx and cy 

are coordinates of the principal point and Ix and Iy are coordinates 

of pixels in the pixel coordinate system. The second step is to use 

the principle of similar triangles and from the geometry explained 

in figure 5, use the focal length of the camera fx (focal length in 

the x-direction) & fy (focal length in the y-direction), and depth 

value ‘z’ from the depth map to compute the Xc, Yc, Zc position 

in the camera coordinate system C(Xc, Yc, Zc) of the 3D point for 

each pixel of the image which has a value on confidence map 

above a threshold value. 

 

𝑋𝑐 = (𝐼𝑥  −  𝑐𝑥)  ∗  𝑧
𝑓𝑥

⁄    (1) 

 

𝑋𝑦 = (𝐼𝑦  −  𝑐𝑦)  ∗  𝑧
𝑓𝑦

⁄    (2) 

 

Above mentioned equation 1 & 2 are used to calculate X and Y 

coordinates of points in camera coordinate system respectively.  

The 3D coordinates for all the points generated for each image 

are stored in the memory. Class information is appended 

pointwise by deriving it from the semantic segmentation map 

generated using deep learning. This process is imitated for the 

whole set of images and 3D point clouds are sequentially stored. 

 

 

Figure 5. Geometry of image transformation from Pixel 

Coordinate System to Camera Coordinate System. 

 

Each image from the dataset generates a 3D point cloud with X, 

Y, and Z positions of each point along with attributes about the 

actual color carried forward from RGB image and semantic class 

information as a pseudo color representing the class to which that 

point belongs. Each point has data stored as pi = Xc, Yc, Zc, R, G, 

B, R’, G’, B’, where pi represents the ith 3D point, Xc represents 

the position in the x-direction, Yc represents the position in the y-

direction, Zc represents the position in the z-direction, R 

represents the value in Red channel, G represents the value in 

Green channel, B represents the value in Blue channel, R’ 

represents the value in Red channel for pseudo color, G’ 

represents the value in Green channel for pseudo color, B’ 

represents the value in Blue channel for pseudo color.  

 

3.4 Co-registration of Point Clouds 

3D point clouds generated from all the images available are in 

the camera coordinate system of that image and hence are 

unaligned with each other to replicate the actual geometry in the 
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world coordinate system. Correspondence estimation is used to 

approximate the transformation which is applied to each point 

cloud such that the 3D indoor scene can be recreated. We 

exploited the Open3D Python library to perform the 

correspondence estimation and pairwise registration of the point 

clouds. Open3D is an open-source library that is fast, easy to use 

and supports 3D data processing workflows helpful in 

performing various operations on point cloud data (Zhou et al., 

2018).  

 

 
 

First step is to estimate normals for the point cloud, this is carried 

out using Open3D built-in function. This step is essential for 

pairwise geometric registration using point-to-plane metric in the 

subsequent step. In the second step, pairwise geometric 

registration is done which comprises of two steps. Iterative 

Closest Point (ICP) algorithm is used to register the pair of point 

clouds twice, which require the estimation of surface normal in 

point clouds to aid in correspondence estimation, distance 

calculation and alignment convergence. First geometric 

registration is done by taking the maximum correspondence 

distance as a larger value for coarse registration and an identity 

matrix as the starting transformation matrix. The transformation 

matrix generated from this step is passed to the next reiteration 

of ICP for fine registration by reducing the maximum 

correspondence distance and using the transformation matrix 

from coarse registration as the starting transformation matrix to 

fit iteratively. Since the ICP algorithm always converges 

gradually to the nearest local minimum of mean square distance 

metric by using two different maximum correspondence 

distances we reduce the prospect of two point clouds being 

aligned imperfectly. This step provides us with a 4 by 4 

transformation matrix and ICP information matrix to be used for 

further optimization. 

 

A pose graph optimization is set up which has two key elements: 

nodes and edges. Each node is connected to the graph by edge 

constraint which defines the relative pose between nodes that 

aligns the nodes in the world coordinate system. It is usually seen 

that pairwise alignments are error-prone (Choi et al., 2015), 

therefore, pose graph edges are divided into two classes. 

Odometry edges connect neighboring nodes which can be aligned 

using a variant of the ICP algorithm. Color ICP algorithm (Park 

et al., 2017) is employed to register the point clouds accurately 

for the odometry case. Loop closure edges establish a connection 

between non-neighboring nodes which is aligned by global 

registration although it is less reliable. Pose graph optimization 

is performed using global optimization Levenberg Marquardt 

method which is the recommended method since it gives better 

convergence. Global optimization is executed which optimizes 

poses by considering all the nodes and edges and seeks to achieve 

a tight global alignment. Pose or Transformation matrix for each 

point cloud which is a 4 x 4 matrix containing rotational and 

translational elements is exported for aligning all the fragment 

point clouds to world coordinate system. 

 

3.5 Global Alignment of Point Clouds and Classification 

Transformation matrix for each point cloud obtained by global 

optimization yields the best alignment for fragmented point 

clouds in the world coordinate system. Using equation 1, the 

point cloud can be converted from a camera coordinate system to 

the world coordinate system. The transformation matrix obtained 

in the previous stage is a 3 by 4 matrix comprising of 9 rotational 

elements and 3 translation elements multiplied with coordinates 

of points in the homogeneous camera coordinate system. This 

yields the transformed coordinates for points in each fragment 

point cloud. Multiplying each fragment point cloud with its 

corresponding transformation matrix aligns all the point clouds 

to best represent the indoor scene. 

 

[

𝑋𝑤

𝑌𝑤

𝑍𝑤

] =  [𝑅 | 𝑡]3𝑥4  [

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

]   (3) 

where,  𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] , 𝑡 =  [

𝑇𝑥

𝑇𝑦

𝑇𝑧

]  

 

Each point in transformed fragment point cloud has information 

about its position in the world coordinate system, actual color in 

RGB and pseudo color which represents the class to which object 

belongs. To combine all the point clouds, cloud compare 

software is used. All the point clouds are imported in the cloud 

compare software with default settings. Once imported, all the 

point clouds can be visualized already aligned as per the 

transformation applied. Combine function in the cloud compare 

can be used to convert fragment point clouds into a single 

combined point cloud.  

 

 

 

(a) 

(b) 
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Figure 6. a) Color Point Cloud (Internal Dataset), b) Segmented 

point cloud (Internal Dataset), c) Color Point Cloud (2D3DS 

Dataset), d) Segmented point cloud (2D3DS Dataset). 

 

The pseudo color information is now used to segment the 

combined point cloud as per class. Pseudo color information is 

represented as scalar value in cloud compare software. Scalar 

values can be split into using values. Since pseudo colors are 

distinct color groups, colors representing each class are 

differentiated on the histogram. These gaps and value ranges are 

identified using histogram and split function is used to split the 

combined point cloud into segmented point clouds as per 

semantic classification. 

 

4. RESULTS  

We conducted tests on various configurations to evaluate the 

effectiveness of our methodology as described in Section 3. In 

addition, we performed evaluations on both an internal dataset 

and a subset from the widely used 2D3DS benchmark dataset 

(Armeni et al., 2017). To assess the performance of our proposed 

pipelines, we need to establish appropriate performance metrics. 

While the 2D3DS dataset provides labels, our internal dataset 

does not. Therefore, we manually labeled the ground truth data 

using image processing software with a graphical user interface, 

as our focus is on testing rather than training a convolutional 

neural network (CNN). Since we are working with test data only 

and do not require a large dataset, manual annotation suffices. A 

subset of 2D3DS dataset was used for comparison. Lounge 1 of 

area 3 was used for the assessment using our proposed 

methodology. For evaluating the performance of each scenario, 

we employ the Intersection over Union (IoU) metric, which is 

widely used in the field. The IoU is computed over the confusion 

matrix C of size N × N, where N represents the number of classes 

(8 in our dataset i.e. wall, ceiling, floor, door, rug, light, paper, 

uncategorized). Each entry cij in the confusion matrix denotes the 

number of samples belonging to the ground truth class i that are 

predicted as class j. The per-class IoU is calculated using the 

formula: 

𝐼𝑜𝑈𝑖 =
𝑐𝑖𝑗

𝑐𝑖𝑗 + ∑ 𝑐𝑖𝑗𝑗≠𝑖  + ∑ 𝑐𝑘𝑖𝑘≠𝑖  
  (4) 

 

The mean IoU (mIoU) is then computed as the average of the per-

class IoU values: 

𝑚𝐼𝑜𝑈 =
1

𝑁
∑ 𝐼𝑜𝑈𝑖

𝑁
𝑖=1   (5) 

 

By using these performance metrics, we can quantitatively 

evaluate the effectiveness of our methodology across different 

scenarios.  

 

 
Figure 7. Confusion Matrix of Internal Dataset with User 

Accuracy, Producer Accuracy and IoU for each class. 

 

Figure 7 above shows the confusion matrix for our internal 

dataset. We can use this to calculate user and producer accuracy 

for each class of object in 3D point cloud. An overall accuracy of 

91.24% was achieved. The accuracy of labels is dependent on the 

CNN model used and the accurate registration of the fragmented 

point clouds. Using the discussed metrics, the segmentation 

results on our internal dataset and 2D3DS dataset are as given in 

the table below: 

 
Method Overall Accuracy mIoU 

Ours (Internal dataset) 91.24% 0.67 

Ours (2D3DS dataset) 89.63% 0.49 

Castillo et al. 2021 (2D3DS dataset) 89.6% 0.47 

Table 1. Comparison of performance of our proposed approach 

on the internal dataset & 2D3DS benchmark dataset and 

Castillo et al. 2021 method on 2D3DS benchmark dataset. 

 

5. DISCUSSIONS 

We conducted experiments on real-world datasets collected using 

a LiDAR sensor onboard a handheld mobile device in different 

scenes to evaluate the performance of our algorithm. The results 

demonstrate the algorithm’s effectiveness in generating 

semantically enriched point clouds and are highly 

computationally efficient. The semantically enriched 3D point 

cloud generated using our proposed algorithm has the potential 

to revolutionize the fields of indoor localization, mapping, and 

navigation. The resultant semantically labeled point cloud 

yielded using the proposed algorithm becomes more informative, 

allowing for easier and more accurate analysis and interpretation. 

The accuracy of the data from LiDAR sensors in mobile devices 

is not comparable to Terrestrial Laser Scanners (TLS) or Total 

Stations but is acceptable in most application cases (Díaz 

Vilariño et al., 2022). This is mainly because faster data 

collection speeds up model generation while incorporating 2D 

semantically segmented maps reduces the computational 

complexity of 3D segmentation. This approach significantly 

reduces the time and resources required for indoor scene analysis 

and modeling by eliminating the need for a separate 3D 

segmentation step, which can be computationally expensive and 

time-consuming. The resulting point cloud is also more 

informative and provides a better understanding of the indoor 

environment. Additionally, the enriched point cloud can also be 

used for 3D modeling of indoor environments, which is essential 

for various applications, such as architectural design, indoor 

navigation, and emergency response planning.  

 

RGB-D datasets obtained from handheld mobile devices offer a 

promising future for fast and easy data collection. They provide 

a wealth of information that combines color and depth data, 

enabling more comprehensive scene understanding. The 

convenience and accessibility of handheld mobile devices make 

Class Unclassified wall Ceiling rug door paper light floor Row Total
Producer 

Accuracy IoU

Unclassified 3201 433 23 195 847 478 5 265 5447 58.77 0.51

wall 0 39256 1647 0 433 23 0 1169 42528 92.31 0.87

Ceiling 0 511 10684 0 0 0 14 0 11209 95.32 0.83

rug 13 0 0 776 0 0 0 61 850 91.29 0.74

door 486 239 0 0 11895 0 0 33 12653 94.01 0.85

paper 266 165 0 0 0 689 0 0 1120 61.52 0.43

light 12 0 6 0 0 0 11 0 29 37.93 0.23

floor 0 1372 0 6 54 0 0 24732 26164 94.53 0.89

Column Total 3978 41976 12360 977 13229 1190 30 26260

User Accuracy 80.46757164 93.52 86.4401 79.427 89.92 57.899 36.67 94.18

(c) 

(d) 
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RGB-D data collection accessible to a wider audience, while the 

real-time nature of data acquisition allows for dynamic and 

iterative processes. Handheld mobile devices, such as 

smartphones and tablets, are becoming increasingly equipped 

with depth sensors, such as time-of-flight (ToF) or structured 

light sensors, alongside RGB cameras. These sensors capture 

depth information by measuring the distance between the sensor 

and the objects in the scene, allowing for the creation of accurate 

depth maps. The convenience and accessibility of handheld 

mobile devices make data collection more accessible to a larger 

user base. The ubiquity of smartphones and tablets means that 

anyone can capture RGB-D data with relative ease, eliminating 

the need for expensive and specialized equipment. In addition to 

this, utilizing off-the-shelf 2D CNN models for segmentation is 

relatively easier than the 3D segmentation of point cloud data. 

Also, unlike TLS&RGB & pano, which uses 3D point cloud data 

to synthesize color images for inferencing semantic 

segmentation, our approach uses the raw RGB-D data itself for 

segmentation and creates a unidirectional pipeline. This also 

eliminate the need for training CNN model on panoramic or any 

other projected images. The proposed algorithm can be improved 

by employing better 2D semantic segmentation models like 

DeepLabv3++ to improve the accuracy of segmentation. An 

improved co-registration algorithm can also be used to maintain 

the geometrical consistency of the recorded dataset. We have 

seen in our experimentation that the accuracy of 3D 

representation can also be improved by employing a filtering 

algorithm to remove noise and redundant points. 

 

The semantically enriched point cloud can be used to generate 

3D models with more accurate spatial information and semantic 

meaning, which can aid in these applications. The proposed 

algorithm offers a promising solution to the challenge of indoor 

mapping, localization and path planning, providing a new avenue 

for research in the field. Our work contributes to the growing 

body of research focused on developing advanced techniques for 

indoor mapping and localization. The proposed algorithm has the 

potential to benefit a variety of applications, such as robot 

navigation, augmented reality, and building inspection. Overall, 

the proposed method provides a cost-effective and efficient way 

to semantically enrich 3D point cloud data, which can be utilized 

in various applications. 

 

6. CONCLUSION 

We have introduced a pipeline for semantic segmentation of 

point clouds in indoor scenes, utilizing the RGB-D dataset. Our 

approach performs semantic segmentation using off-the-shelf 2D 

convolutional neural networks (CNNs) on RGB color images. 

The segmented image is supplied along with RGB and depth 

image to generate fragments of semantically enriched point 

clouds. By employing a pre-trained 2D CNN for semantic 

segmentation, we achieve satisfactory results without the need 

for manually annotated training data or specialized 3D point 

cloud networks. This allows us to capitalize on large 2D labeled 

datasets for 3D point cloud semantic segmentation. Additionally, 

our findings demonstrate that we achieved reasonable class labels 

using a network trained on more commonly available rectilinear 

images. Unlike other studies which perform 2D segmentation on 

reprojected panoramic images, our proposed methodology 

incorporates semantic information from the initial stages of 

RGB-D dataset conversion to 3D point cloud. This will enable 

researchers to directly utilize already available state-of-the-art 

2D semantic segmentation Neural Network models rather than 

training on a custom dataset. This significantly reduces the 

workload and expedites the integration of new deep learning 

frameworks for 3D point clouds. Our algorithm can benefit 

further by using a more robust algorithm for fragmented point 

cloud alignment. The modular nature of our pipeline enables us 

to rapidly test and deploy newer segmentation and alignment 

algorithms. 
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