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ABSTRACT:

This study investigates the performance of eight different deep learning architectures for voxel segmentation in volume images. The
motivation is to segment carbon in carbon reinforced concrete (CRC) in micro-tomography (µ-CT) data. Although there are many
3D convolutional neural networks (CNNs) available, it is not yet clear which one works best for these specific tasks. In this study, the
authors compare the following networks: DenseVoxNet, HighResNet, Med3D, Residual 3D U-Net, 3D SkipDenseSeg, 3D U-Net,
V-Net, and LV-Net. To provide a more general recommendation for selecting a neural network, three medical datasets were added
in addition to the three CRC datasets to facilitate the selection of an appropriate network based on the dataset characteristics. The
experiments emphasize the importance of the initial random state, used for example to initialize the network weights. On average,
the 3D U-Net is the best generalizing CNN, followed by the Residual 3D U-Net and the 3D SkipDenseSeg. While the 3D U-Net is
a good architecture to start with, the experiments show that it does not perform best on all domains. To achieve optimal results, the
authors propose recommendations for selecting a 3D neural network based on the dataset attributes.

1. INTRODUCTION

To minimize the use of materials in buildings or other struc-
tures, carbon reinforced concrete can be used (Beckmann et
al., 2021). As less concrete is used herein, the position of the
carbon elements is of great importance. Therefore, we used
a micro-tomography instrument (µ-CT), which consists of an
X-ray source and a camera that takes a large number of pro-
jections as the object rotates. From these images, a volumetric
reconstruction of the object is created. In these volumes, the
task is to segment the carbon components, which can be done
using convolutional neural networks (CNNs).
In 2012, (Ciresan et al., 2012) proposed a deep neural network
approach to the task of pixel-wise classification, also known
as semantic segmentation. Although the approach worked,
it was relatively slow, so (Ronneberger et al., 2015) intro-
duced the famous U-Net, which outperformed the previous ap-
proach on both speed and performance. Since then, many
other segmentation-related neural networks have been pub-
lished (e.g.: SegNet (Badrinarayanan et al., 2015), DeepLab
(Chen et al., 2018), GCN (Peng et al., 2017) or UPerNet (Xiao
et al., 2018)) to solve 2D segmentation problems. These types
of CNNs have also been successfully applied to 3D data such
as in computed tomography (CT), magnetic resonance imag-
ing (MRI), or electron microscopy (EM). However, the perfor-
mance of 3D convolutions, such as in the 3D U-Net (Çiçek
et al., 2016), has further improved the segmentation accuracy
on such datasets. (Mester et al., 2022) successfully applied a
3D U-Net to segment carbon rovings (bundles of single carbon
fibers aligned in a grid) in concrete. However, they have not de-
termined whether this is the optimal network for this task due
to the lack of comprehensive reviews and comparisons of 3D
CNNs. In medicine, 3D datasets are very common and thus 3D
CNNs are well-known. However, most medical studies dealing
with 3D data still use 2D CNNs for their analysis. According
to (Singh et al., 2020) and (Niyas et al., 2022), only 8-11 % of
published medical papers use 3D CNNs, although they would

be suitable for this purpose. To fill this gap and to determine
the best network for our research, this study compares 8 differ-
ent 3D CNNs using the AiSeg project (https://gitlab.com/fra-
wa/aiseg). The investigated networks are:

• DenseVoxNet (Yu et al., 2017)
• HighResNet (Li et al., 2017)
• Med3D (Chen et al., 2019)
• Residual 3D U-Net (Lee et al., 2017)
• 3D SkipDenseSeg (Bui et al., 2019)
• 3D U-Net (Çiçek et al., 2016)
• V-Net (Milletari et al., 2016)
• LV-Net (Lei et al., 2020)

To the best of our knowledge, there are currently no other com-
prehensive 3D CNN comparisons. With the exception of the
Med3D publication, all networks listed were tested on a sin-
gle domain only. Therefore, in this study, all networks were
compared on 6 different datasets: Three public and three new
datasets representing electron microscopy, CT, and MRI data.
All datasets have their own challenges that networks must over-
come.

2. DATASETS

A typical volumetric dataset consists of a large number of 2D
images stacked on top of each other. What is represented by a
pixel in a 2D image corresponds to a voxel in three-dimensional
space. The datasets were acquired by different acquisition de-
vices such as magnetic resonance imaging, electron microscopy
and computed tomography. An overview of the devices used
and the size of the datasets can be found in table 1. All datasets
in use come with a dataset specific challenge that the networks
need to handle. The new datasets for carbon rovings, concrete
pores, and polyethylene fibers were created using Dragonfly
(Object Research Systems (ORS), 2021).
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Method Dataset Classes Voxels (million)
CT Carbon Rovings 2 9326.6
CT Concrete Pores 2 9932.1
CT PE Fibers 2 1486.4
EM Brain Mitochondria 2 129.8
MRI BraTS 4 9222.6
MRI Head and Neck Cancer 9 975.2

Table 1: Overview of the datasets including their data size
represented in voxels

2.1 Carbon Rovings

At RWTH Aachen University, Germany, a laboratory mor-
tar extruder is used to integrate soft impregnated carbon tex-
tiles, also called rovings, into structural components (figure 1).
(Mester et al., 2022) were interested in the surface area of the
rovings inside the concrete in order to use them in the context
of a coupled multiscale method. This is a challenging task due
to the fact that µ-CT basically determines the physical density
of a voxel, and physical densities of carbon and some concrete
constituents are rather similar. The dataset created for this pur-
pose (Wagner, 2023a) is represented by 3 different CT scans.
The first two scans were sliced into multiple training and vali-
dation sub-volumes of size 128 x 256 x 256 (Depth (d) x Height
(h) x Width(w)) voxels, while the third scan is used for testing
only. The unaugmented dataset consists of 129 training and
33 validation volumes plus the test volume. The training data
was augmented using random rotations around the X, Y and Z
axes, resulting in 1134 volumes with a voxel size of 9.4 µm.
This dataset contains rather large structures that should be seg-
mented by the models.

Figure 1: Carbon roving grid (left) and CT scan of a roving in
concrete (blue, right) visualized with Dragonfly.

2.2 Concrete Pores

Segmenting pores in concrete is fairly straightforward task, for
the obvious reason of different physical density. However, ap-
plying a simple thresholding may not be sufficient because the
surrounding air is also segmented and some reconstructions
may be extremely noisy depending on the power of the x-ray
source used. Furthermore, depending on the reconstruction set-
tings, the threshold has to be manually adjusted for each CT
volume. Therefore, a new dataset for the segmentation of pores
in concrete has been created (figure 2) (Wagner, 2023b). In its
current state, it consists of 8 different CT scans, reduced to re-
gions of interest. They were manually labeled and each scan
was sliced into multiple sub-volumes of size 256 x 512 x 512
(d x h x w) voxels resulting in 148 training, 43 validation and

21 test volumes with different voxel sizes. This dataset con-
tains very small to very large structures that the models should
segment.

Figure 2: Miniature without labels and labeled pores (blue)
visualized with Dragonfly.

2.3 Polyethylene Fibers

Segmentation of polyethylene fibers in strain-hardened cement-
based composites is a very difficult task, since individual fibers
of carbon or polyethylene bring the challenge that their density
is very similar to one of quartz sand particles, resulting in al-
most identical gray values (Lorenzoni et al., 2020). The created
PE fibers dataset (Wagner, 2023c) consists of only 3 spatially
disjoint volumes of size 20 x 512 x 512 (d x h x w) voxels (fig-
ure 3) (voxel size: 4 µm). Since this is a rather small dataset, it
was geometrically enlarged by combinations of rotation (using
multiple angles), resizing, flipping, tilting, and squeezing us-
ing the AiSeg project. This is the only extensively augmented
dataset, as training on so few images would lead to overfitting.
A total of 397 training and 100 validation volumes were cre-
ated. The original volumes were used as test volumes. The use
of geometric augmentation results in different shapes for most
of the new volumes. This dataset presents the challenge of us-
ing very little and only augmented data to predict real volumes.
In addition, only very thin objects are included in this dataset.

Figure 3: Miniature without labels and labeled volume
containing fibers (blue) visualized with Dragonfly.

2.4 Brain Mitochondria

The Electron Microscopy dataset was created at EPFL in Lau-
sanne to segment brain mitochondria in three-dimensional data
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(Lucchi et al., 2013) (figure 4). It represents a small section of
the hippocampal CA1 region of the brain and consists of two
annotated volumes with a voxel size of 5 nm. The dimensions
of the volumes are as follows: 165 x 768 x 1024 (d x h x w)
voxels. The data represents rather large structures in a small
dataset. However, the images are not perfectly aligned. The
challenge for the models is to learn these features with limited
data.

Figure 4: Miniature without labels and labeled brain
mitochondria (blue) visualized with Dragonfly.

2.5 Brain Tumor Segmentation Challenge (BraTS)

The BraTS (2020) multimodal magnetic resonance imaging
data were collected to develop and evaluate state-of-the-art
methods for segmentation of brain tumors (namely gliomas).
The published training data consists of 369 x 4 preoperative
MRI scans of human brains, acquired at 19 different institu-
tions. Each brain was imaged using native (T1), post-contrast
T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Atten-
uated Inversion Recovery (T2-FLAIR) scans. The masks con-
tain four labels: background, necrotic and non-enhancing tumor
core (NCR/NET), peritumoral edema (ED) and GD-enhancing
tumor (ET) (figure 5). For this study, all 1476 scans (369 x
4) were divided into 1033 training, 297 validation and 146 test
volumes. Each volume is of size 155 x 240 x 240 (d x h x w)
voxels with a voxel size of 1 mm. (Menze et al., 2015), (Bakas
et al., 2017), (Bakas et al., 2018)
The challenges of this dataset are that it represents a multiclass
problem and that the structures are intergrown.

2.6 Head and Neck Cancer

Radiation therapy is an important approach in the treatment of
tumors. To prevent damage, the contours of tumors must be
segmented with a high degree of confidence. The dataset of
the Brain and neck cancer detection AAPM RT-MAC Grand
Challenge 2019 (Cardenas et al., 2020), published in the Can-
cer Imaging Archive (Clark et al., 2013), aims to reduce com-
mon observer variability by making segmentation algorithms
comparable. The MRI dataset consists of 55 scans, using T2-
weighted images. 31 of them are used as training, 12 as val-
idation and 12 as test data. Each volume has a size of 120 x
512 x 512 (d x h x w) voxels with a pitch of 0.5 mm per pixel
and 2 mm per slice (2 x 0.5 x 0.5 mm³ (d x h x w)). The ground
truth contains nine classes, resulting from a right and left subdi-
vision and the background. The four main contours are: parotid
glands, submandibular glands, level 2 and level 3 lymph nodes
(figure 6). (Cardenas et al., 2019)

Figure 5: Miniature without labels and labeled BraTS data.
Blue: Necrotic and non-enhancing tumor core; Yellow:
Peritumoral edema; Red: Gadolinium-enhancing tumor

visualized with Dragonfly.

The dataset consists of rather large structures. However, it has
a different pitch in depth than in height and width. Also, some
of the structures merge into each other.

Figure 6: Miniature without labels and labeled organs at risk or
tumors visualized with Dragonfly. Pink: submandibular gland

(right); Teal: lymph node level 2 (right); Yellow: submandibular
gland (right); Orange: lymph node level 3 (right)

3. METHODS

3.1 Data Preprocessing

When training 3D CNNs, most volumes do not fit into the video
RAM (VRAM). Therefore, a training volume is divided into
several equally overlapping sub-volumes. For example, in fig-
ure 7, the initial volume has the shape of 154 x 240 x 240 (depth
(d) x height (h) x width (w)) voxels and is divided into 8 sub-
volumes of 96 x 144 x 144 (d x h x w) voxels each. Each dataset
presented is preprocessed according to this scheme. All datasets
were, if they not already are, divided into training (needed to
adjust the models weights), validation (needed to tune hyperpa-
rameters) and test (to evaluate the final model) data.

3.2 Hyperparameters

Hyperparameters are parameters that are set before a machine
learning model is trained and affect how the model is trained
and how it performs. Since we are comparing different archi-
tectures, the parameters for hidden layers, number of neurons
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Figure 7: Example of a BraTS test volume with a size of 154 x
240 x 240 (d x h x w) voxels divided into 8 sub-volumes with a
size of 96 x 144 x 144 (d x h x w) voxels. Black contours: one

sub-volume.

in each layer and activation function are of course not identical.
Due to the different dataset sizes, different input heights and
widths (and depths for the fiber dataset) had to be used (table 2).
Depending on the complexity and the number of parameters of
the CNNs, the batch size is different for most networks. Since
all batch sizes used are smaller than 16, group normalization
was used as the normalization layer instead of batch normaliza-
tion. The advantage of this technique is that it is more stable
and produces better results than batch normalization on small
batch sizes (Wu and He, 2018). The remaining hyperparam-
eters related to training, such as total iterations, learning rate,
optimizer, etc., are set the same to ensure a fair comparison.
To evaluate the performance during training and validation, the
cross-entropy loss (eq. 1) was used on a multi-class problem.
For a binary segmentation, the binary cross entropy loss (eq. 2)
was used. The optimizer was set to Adam (Kingma and Ba,
2015) with an initial learning rate of 0.001.

Dataset Height and Width Depth GPUs
Rovings 128 64 8
Pores 128 64 8
Fibers 256 16 4
Mitochondria 128 64 4
BraTS 128 64 8
Head Neck Cancer 128 64 4

Table 2: Overview of the datasets, their input dimensions and
used GPUs during training.

Lmulti class = −
C∑

c=1

yo,c log(po,c) (1)

Lbinary = −(y log(p) + (1− y) log(1− p)) (2)

where: L = Loss value
p = Probability: observation o is of class c
y = ∈[0, 1]; indicator if classification c is correct
C = Number of classes

3.3 Metrics

During the training of a neural network, its performance was
monitored using the loss (section 3.2) and the accuracy, which
refers to the ratio of correctly classified voxels to all voxels in a
volume. During training, the weights were adjusted iteratively
in such a way that the loss value gets minimized. Using the
validation loss and accuracy, the following statements can be
derived:

• Low loss, low accuracy: many small errors

• Low loss, high accuracy: very little errors - best case

• High loss, low accuracy: many big errors - worst case

• High loss, high accuracy: very little but big errors

However, accuracy is not a reliable measure: Consider a vol-
ume of size 10 x 10 x 10 voxels containing only 50 voxels that
belong to the foreground. If the network predicts every voxel to
be background, the accuracy is still 95%, even though it failed
badly. Therefore, we used the common DICE coefficient, also
called the overlap index or F1-score (Taha and Hanbury, 2015),
to measure the equality between the ground truth and the seg-
mentation. Using the True Positives (TP), False Positives (FP)
and False Negatives (FN), it is calculated by:

DICE =
2TP

2TP + FP + FN
(3)

In the case of a multi-class problem (BraTS and Head and Neck
Cancer), the DICE per class, calculated using eq. 3, and the
class-biased mean (mDICE, eq. 4) will be be provided. For a
general comparison, we also present a weighted mean DICE
(wDICE, eq. 6). The weighting ensures that the score repre-
sents a global performance rather than a class-biased result. The
weight is calculated by dividing the voxels (N ) representing a
class (c) by all voxels in the current volume (v).

mDICE =

∑n
c=1 DICEc

n
(4)

wc =

∑t
v Ncv∑t
v Nv

(5)

wDICE =

n∑
c=1

wc ·DICEc (6)

where: wc = weighting per class
t = total volumes
n = all classes

During testing, the test volumes were subdivided as explained
in section 3.1. Therefore, a voxel is represented by 2 or more
logits at the overlapping regions. A logit is the direct output
of the CNN at a single voxel. Furthermore, due to the con-
volutions and missing information at the edges, the output of
a network is less certain at the corners than at the center of
the prediction. Therefore, a common practice is to apply a 3D
Gaussian weighting. In MONAI (Medical Open Network for
AI, a PyTorch-based, open-source framework for deep learn-
ing) (Cardoso et al., 2022), a default sigma of σ = input_size ·
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0.125 is used, which depends on the input dimension. This
results in very different weightings, e.g. from 0.00038 (input
dimension of 128) to 0.61 (input dimension of 512) at the cor-
ners. Instead, we decided to weight the logits in such a way that
the values at the corners are always weighted 1/3 to those in
the center (eq. 7). After weighting and combining all the sub-
volumes, the final prediction was evaluated against the ground
truth.

σ =

√
−0.5 · (d2 · h2 · w2)

log 1
3

(7)

3.4 Experimental Design

The experiments were performed on a High Performance Com-
puting (HPC) system. Each training had 12 cores at 2.0 GHz
and 60 GB RAM. Depending on the size of the dataset, 4 or
8 NVIDIA A100-SXM4 GPUs (40 GB VRAM) were used to
train a network (table 2). To save computational time, repro-
ducibility was disabled for all trainings since "deterministic
operations are often slower than non-deterministic operations"
(Paszke et al., 2019). This causes the values of the final weights
to vary between two training runs due to different initial random
states. The random state refers to the seed value used by random
number generators within a machine learning algorithm. There-
fore, the experiment is divided into two parts: In the first part,
a rough estimation of the standard deviation (σ) of the DICE
coefficient is performed using the head and neck cancer dataset
(section 2.6). The performance of the networks is then further
evaluated using the remaining five datasets.
Since the head and neck cancer dataset is quite small, the com-
putation time is expected to be short, so this dataset was chosen
to compute the standard deviation. However, since the training
is still very computationally intensive, each network was trained
only three times on the head and neck cancer dataset. For the
other five datasets, the networks were trained only once.
With the exception of the PE fiber dataset (section 2.3), we
did not perform strong augmentation, as this would change the
properties of the datasets and thus make interpretation difficult.
However, since this is a common practice, we refer to the AiSeg
project for better and more robust results. The software is able
to perform 3D offline and online augmentation as described in
(Wagner et al., 2023).

4. RESULTS AND DISCUSSION

This section is divided into two parts. First, a rough estimate of
the standard deviation regarding the DICE coefficient is made
using the Head and Neck Cancer Dataset in dependence of the
random initialization is conducted. Second, the performance of
each network on the remaining five datasets is investigated. All
neural networks were trained from scratch.
To make a rough estimate of the training duration, we approx-
imated the duration as if we trained each dataset on a single
A100-SXM4 GPU, resulting in over 101 days of training. If we
had used a single RTX 3090, the training duration would have
increased to almost a year (359 days).

4.1 Impact of Initial Random States (Head and Neck Can-
cer Dataset)

The purpose of this section is to make the reader aware that
different initializations are likely to produce different results.

To give a rough estimate, we trained all networks three times
on the relatively small (table 1) Head and Neck Cancer dataset
(section 2.6) to calculate an average and the standard deviation.
Table 3 shows that the Med3D architecture with the ResNet10
backbone achieves the lowest σ with 0.08% and the V-Net the
highest with 0.62%. Using this information, the results in the
following sections should be treated with keeping these results
in mind. Also, the standard deviation should decrease with the
size of a dataset because there are many more volumes and
therefore the variance of a dataset is likely to be higher.

Head and Neck Cancer Parameters wDICE (%)
Network (Backbone) (million) Mean σ Rank
DenseVoxNet 1.7 96.54 0.32 14.
HighResNet 0.8 98.30 0.26 8.
Med3D (ResNet10) 17.3 98.61 0.08 1.
Med3D (ResNet18) 36.1 98.52 0.13 3.
Med3D (ResNet34) 66.5 98.34 0.34 7.
Med3D (ResNet50) 52.3 98.50 0.15 4.
Med3D (ResNet101) 91.3 98.12 0.27 9.
Med3D (ResNet152) 123.5 98.12 0.30 10.
Med3D (ResNet200) 132.7 98.10 0.10 11.
Residual 3D U-Net 141.2 98.43 0.34 6.
3D SkipDenseSeg 7.1 98.57 0.09 2.
3D U-Net 16.3 98.48 0.20 5.
V-Net 45.6 97.79 0.62 12.
LV-Net 12.2 97.56 0.60 13.

Table 3: Parameter count of all networks, mean testing wDICE
coefficient of three training runs and standard deviation (σ) of

the Head and Neck Cancer dataset.

In terms of the weighted performance, the Med 3D (ResNet
10) achieves the highest wDICE, closely followed by the Skip-
DenseSeg on this multiclass problem. Both networks have
a small standard deviation of 0.08% and 0.09%, respectively,
which covers the average difference of these two networks
(98.61% − 98.57% = 0.04%). Therefore, the assumption that
the Med 3D (ResNet 10) performs best is not significant. For
the Med3D backbones, it can be seen that fewer layers in the
backbone are more powerful as fewer parameters need to be
adjusted which is crucial for small datasets. The DenseVoxNet
performs the worst of all the networks (96.54%).
Since this is a multiclass dataset, we also present the class-wise
DICE in table 4 with the mDICE and their standard deviations
in table 5 as the overall performance does not provide detailed
information about the results. Compared to the other CNNs, the
SkipDenseSeg was shown to perform best with an average of
1.39% (mDICE), although the achieved DICE scores are rather
poor, which is reflected in figure 8. However, this is most likely
due to the fact that the dataset is rather small, which is also sup-
ported by the comparison of the standard deviations per class.
The more voxels a class contains, the lower the standard devi-
ations become. In the following, the number of voxels associ-
ated with each class is shown, presenting the bias towards the
background class which on its own consists of 98.71% of all
voxels. Background: 962 594 506, C1: 590 569, C2: 589 474,
C3: 1 121 325, C4: 1 140 637, C5: 2 207 852, C6: 2 379 147,
C7: 2 226 010, C8: 2 326 160. The background class, has a low
σ while all other classes have high standard deviations.

4.2 Carbon Rovings

The Carbon Rovings dataset is the second largest (table 1) and
aims at segmenting quite large structures. The experiments
have shown that 3D U-Net performs best on such elements
(98.56%, table 6, figure 9). The gap to the second place (Den-
seVoxNet) is 0.39%, which is outside the standard deviation
range of the two networks (DenseVoxNet: 0.32%; 3D U-Net:
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Mean DICE (%) per class (Head and Neck Cancer Dataset)
Network (Backbone) B C1 C2 C3 C4 C5 C6 C7 C8 mDICE
DenseVoxNet 97.37 33.80 28.70 20.83 14.37 33.43 26.77 45.77 47.43 38.72
HighResNet 98.93 45.37 37.70 35.70 34.27 49.93 44.83 59.53 59.60 51.76
Med3D (ResNet10) 99.23 48.30 43.20 43.63 37.97 53.53 48.67 59.57 58.07 54.69
Med3D (ResNet18) 99.23 44.07 38.13 36.43 35.83 48.63 44.27 47.27 47.87 49.08
Med3D (ResNet34) 99.13 34.57 31.47 32.20 27.90 42.70 37.00 43.13 41.40 43.28
Med3D (ResNet50) 99.20 36.40 39.33 36.77 29.30 46.80 45.30 48.57 56.03 48.63
Med3D (ResNet101) 99.00 26.23 28.53 26.57 19.43 31.60 30.00 38.10 45.03 38.28
Med3D (ResNet152) 99.07 20.13 27.37 27.40 23.83 34.87 28.93 24.03 19.77 33.93
Med3D (ResNet200) 98.97 18.13 13.53 26.47 23.47 34.00 31.60 41.23 31.93 35.48
Residual 3D U-Net 99.13 48.23 52.33 33.13 27.97 44.33 38.87 58.63 59.47 51.34
3D SkipDenseSeg 99.17 49.20 49.37 41.17 35.63 55.67 46.97 63.93 63.57 56.08
3D U-Net 99.07 46.97 46.83 35.00 33.63 47.53 48.50 65.97 69.83 54.81
V-Net 98.67 25.33 16.73 19.37 25.47 32.40 33.53 37.00 42.33 36.76
LV-Net 98.40 12.77 7.30 32.33 23.53 31.77 32.80 44.90 41.77 36.17

Table 4: Mean testing DICE coefficient per class on the Head and Neck Cancer Dataset. Labels: background (B), submandibular
glands (left (C1) and right (C2)), level 2 (left (C3) and right (C4)) and level 3 (left (C5) and right (C6)) lymph nodes and parotid

glands (left (C7) and right (C8)).

σ (%) per class (Head and Neck Cancer Dataset)
Network (Backbone) B C1 C2 C3 C4 C5 C6 C7 C8
DenseVoxNet 0.32 10.43 8.89 1.62 0.81 3.05 2.68 0.51 8.21
HighResNet 0.21 2.12 2.11 6.38 3.71 3.68 3.97 5.78 3.54
Med3D (ResNet10) 0.06 6.50 5.10 0.42 2.35 1.01 1.59 2.85 6.16
Med3D (ResNet18) 0.06 4.79 6.43 4.05 2.71 0.61 7.96 4.29 17.17
Med3D (ResNet34) 0.31 9.95 11.92 4.73 4.41 8.25 8.49 5.95 11.69
Med3D (ResNet50) 0.10 9.77 12.55 4.91 2.27 2.19 5.12 13.50 4.68
Med3D (ResNet101) 0.30 6.95 11.14 8.86 1.72 1.57 1.81 18.47 8.10
Med3D (ResNet152) 0.32 9.98 16.46 3.64 5.71 5.23 15.90 13.32 24.72
Med3D (ResNet200) 0.12 16.06 4.53 3.82 3.27 4.77 4.64 3.24 13.16
Residual 3D U-Net 0.29 10.37 6.76 5.28 6.25 9.02 6.04 8.60 7.78
3D SkipDenseSeg 0.06 5.65 2.70 3.14 3.22 2.36 3.20 4.25 2.28
3D U-Net 0.21 10.46 11.11 8.15 7.14 7.12 3.83 1.76 1.77
V-Net 0.47 13.95 21.46 7.62 8.06 17.08 13.79 31.60 9.58
LV-Net 0.46 6.50 5.84 14.12 11.94 15.63 19.21 16.30 3.47

Table 5: Standard deviation of the DICE coefficient per class on the Head and Neck Cancer Dataset. Labels: background (B),
submandibular glands (left (C1) and right (C2)), level 2 (left (C3) and right (C4)) and level 3 (left (C5) and right (C6)) lymph nodes

and parotid glands (left (C7) and right (C8)).

Figure 8: Visualization of ground truth (left) and segmentation
(right) of the Head and Neck Cancer dataset using the 3D

SkipDenseSeg. Orange: left submandibular gland; teal: right
submandibular gland; yellow: left level 2 lymph node (not

present in GT); gray: right level 2 lymph node (not present in
GT and segmentation); blue: level 3 lymph node left; magenta:
level 3 lymph node right; mint: left parotid gland; beige: right

parotid gland.

0.20%). However, since this is a different dataset, the results of
section 4.1 are not appropriate. Furthermore, the dataset is quite
large, and therefore it is to be expected that the standard devi-
ation will be lower. For this reason, we assume that the 3D U-
Net performs best in binary segmentation with large structures
and sufficient amount of training data. Although the 3D Skip-
DenseSeg performs best on the head and neck cancer dataset
(mDICE) and achieves the lowest loss on this dataset, the gap
in DICE with respect to the test data is 2.3% to the 3D U-Net,
resulting in the second worst performance on this dataset.

Figure 9: Visualization of ground truth (left) and segmentation
(right) of the Carbon Rovings dataset using the 3D U-Net.

4.3 Concrete Pores

The Concrete Pores dataset consist of many tiny to large pores.
Again, the 3D U-Net performs best, although not by a signifi-
cant margin (gap to second: 0.11%, DICE: 87.66% (table 6, fig-
ure 10). On the second, the 3D SkipDenseSeg achieves a DICE
of 87.55%, followed by the LV-Net, which achieves 86.95%.
Although this dataset is similar in size to the Rovings dataset,
all networks performed significantly worse. This is likely due
to the fact that the pore structure is much more diverse in shape
and size compared to a roving.

4.4 Polyethylene Fibers

For the Polyethylene Fibers dataset, the challenge is to predict
tiny structures with limited data, which is a common problem
for many researchers facing new domains. To overcome the
problem of limited data, we used only geometrically augmented
volumes to train and validate the networks. Testing was done
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DICE (and wDICE) (%)
Network (Backbone) Head and Neck Carbon Concrete PE Brain BraTS avg Rank

Cancer Rovings Pores Fibers Mitochondria
DenseVoxNet 96.54 98.17 85.77 39.70 67.45 97.56 7.
HighResNet 98.30 96.09 84.85 46.38 67.61 98.24 6.
Med3D (ResNet10) 98.61 97.87 79.64 36.26 63.65 96.49 9.
Med3D (ResNet18) 98.52 97.36 80.41 37.83 63.47 96.55 13.
Med3D (ResNet34) 98.34 97.52 83.73 36.93 61.03 97.80 12.
Med3D (ResNet50) 98.50 97.37 82.93 40.29 70.97 97.88 4.
Med3D (ResNet101) 98.12 96.36 85.71 37.24 71.60 97.99 5.
Med3D (ResNet152) 98.12 97.39 75.61 41.15 65.94 97.58 10.
Med3D (ResNet200) 98.10 97.41 80.24 38.56 63.48 97.73 11.
Residual 3D U-Net 98.43 97.57 83.44 63.49 73.66 98.59 2.
3D SkipDenseSeg 98.57 96.28 87.55 52.98 69.78 97.98 3.
3D U-Net 98.48 98.56 87.66 58.45 76.38 98.08 1.
V-Net 97.79 97.05 72.10 16.21 63.74 96.47 14.
LV-Net 97.56 97.40 86.95 16.16 78.89 97.05 8.

Table 6: Testing DICE (and wDICE for multi-class datasets) coefficient regarding all networks and datasets. On the right hand side,
the average rank is given, representing a mean ranking of the networks regarding all datasets.

Validation Loss
Network (Backbone) Head and Neck Carbon Concrete PE Brain BraTS

Cancer (avg) Rovings Pores Fibers Mitochondria
DenseVoxNet 0.284 0.046 0.114 0.094 0.252 0.599
HighResNet 0.327 0.051 0.178 0.089 0.298 0.670
Med3D (ResNet10) 0.209 0.050 0.289 0.141 0.336 0.773
Med3D (ResNet18) 0.232 0.062 0.268 0.152 0.370 0.738
Med3D (ResNet34) 0.248 0.060 0.253 0.149 0.396 0.748
Med3D (ResNet50) 0.239 0.059 0.197 0.114 0.266 0.701
Med3D (ResNet101) 0.314 0.053 0.223 0.127 0.279 0.690
Med3D (ResNet152) 0.293 0.061 0.235 0.134 0.318 0.690
Med3D (ResNet200) 0.291 0.067 0.173 0.125 0.297 0.651
Residual 3D U-Net 0.315 0.048 0.139 0.083 0.211 0.576
3D SkipDenseSeg 0.228 0.037 0.158 0.082 0.281 0.571
3D U-Net 0.202 0.041 0.093 0.067 0.207 0.560
V-Net 0.638 0.052 0.465 0.298 0.730 0.804
LV-Net 0.736 0.102 0.307 0.305 0.525 0.757

Table 7: Validation Loss regarding all networks and datasets.

Figure 10: Visualization of ground truth (left) and segmentation
(right) of the Concrete Pores dataset using the 3D U-Net.

on the unaugmented volumes, which explains the rather poor
results of, for example, the V-Net and the LV-Net. We suspect
a weakness in their architecture that makes them inefficient at
learning generalized features on such data. The 3D-U-Net and
its residual version are superior. In (Ronneberger et al., 2015),
the U-Net was shown to perform well on small datasets, which
has been proven in the third dimension as well. The Residual
3D U-Net significantly outperformed all other non U-Net ar-
chitectures by a large margin (11.51%, table 6), and although
it is the largest network in terms of parameters (141.2M), the
inner architecture shows its efficiency. In total, only three net-
works were able to achieve a DICE of > 50% and can be con-
sidered useful for such problems: 1. Residual U-Net 3D, 2.
3D U-Net, 3.: 3D SkipDenseSeg. Even though the Residual
3D U-Net achieved a DICE of only 63.49% it reliably found

all fibers in the test data (figure 11). The rather poor score re-
sults to the fact that fibers marked in the ground truth are very
thin and maybe too conservative in size. The predicted struc-
tures are thicker and, on such a scale, this difference explains
the achieved DICE.

Figure 11: Visualization of ground truth (left) and segmentation
(right) of the PE Fibers dataset using the Residual 3D U-Net.

4.5 Brain Mitochondria

The Brain Mitochondria dataset is quite small. Also, the train-
ing data is very similar to the test data, which is why the LV-Net,
last place in the PE Fibers dataset test, performed best with a
DICE of 78.89%. It seems that this architecture has a high po-
tential to learn the features of the training dataset, but cannot
adapt them to slightly different volumes. It requires a sufficient
amount of training volumes to successfully learn and adapt fea-
tures on unseen data. However, the loss is quite high with 0.525
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(table 7). This happens when the network performs well in gen-
eral, but produces a few large errors as shown in figure 12 (top
right), where the network falsely predicts a large structure. This
also supports the hypothesis that this architecture has a very
narrow applicability. The second and third best models are the
two U-Net variants, which again proves their usability on small
datasets. However, the difference in DICE between the LV-Net
and the 3D U-Net (second best) is still significant at 2.51% al-
though the 3D U-Net was able to learn more features than the
LV-Net when comparing the validation loss (table 7).

Figure 12: Visualization of ground truth (left) and segmentation
(right) of the Brain Mitochondria dataset using the LV-Net.

4.6 BraTS

The large BraTS dataset contains complex structures to learn.
However, all architectures perform quite well overall (wDICE
from 96.47% to 98.59%, table 6), because the background
class consists of the most voxels (98.7% background). There-
fore, we also show the DICE per class as the overall perfor-
mance is misleading, as already stated in section 4.1. The class
distribution of voxels associated to each class is as follows:
Background: 10 357 065 861, C1: 30 280 730, C2: 79 352 001,
C3: 26 598 048. Table 8 indicates that the prediction of the sin-
gle classes is a difficult task for all tested CNNs. The Residual
3D U-Net performs best (mDICE: 62.5%, visualization in fig-
ure 13), closely followed by the 3D SkipDenseSeg (mDICE:
59.5%). The worst network is the Med3D (ResNet10) with a
mDICE of 42.6%.

Figure 13: Visualization of ground truth (left) and segmentation
(right) of the BraTS dataset using the Residual 3D U-Net.

Orange: NCR/NET; teal: ED; yellow: ET

5. CONCLUSION

The experiments have emphasized the importance of the initial
random state. The minimum and maximum standard deviations
ranged from 0.08% (Med3D (ResNet10)) to 0.62% (V-Net) on
the Head and Neck Cancer dataset. In addition to choosing the
correct hyperparameters, this can have a significant impact on
the performance, and a final network should be trained several
times to achieve the best results. In table 6, the rankings of all
networks have been averaged across all datasets. Overall, the
standard 3D U-Net performed best. The next best CNNs are

DICE (%) per class (BraTS)
Network (Backbone) B NCR/NET ED ET mDICE
DenseVoxNet 98.2 45.4 33.2 43.2 55.0
HighResNet 98.8 48.2 38.9 51.1 59.2
Med3D (ResNet10) 97.3 24.6 21.4 27.0 42.6
Med3D (ResNet18) 97.3 36.9 21.0 26.8 45.5
Med3D (ResNet34) 98.6 35.0 27.7 30.9 48.0
Med3D (ResNet50) 98.6 46.4 30.4 33.7 52.3
Med3D (ResNet101) 98.7 36.2 32.0 37.1 51.0
Med3D (ResNet152) 98.3 39.1 26.1 38.1 50.4
Med3D (ResNet200) 98.5 38.6 28.4 28.2 48.4
Residual 3D U-Net 99.2 60.2 43.4 47.0 62.5
3D SkipDenseSeg 98.6 53.9 34.7 50.9 59.5
3D U-Net 98.8 39.8 33.0 45.3 54.2
V-Net 97.2 29.8 23.1 36.3 46.6
LV-Net 97.8 43.8 25.1 45.4 53.0

Table 8: Testing DICE coefficient per class on the BraTS
dataset. Labels: background (B), necrotic and non-enhancing

tumor core (NCR/NET), peritumoral edema (ED) and
GD-enhancing tumor (ET).

the Residual 3D U-Net and the 3D SkipDenseSeg, although it
never performed best on any domain. The comparisons have
shown that the domain has an impact, albeit less than expected,
and that the U-Net variants are fairly general architectures ap-
plicable to any dataset. However, although the 3D U-Net or
its residual version can be a good starting point, in some cases,
other networks are superior. From our results, we propose the
following recommendations for selecting a 3D neural network
based on dataset attributes:

• Larger datasets with large, coherent structures: 3D U-Net
or DenseVoxNet

• Larger datasets with tiny to large structures: 3D U-Net or
3D SkipDenseSeg

• Larger datasets with complex structures: Residual 3D U-
Net, HighResNet or 3D U-Net

• Medium datasets with large and very similar structures:
3D U-Net

• Small datasets with simpler, intergrown structures: a
Med3D version or 3D SkipDenseSeg

• Very small datasets with very thin structures: Residual 3D
U-Net or 3D U-Net

Although the LV-Net performs best on the Brain Mitochon-
dria dataset, the experiments suggest that it has a weakness in
its architecture that reduces its generalizability. Therefore, we
cannot confidently recommend its use on such medium-sized
datasets and have decided to recommend the 3D U-Net instead.
The experiments also showed that neither the V-Net nor most
of the Med3D versions (ResNet: 34, 50, 101, and 200) could
achieve a top 3 result in any domain.
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