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ABSTRACT: 

 

Buildings are an important part of the urban scene. In this paper, a novel instance segmentation framework for 3D mesh models in 

urban scenes is proposed. Unlike existing works focusing on semantic segmentation of urban scenes, this work focuses on detecting 

and segmenting 3D building instances even if they are attached and occluded in a large and imprecise 3D surface model. Multi-view 

images are first enhanced to RGBH images by adding a height map and are segmented to obtain all roof instances using Mask R-CNN. 

The 2D roof instances are then back-projected onto the 3D scene, the accurate 3D roof instances are obtained using a novel 3D 

clustering method and two post-processing steps which preserve the largest connected region and remove the model ambiguity. Finally, 

the 2D convex hull of each 3D roof instance is calculated and the model is divided within the range into building instances. The 

performance of the proposed methods is evaluated using real UAV images and the corresponding 3D mesh models qualitatively and 

quantitatively. Results revealed that the proposed method could effectively segment the model of the urban scenes and building instance 

is obtained, the over-segmentation masks can be clustered correctly into roof instances and the under-segmentation masks caused by 

image segmentation errors are eliminated. 

 

 

1. INTRODUCTION 

Buildings are an important dataset and foundation for the study 

of urban scenes. 3D reconstruction and modeling from images or 

range data of buildings, the most prominent man-made objects on 

the Earth's surface, has been a very active research area for the 

past three decades(Song et al., 2021; Haala and Kada, 2010; 

Shephard and Georges, 1992). Digital building models have a 

wide range of applications in urban planning, population density 

analysis, mobile communications, solar energy potential 

assessment, disaster management, 3D GPS navigation, and 

environmental simulation. 

 

However, 3D models of urban scenes without semantic 

information will greatly limit their application scope. We focus 

on instance segmentation of buildings, rather than semantic 

segmentation, because it separates different building instances 

even if they are attached. Therefore, this paper aims to accurately 

and automatically segment all building instances in a large 3D 

urban scene. 

 

In recent years, deep learning has relatively mature technology 

and framework in the field of image instance segmentation 

(Yekeen et al., 2020; Chen et al., 2023; Chen et al., 2017; 

Tajbakhsh et al., 2016; Liu et al., 2022; Oba and Ukita, 2020). 

Similarly, the direct application of deep learning technology to 

object instance segmentation of 3D scenes has also become a 

research hotspot(Yasir et al., 2022; Sanchez et al., 2020; Shen 

and Stamos, 2021; Qi et al., 2017b; Qi et al., 2017a; Xiong et al., 

2015). However, the above papers are applied to object instance 

segmentation of indoor scenes and the data form is point cloud. 

The proposed method(Huang et al., 2022) uses LiDAR data to 

segment building instances. It first obtains the roof boundary, and 

then constructs the wall surface perpendicular to the roof 

boundary and the ground to obtain the building instance. 
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Although a good result for building instances can be obtained in 

the end, the instance lacks realism, and the complex wall surface 

of the building instance is replaced by a simple vertical plane. 

Therefore, building instance segmentation in large urban scenes 

is still challenging. 

 

Instead of directly segmenting 3D models, segmenting images 

first and projecting them to the 3D models is a potential 

alternative, as it can utilize powerful neural networks for image 

segmentation. At present, (Leotta et al., 2019) use multi-view 

satellite images to reconstruct the scene and obtain the 

orthophoto map and point cloud model, then perform building 

semantic segmentation on the orthophoto map and then project 

back to the point cloud model, finally generate the mesh model 

of the building instance. However, segmentation of building 

instances only on the orthophoto map often leads to under-

segmentation, such as connected buildings cannot be segmented. 

(Yu et al., 2021) uses multi-view images to generate DSM, DOM, 

and orthophoto map, and use them to extract building boundaries 

with deep learning, depth map, and point cloud are used to obtain 

building elevation to construct large scene-building instances. 

However, two very close individual buildings in the extraction of 

building boundaries may be under-segmented into the same one, 

which will affect the generation of 3D building instances. 

Therefore, how to solve the over-segmentation and under-

segmentation in the segmentation process will be an inevitable 

research focus. 

 

We develop a novel framework for instance segmentation of 

urban buildings in large scenes. Based on the multi-view images 

captured by the Unmanned Aerial Vehicle (UAV), the roof 

instances are directly segmented. Through the spatial clustering 

algorithm proposed in this paper and other instance optimization 

processing, the roof instances and building instances on the 3D 

model are obtained. The technical framework of this paper is as 

follows： 
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1. The RGB image is enhanced to RGBH image, the instance 

segmentation is performed on the multi-view images, and the 

instance segmentation result is back-projected onto the 3D model. 

The roof semantic segmentation mask is generated by the 

instance segmentation result, and the 3D semantic mask is 

obtained for the subsequent roofing instance error elimination 

and optimization.  

2. A novel clustering algorithm is applied to roof clustering to 

obtain original roof instances. The clustering algorithm can 

effectively eliminate the under-segmented instance masks, such 

as multiple roofs identified as one roof, and perform spatial 

clustering for over-segmented masks. The original roof instance 

results are clustered from multiple over-segmented roof masks.  

3. Due to the error of the image segmentation mask, the basic 

units on the 3D model are ambiguous. Therefore, the original roof 

instances obtained by clustering will have obvious regions due to 

error accumulation. By retaining the largest connected area of the 

roof instance and filtering with the roof semantic mask, the non-

roof regions can be eliminated to obtain the roof instances with 

better results.  

4. Extract the 2D convex hull of the refined roof instance, 

segment the area within the convex hull, and the segmentation 

result is the building instance. 

 

2. METHODOLOGY 

2.1 Experimental Area and Data  

The area selected for this experiment is an urban village area in 

Longhua District, Shenzhen, China, and the size of the 

experimental area is about 0.12 km. The multi-view images 

acquisition is obtained by DJI Phantom 4 RTK, with a total of 

127 photos, and the Context Capture software is used to 

reconstruct the 3D model scene. The 3D model format used here 

is the Mesh model. The experiment scene is shown below. It can 

be seen from the reconstruction results that the Mesh model is 

degraded to a certain extent, such as incorrect adhesion and holes 

between buildings. The main reason is that the surround shooting 

is not specified when collecting the images of this area, so not 

enough images are collected, resulting in the lack of multi-angle 

image data of buildings in the scene, and the final scene modeling 

effect is poor. For the subsequent image mask back projection to 

the Mesh model, the Aero Triangulation file (AT file) generated 

by Context Capture software is used to recover the position and 

orientation of the multi-view images to establish the 

correspondence between the images and the 3D model.  

 
(a) 

 
(b) 

 
(c) 

Figure 1. Experimental area and model errors 

 

Vertices Triangles 
Area 

(𝑘𝑚2) 

Images 

(resolution) 

1,691,201 3,370,714 0.12 127 
(5472 × 3648) 

Table 1. Statistics on the 3D model 

 

2.2 2D Roof Instance Segmentation with Height Map 

Instead of directly segmenting 3D models, segmenting images 

first and back-projecting them to the 3D models is a potential 

alternative because it can leverage powerful neural networks for 

image segmentation. Orthophoto maps could be the first 

candidate because their projection direction is unity. However, 

buildings in orthophoto maps have severe self-occlusion, e.g. 

walls cannot be seen. Therefore, in the process of 2D-3D 

projection, its inaccurate segmentation will affect the 

classification of the 3D Mesh model. For this sake, we employ a 

multi-view 3D segmentation framework in this paper. 

 

In this paper, we only segment the roof instance from the multi-

view images. The main reason is that the buildings in the 

experimental area are densely distributed and the overall 

visibility of the buildings is low, this situation can be seen from 

Figure 2. It is impossible to directly segment the entire building 

instance through multi-view images and back-project it onto the 

Mesh model to obtain the entire building instance. Therefore, we 

first choose the roof for its good visibility to segment the building, 

and then obtain the roof instance by back-projecting it back onto 

the Mesh model, ultimately segmenting the complete building 

instance. 

 

 

Figure 2. Building distribution in the experimental area 

Here, the image segmentation method we use is the mask 

regional convolutional neural network (Mask R-CNN). Mask-

RCNN model was developed in for semantic segmentation, 

object localization, and object instance segmentation. To avoid 

dividing other objects into roof instances, the multi-view RGB 

image is enhanced to an RGBH image by adding an additional 

channel to encode height information. The geometric information 

is a very important supplement that can improve segmentation 

accuracy. The specific Mask R-CNN framework is shown in 

Figure 2. After the RGB image is enhanced to an RGBH image, 

it can effectively eliminate the ground area being divided into 

roof instances. 

 

 

Figure 3. Mask R-CNN architecture with RGBH images 

To avoid dividing other objects into roof instances, the multi-

view RGB image is enhanced to an RGBH image by adding an 

Backbone 
Network RPN conv

conv

Input image

Height map

RGB-H image CNN features 
map

Region 
proposals

Fully connected layers
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additional channel to encode height information. The geometric 

information is a very important supplement that can improve 

segmentation accuracy. The specific Mask R-CNN framework is 

shown in Figure 3.  

 

In this experiment, there are total of 127 images, 22 images are 

randomly selected as the training set of the model training, and 

15 images are used as the test set of the model training. After the 

RGB image is enhanced to an RGBH image, it can effectively 

eliminate the ground object being divided into roof instances. 

 

RGB 

images 

RGB images 

based 

instance 

result 

Height map 

RGB-H 

images 

based 

instance 

result 

    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Comparison of the segmentation results without and 

with height information 

Figure 4. shows a visual comparison. Ground objects like cars 

and other things are successfully separated from the roofs, 

although some of them have a visually indistinct roof texture. The 

Mask R-CNN also computes a probability for each instance mask 

to represent its prediction confidence. To avoid masks with low 

confidence, only roof instance masks with predicted confidence 

higher than 70% were used. 

 

2.3 Instance Ambiguity Removal 

Although enhancing RGB images to RGBH images can 

effectively distinguish roofs from other objects, it is still 

inevitable to divide other areas into roof instances, e.g. building 

walls. Besides, the result of roof instances segmented using Mask 

R-CNN still have errors, with some instance results containing a 

small portion of the walls connected to them. Due to the small 

number of images used for training and testing of the instance 

segmentation model, there are errors in the roof instances judged 

and output by the Mask R-CNN model. Therefore, we need to 

calculate the ambiguity of the Mesh model triangles and remove 

triangles area that doesn’t belong to the roof in the roof mask 

obtained by back-projection.  

 

Firstly, the roof semantic segmentation images are obtained from 

the Mask R-CNN instance segmentation results, and the semantic 

segmentation mask of each multi-view image is back-projected 

onto the Mesh model. For each multi-view image, the ambiguity 

of each triangle on the Mesh model can be divided into three 

situations:  

(1) Roof triangle: The triangle on Mesh which is the back-

projected intersecting unit of the roof semantic image 

(foreground).  

 (2) Non-roof triangle: The triangle on Mesh which is the back-

projected intersecting triangle of the non-roof semantic area 

(background). 

 (3) Unknown triangle: The triangle on Mesh which is not within 

the back-projection range of the roof semantic image 

(background).  

Figure 5. shows the instance (a) and semantic (b) results of one 

image, and corresponding back-projection results (c) for one 

image. The Red triangles represent the result of the roof mask 

back-projection of this image, the green triangles represent the 

result of the non-roof mask back-projection of this image, and the 

remaining gray triangles represent regions that are not in the 

back-projection range of the image. 

 

 
(a) 

 
(c) 

 
(b) 

Figure 5. Instance results, semantic results, and back-projection 

results for one image 

We back-project the roof semantic segmentation results of all 

multi-view images onto the Mesh model, recording the ambiguity 

of each triangle. For one Mesh triangle, it will be finally recorded 

as a roof triangle if the number of roof triangle records exceeds 

the number of non-roof triangle records; otherwise, it will be 

recorded as a non-roof triangle. In the end, the triangle on the 

Mesh model will be divided into two categories: the roof 

semantic triangle and the non-roof semantic triangle. Figure6. 

show the final semantic result of the roof after traversing through 

all the multi-view images. This work is aimed at optimizing the 

subsequent results of the roof instance mask, mainly solving the 

ambiguity problem of the Mesh triangle through the 2D-3D 

projection relationship. 

 

 

Figure 6. The semantic segmentation result of the Mesh model 

 

2.4 3D Roof Instance Segmentation 

In this paper, a unique roof instance is defined as the top cover 

outside a house or structure, that is each building corresponds to 

one roof. Subsequent definitions of building instances are 

synonymous. If two attached buildings have two roofs, they are 

considered to be two individual building instances. 

 

Since roofs of the same building in multiple views have been 

segmented independently, the correspondences between roof 

instance masks are not known. This results in the number of 

instance masks being much larger than the number of roofs in the 

scene. Moreover, due to the problem that the dataset used for 

training and testing the image instance segmentation model is too 

small, the image roof instance mask has over-segmentation and 

under-segmentation. So we need to find the spatial relationship 

between instance masks and obtain the roof instance mask. There 
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are two main steps. The first step is the spatial clustering of 

instance masks. The second step is to further generate realistic 

3D roof instance masks from the over-segmented instance masks 

obtained in the first step. 

 

2.4.1 Instance Mask Clustering 

 

We propose an instance mask clustering method that divides 

instance masks into different groups each corresponding to a 

unique roof instance of an individual building. Representative 

masks are first selected from the segmented instance masks, and 

the remaining masks are merged with them according to mask 

similarity measures. For clarity, all roof instance masks in multi-

view images are referred to as local masks, while representative 

masks selected for clustering are referred to as global masks since 

they represent unique building roofs in different images.  

 

We first build a similarity matrix 𝑀  to measure the spatial 

overlap for each pair of local masks. For the 𝑖th local mask, we 

record a set of triangles 𝑆𝑖 whose centers are projected within this 

local mask region. A similarity matrix 𝑀𝑛×𝑛 is then computed to 

quantify the spatial overlap between every pair of local masks, 

where 𝑛 is the number of all local masks. The similarity element 

𝑚𝑖𝑗 measures the intersection over union (IoU) between the 𝑖th 

and the 𝑗th local masks, i.e., 

 

                         𝑚𝑖𝑗 = 𝐴(𝑆𝑖 ∩ 𝑆𝑗)/𝐴(𝑆𝑖 ∪ 𝑆𝑗),                        (1) 

 

where 𝐴(𝑆) is the surface area of the triangles in the set 𝑆. 𝑀𝑛×𝑛 

is a symmetric matrix as 𝑚𝑖𝑗 = 𝑚𝑗𝑖 . 

 

Generally, an ideal global mask should overlap most with the 

local masks corresponding to the same roof and least with the 

local masks corresponding to the roofs of different buildings. 

However we need to consider another situation that local masks 

with larger area are not always the ideal global masks. 

Segmentation errors of image instances may result in abnormally 

large areas of back-projection on the mesh model, such as two 

adjacent roofs being divided as the same roof instance. So we 

refer to the method (Chen et al., 2022) to estimate a confidence 

value 𝐶 for each local mask to evaluate the overall overlap with 

all other local masks in the scene. The 𝛽  parameter in the 

following formula is set to 0.5. More details about the evaluation 

of the parameter β can be found in the implementation details in 

Subsection 3.4. 

 

𝐶𝑖 = 𝑃𝑖 ∙ ∑ 𝛿(𝑚𝑖𝑗 − 𝛽) ∙𝑛
𝑗=1 𝑃𝑗 ∙ 𝑚𝑖𝑗 ,              (2) 

             

where δ(·) is the delta function: 

 

                                    δ(𝑥) = {
0,   𝑖𝑓 𝑥 ≤ 0
1,   𝑖𝑓 𝑥 > 0

                                 (3) 

 

Figure 7 shows that 𝐶 values calculated from the above formulas 

for three examples of local masks, it can be found that the higher 

the completeness of the local mask, the larger the calculated 

𝐶 value, and the lower 𝐶 value is generally the local mask with 

wrong image segmentation, such as containing walls. 

 

 
𝐶 = 14.64 

 
𝐶 = 7.33 

 
𝐶 = 0.43 

Figure 7. Samples of C values obtained from three local masks 

2.4.2 3D Roof Instance Generating 

 

One key observation of this work is that local masks with higher 

confidence values are consistent with other masks and thus 

should have higher priority to be selected as global masks. Based 

on the mask confidence, we employ a simple yet efficient order-

based mask clustering. We first sort all local masks according to 

their confidence values 𝐶 and then traverse them in descending 

order to select global masks. In the traversing loop, if a local 

mask has not been marked, we mark it as a new global mask, and 

other non-marked local masks whose similarities with this global 

mask are higher than 𝛽 are considered consistent with this global 

mask，i.e, δ(𝑚𝑙𝑔 − 𝛽) = 1 where 𝑙 and 𝑔 are the indices of the 

local mask and this global mask, respectively. If a local mask has 

been already marked, we traverse to the next local mask. In 

general, a certain local mask will have a spatial intersection with 

other local masks. Therefore, we decide that the global mask 

should be clustered by the spatial intersection of at least two local 

masks and meet the criteria δ( 𝑚𝑙𝑔 − 𝛽 ) = 1. The proposed 

method can spatially cluster the normal over-segmented local 

masks and eliminate the abnormal masks, in other words, the 

cases where the local mask does not have a spatial intersection 

with the rest of the local masks or does not satisfy δ(𝑚𝑙𝑔 − 𝛽) = 

1， such as under-segmented masks are excluded here.  

 

 
𝐶 = 0.00 

 
𝐶 = 2.52 

 
𝐶 = 1.04 

Figure 8. Samples of local masks that do not satisfy the 

clustering condition 

 

 
(a) 

 
(b) 

Figure 9. Samples of  global mask result 

Figure 8 shows local masks that do not satisfy the clustering 

conditions. The left sample shows the wrong segmentation 

(under-segmentation) of the roof instance. Three adjacent roof 

instances are divided into the same roof instance on the image, 

resulting in the local mask corresponding to three actual roof 

instances, although the local mask intersects with many other 

local masks, the 𝐶 value is 0 due to the abnormally large local 

mask. The small roof integrity (over-segmentation) represented 

by the local mask in the middle and right results in an extremely 

small intersection area with the remaining local masks that have 

a spatial intersection, i.e. δ(𝑚𝑙𝑔 − 𝛽) = 0. So the 𝐶 value is low. 

With the pre-computation of mask confidence values, the 

traversal is required only once. After one global local mask 

traversal, the global mask set is obtained. Due to the setting of 

the threshold 𝛽, there will still be cases of multiple global masks 

on a real roof instance, as shown in Figure 9, and this kind of case 

can be considered as over-segmentation of the roof instance mask. 

Therefore, we perform spatial clustering of global masks again, 

and the principle is to merge global masks if there is a spatial 

intersection, in other words, they contain the same triangle. In 

addition, to improve the clustering efficiency, we first calculate 
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the bounding box(bbox) of each global mask, and only when the 

bbox of two global masks intersects, do we consider whether two 

global masks have spatial intersection to cluster. So far, the 

original roof instances are obtained. 

 

However, the obtained roof instances still have errors, such as the 

current roof instance containing the triangles of ground, adjacent 

building wall and roof, and the wall where the building itself 

contains, which is mainly caused by the error accumulation of the 

previous local mask clustering. Therefore, we need to optimize 

the roof instance. Firstly, the largest connected area of the roof 

instance is retained to remove the triangles of the ground and 

adjacent building roof and wall. Then, according to the 

previously obtained roof semantic mask, the error triangles of the 

roof instance containing the wall of the buildings itself are 

removed. This optimization flow is illustrated in (a) to (c) of 

Figure 11. And the result of all refined roof instances in the scene 

is shown in Figure 11(d). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Sample of the optimization process for one roof 

instance and the result of all roof instances  

 

2.5 Convex Hull-based 3D Building Segmentation 

Based on 3D roof segmentation, the next step is to segment the 

entire 3D buildings. Here, we segment the whole building 

instance by constructing the 2D convex hull of the roof instance. 

The function of convex hull is that given a point set in a 2D plane, 

convex hull is a convex polygon formed by connecting the 

outermost points, which can contain all the points in the point set. 

Compared with constructing the oriented bounding box(obbox), 

the 2D convex hull can contain all the points more compactly and 

reduce the redundancy of the segmentation region. Here, we 

show a comparison of the results of the 2D convex hull of a roof 

instance with obbox, as shown in Figure 11. The black point set 

is the 2D point set of the extracted roof instance, the purple point 

set is the 2D convex hull point set of the roof instance, while the 

green rectangle range is the roof instance obbox. It can be found 

that the convex hull points can better wrap the roof point set. The 

main process of obtaining a building instance is as follows: 

Firstly, the 2D point set of the roof instance is extracted and the 

2D convex hull is constructed. To segment an entire building 

from a 3D scene, we expand the boundary of a 2D convex hull 

by a certain offset value (1.5 meters in all of our experiments), is 

shown as the red point set in Figure 11 (b). After that, all triangles 

of the Mesh model are traversed to check whether the center 

points coordinates x and y of the triangle are within the range of 

the 2D convex hull of the roof instance. Finally, the segmentation 

and output of building instances were carried out. 

 

 
(a) 

 
(b) 

Figure 11. Sample of the roof instances and its corresponding 

2D convex hull, oriented bounding box  

 

3. RESULT 

3.1 The Result of Building Instance Segmentation 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 12. The result of building instance segmentation of the 

experimental scene 
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Figure 13. Samples of Building instance  

 

Intermediate and Final Results 

Local Mask 1499 

Global Mask 150 

Original Roof Instance  62 

Refined Roof Instance 59 

Final Building Instance 59 

Actual Building 

Instance 
61 

Table 2. Intermediate and Final Results of the experimental 

scene 

It can be seen from the examples that, on the whole, the roof 

part of the building is well segmented, while some buildings 

cannot be completely segmented. For example, part of the walls 

of the third and fourth samples in Figure 13 are not segmented 

well. The main reasons are limited by the degradation of the 

Mesh model, and there are holes or incorrect connections 

between the buildings. At the same time, when a building is 

connected by two sub-buildings, this method can also segment 

the whole building well, it can be shown in the last sample of 

Figure 13. 

 

3.2 The Necessity of Instance Ambiguity Removal 

If the ambiguity of the Mesh triangles is not removed, there will 

be errors in the results of the generated roof instance. That is, the 

surrounding triangles area that does not belong to the roof will 

also be included, so that the 2D convex hull range of the 

generated roof instance in the later generation is incorrect, 

resulting in the final segmentation result of the building instance. 

As shown in Figure 14 (a) and (c), the segmentation of the roof 

and building instance without removing ambiguity is wrong, part 

of the adjacent building is also segmented into it. In contrast, 

Figure 14 (b) and (d) respectively represent the result of the roof 

instance and building instance with removing ambiguity.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Comparison of instance segmentation results 

between removed and unremoved instance ambiguity  

3.3 Instance Segmentation Limitation 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 15. Sample of building Instance error. (a) Sample 

building in the scene. (b) Refined roof instance with removing 

ambiguity. (c) The result of building instance. (d)~(e) 

Recognition results of the building in multi-view images 

The problem with this building instance is that instance has 

incomplete segmentation. As shown in Figure 15, the main 

reason for this wrong segmentation is that the location is 

recognized as a roof less times than it is recognized as a non-

roof in the multi-view images, so the calculated semantic mask 

of the roof does not fully cover the roof, resulting in incomplete 

final roof segmentation and building segmentation error. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 16. Sample of building Instance flaw. (a) Sample 

building in the scene. (b) The segmentation result. (c) Examples 

of images corresponding to the building. (d)~(e) Local detail 

segmentation result of the building. 
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As shown in Figure 16, this building instance contains part of 

the vehicles on the ground. The reason is that the first floor of 

the building is smaller than the 2D convex hull of the extended 

roof instance corresponding to the building, and the vehicle 

stops in the internal area of the building, so the final result 

includes the ground vehicles. 

 

3.4 Effects of parameters 

The method involves several parameters, of which β in the mask 

clustering step is the only parameter left adjustable to the user. 

This subsection will discuss how this parameter affects mask 

clustering. 

 

Intuitively, the meaning of the 𝛽 parameter in our work is very 

similar to the threshold parameter for IoU in many existing target 

detection efforts, where a mask is considered to be correctly 

predicted when the IoU between the detection mask and the true 

value is greater than this threshold. As a rule of thumb, this 

threshold is initially set to 0.5. Similarly, in mask clustering, two 

local masks should be considered as belonging to the same group 

if their IoU is greater than 𝛽. That is, they represent the same roof 

instance. In this work, we initially set 𝛽 =  0.5  in all 

experiments. to determine the optimal value of 𝛽, we conducted 

experiments with different values. As shown in Table 3. 

 

𝛽-value 
global 

masks 

original 

roof 

instance 

refined 

roof 

instance 

precision 

0.0 61 51 44 0.7213 

0.1 75 61 53 0.8688 

0.2 94 62 57 0.9344 

0.3 99 63 59 0.9672 

0.4 120 63 59 0.9672 

0.5 150 62 60 0.9836 

0.6 174 64 57 0.9344 

0.7 219 63 58 0.9508 

0.8 172 60 56 0.9180 

0.9 11 9 7 0.1147 

1.0 0 0 0 0.0000 

Table 3. Influence of different β 

This table shows the impact of different 𝛽 values on the number 

of generated global masks, original roof instances, refined roof 

instances, and then the final building instance generation. The 

optimized judgment criterion for the number of roof instances 

here excludes the case of wrong segmentation of roof instances, 

as shown in Figure 15. The precision is calculated by dividing the 

number of segmented building instances by the number of actual 

buildings. Here, the number of actual buildings is counted by 

hand and the number is 61. We can see that the precision is 

highest when 𝛽  equals 0.5. With the higher value of 𝛽 , the 

number of global masks increases, which mainly increases the 

difficulty of merging local masks on the same roof, resulting in 

the situation that one actual building is segmented to two or more 

roof instances at the same time. 

 

 

4. CONCLUSION AND FUTURE WORK 

This paper presents a novel method for instance segmentation of 

3D buildings based on Mesh model. Firstly, the 2D multi-view 

images with added height information are used to segment the 

roof instance, and then the 3D mask set is obtained by back-

projecting the images’ roof instance segmentation results onto the 

Mesh model. By constructing the mask clustering method, the 3D 

mask set is clustered to obtain the roof instances on the Mesh 

model. The spatial clustering method can still obtain the 3D 

correct roof instances despite the wrong segmentation results of 

the image. In addition, due to the errors in the instance 

segmentation results of the image, the roof instances obtained by 

the spatial clustering method will have some non-roof triangles 

due to the accumulation of errors, which will affect the 

subsequent extraction of building instances, so it is necessary to 

optimize the roof instances. By preserving the maximum 

connected area of the roof instance, the error triangles that are not 

connected with the roof triangles are eliminated, such as the roof 

of the adjacent building, the ground area, etc. Then, the 2D 

semantic mask of the roof of each multi-view images is obtained 

according to the segmentation results of the roof instance, and the 

3D roof semantic mask is calculated by back-projection on the 

Mesh model. The semantic mask is used to eliminate the non-

roof triangles connected with the roof instance, such as the wall 

surface connected with the roof. So far, the roof instance is 

refined. Finally, by calculating the 2D convex hull of the refined 

roof instance, the model in the range is segmented, and the 

building instance is finally obtained. The experimental results 

show that the proposed method can effectively segment accurate 

roof instances on 3D models with low accuracy, even though the 

building has two attached sub-buildings. However, limited by the 

accuracy of the Mesh model itself, the accuracy of some final 

building instances will be incomplete segmentation, which is 

inevitable. 

 

4.1 Future Directions 

In this paper, the structure of the buildings in the experimental 

area is relatively simple, therefore a good result can be obtained 

by constructing the convex hull for in-range model segmenting. 

However, further work is still needed for the complex structure 

of urban scene buildings such as classical buildings. In addition, 

the results of cutting through the convex hull still need to be 

optimized. The essence is to classify all triangles within the 

convex hull as building instances, so the non-building triangles 

in the segmented building instances need to be subsequently 

eliminated, such as using the Markov random field method. 

Finally, applying the method to 3D point clouds of urban scenes 

could also be an interesting future direction. 
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