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ABSTRACT:

Depth estimation plays a pivotal role in numerous computer vision applications. However, depth estimation networks trained
exclusively on daytime images tend to yield poor performance when applied to nighttime scenarios due to domain differences
and variations in scene characteristics. In order to address this limitation, we conducted experiments involving the creation of a
synthetic nighttime dataset by employing image translation techniques through a generative network. Subsequently, we utilized
the generated images to fine-tune the depth estimation network, aiming to investigate the potential for enhancing task performance
using generated data. We evaluated our approach by testing with the generated data, and we observed a noticeable improvement in
the depth estimation task both before and after fine-tuning. Consequently, our approach yields results that are comparable to those
achieved by networks specifically designed for daytime prediction. These findings highlight the effectiveness of utilizing synthetic
data to enhance the performance of depth estimation tasks, particularly in nighttime settings.

1. INTRODUCTION

Depth estimation is a fundamental problem in computer vision
that is critical for a wide range of applications, including nav-
igation for autonomous vehicles, augmented reality, and scene
understanding. Accurate depth estimation is also essential for
tasks such as object detection, tracking, and segmentation, as
well as 3D reconstruction. Stereo vision is one method that al-
lows for an accurate estimation of absolute depth using multiple
cameras. Another approach is using geometry-based methods
such as Structure from Motion (SfM), which is widely used for
3D reconstruction and simultaneous localization and mapping
(SLAM). SfM estimates 3D structures from a series of 2D im-
age sequences by exploiting geometric constraints(Zhao et al.,
2022). These methods tend to treat depth estimation as a purely
geometrical problem, ignoring the content of the images. Mon-
ocular depth estimation seems ill-posed without a second in-
put image to enable triangulation (Godard et al., 2018). Yet,
the human brain can estimate depth or at least relative depth
from a single image. Humans do this by exploiting several
cues learned over time, such as perspective, the size of differ-
ent objects relative to each other, lighting, shadows, and oc-
clusions. By learning these cues, a deep learning model can
be trained to estimate the depth from a single image. Many
methods were developed to do so, and yielded great results
on popular datasets such KITTI(Geiger et al., 2013) and City-
scapes(Cordts et al., 2016). Both datasets, as well as many oth-
ers used for outdoor depth estimation, consist solely of daytime
images. Depth estimation models that are trained using day-
time images often exhibit poor performance when applied to
night images (Vankadari et al., 2020). This can be caused by the
significant differences between the visual characteristics of the
two domains. Night images encounter two challenges that day
images do not. Firstly, there are problems with low visibility
and variable illuminance. Secondly, the varying illuminations,
caused by flickering streetlights or moving cars, can violate the
assumption of brightness consistency that is present in daytime
images where all pixels are lit by the same light source, the sun
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(Wang et al., 2021). The collection of high-quality depth data is
a complex and a costly process. That is why many approaches
tried utilizing semi-supervised or self-supervised learning.

Our approach suggests a cost-efficient method of generating
night-time images through the use of an image translation gen-
erative adversarial network (Zhu et al., 2017). Image transla-
tion is transforming one image from one domain to another.
In this work, we apply this technique on a subset of day im-
ages from the KITTI dataset to generate their corresponding
synthetic night images. We then use the generated synthetic
night images to fine-tune a pre-trained depth estimation net-
work (Godard et al., 2018), thereby improving its performance
on night images.

The paper is structured into several sections. The first section
is the Related Works, where previously attempted approaches
for the problem are demonstrated. The second section focuses
on Image Translation. Here, we delve into the architecture used
for the task, elaborate on the training process of the network,
and discuss the generation of synthetic night-images. This sec-
tion aims to provide a detailed explanation of how the transla-
tion from one domain to another is achieved. Moving on, the
third section revolves around the Depth Estimation Network.
We delve into the details of this network, thoroughly explaining
the process of fine-tuning it using the generated images. Lastly,
we have the Conducted Experiments and Results section. In this
section, we present the experiments carried out to validate the
proposed approach. We also provide the corresponding results
obtained from these experiments.

2. RELATED WORK

In this section, we present other relevant studies that have ad-
dressed the task of depth estimation, specifically focusing on
their applicability to night images or similar conditions with
limited available data.
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2.1 Unsupervised and Self-supervised Techniques

These approaches can be employed to eliminate the necessity of
collecting ground truth depth information, although the avail-
ability of images remains essential. Therefore, these methods
prove valuable when only images are available. Many unsu-
pervised and self-supervised techniques have been introduced,
yielding positive outcomes for the task. For instance, in (God-
ard et al., 2018), a self-supervised mono depth estimation was
carried out on the KITTI dataset. The architecture and concept
of this network will be thoroughly explained in Section 4.

2.2 Approaches For Night Depth Estimation

Methods trained on daytime images exhibit poor performance
when applied to nighttime images due to the presence of photo-
metric inconsistencies. While lighting consistency is naturally
assumed in daytime images, this assumption does not hold true
for nighttime images. Lighting inconsistencies can arise from
street lamps, car headlights, or variations in illuminance across
different areas of the image. Unfortunately, only a limited num-
ber of approaches have specifically addressed the challenge of
depth estimation in nighttime conditions.

In (Spencer et al., 2020), DeFeat-Net is introduced as a sys-
tem capable of simultaneously learning depth from a single im-
age and obtaining a dense feature representation of the environ-
ment, along with estimating ego-motion between consecutive
frames. Notably, this is achieved through a fully self-supervised
approach, eliminating the need for any ground truth data other
than a monocular stream of images. Moreover, the learned
features exhibit invariance across various weather and lighting
conditions.

Another approach, proposed by (Vankadari et al., 2020), con-
siders the problem as a domain adaptation challenge. The depth
map is trained using daytime images, employing an encoder-
decoder architecture. In addition to that, another encoder is
trained using real-time nighttime images. To train the nighttime
encoder, an adversarial domain feature adaptation technique is
employed, where the night encoder acts as a generator aiming to
generate feature maps from a nighttime image that resemble the
feature maps obtained from daytime images. By doing so, the
depth decoder becomes capable of decoding both the daytime
and nighttime feature maps in a consistent manner.

3. IMAGE TRANSLATION

Our approach consists of two primary steps: generating night
images using an image translation network and then utilizing
the generated data to fine-tune the depth estimation networks.
In this section, we provide an explanation of the fundamental
concept behind the translation network, including the employed
losses and the architecture of the network.

To begin with, the data generation process involved utilizing
a network from (Zhu et al., 2017),which implemented a cycle
generative adversarial network (GAN) architecture (Goodfel-
low et al., n.d.). First, we will provide an overview of the archi-
tecture of cycle GANs, followed by an explanation of the loss
utilized during training. Finally, we will delve into a detailed
description of the architecture of the specific network employed
in our approach.

3.1 Cycle Generative Adversarial Networks

In a Generative Adversarial Network (GAN), two competing
networks are designed. The generative model, denoted as G,
aims to capture the data distribution of the training data and
generate images that closely resemble the real data. On the
other hand, the discriminative model strives to differentiate
between real images from the training dataset and those gen-
erated by the generative model. The objective is for G to gen-
erate images that are indistinguishable from the target domain,
while the discriminative model, denoted as D, tries to accurately
classify real and fake images. This dynamic creates a learning
process in which G minimizes the loss, while D maximizes the
same loss, known as the adversarial loss.

In the context of Cycle GAN, the network aims to map between
two domains. This involves two generative networks, G and F,
as depicted in Figure 1. G maps from domain X to domain Y,
while F performs the reverse mapping. Additionally, there are
two discriminative networks, Dy , which discriminates domain
Y images, and Dx , which discriminates domain X images. The
goal here is not only to generate images in both domains but
also to enable conditional mapping of scenes from one domain
to the other. For instance, if we have a daytime image of a car
parked in front of a building and we want to translate it into a
nighttime scene, it is not sufficient for the generator to produce
a realistic nighttime image. We also require the generator to
generate the same scene with the car and the building at night.
This is controlled by the cycle consistency loss, ensuring that
the translated images preserve the essential elements of the ori-
ginal scene.
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Figure 1. (a) cycle GAN, (b)(c) cycle consistency inspired
by(Zhu et al., 2017)

3.2 Adversarial Loss

The adversarial loss is applied to both mapping functions G and
F [11]. Let’s consider G mapping from domain X to Y, with Dy

responsible for distinguishing between generated samples by
G and real samples from Y. The objective can be expressed as
follows:

LGAN (G,DY , X, Y ) = Ey∼pdata(y) [logDY (y)]+

Ex∼pdata(x) [1− logDY (G(x))]
(1)

where mathcalLGAN (G,DY , X, Y ) = the adversial loss between G and D
x, y = are samples from domains X and Y

Here, G aims to generate images that are similar enough to fool
Dy into thinking they are real. Thus, G minimizes the object-
ive, while Dy tries to maximize it by learning to differentiate
between real and fake samples. This adversarial competition
arises from both models striving to maximize and minimize the
same objective.
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Similarly, a similar adversarial loss function LGAN(F, Dx, Y, X)
is introduced for the mapping from domain Y to X, with the
generator F and discriminator Dx.

3.3 Cycle Consistency Loss

In theory, the adversarial loss alone does not impose constraints
on the generative networks to generate images similar to the
source image. While they may generate images that closely re-
semble the target domain, they might not capture the essence
of the input image. This misalignment with the original object-
ive of the cycle GAN, which aims to translate an image while
preserving the scene, imposes the need to introduce cycle con-
sistency.

In Figure 1 (b), we observe the translation of image x from
domain X to Y using G, followed by translating the result back
to X using F, resulting in x̂. Ideally, if both mapping functions
G and F are perfect, x and x̂ should be identical. Similarly,
the cycle consistency is also defined in the opposite direction,
as shown in Figure 1(c). To enforce this constraint, the cycle
consistency loss is formulated as follows:

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||]+
Ey∼pdata(y)[||G(F (y))− y||]

(2)

where Lcyc(G,F ) = the cycle loss
x, y = samples from domains X and Y
G,F = the generator functions

The cycle consistency loss ensures that the generated images
from both mappings maintain consistency with the original in-
put and output. Combining both the adversarial losses and the
cycle consistency loss, the full objective function is obtained by
summing equations (1) and (2).

3.4 Network Architecture

The architecture was adopted from (Johnson et al., 2016) that
showed promising results. The generative network follows
an encoder-decoder architecture consists of three convolutional
layers, several residual blocks (He et al., 2015), two convo-
lutional layers with a stride of ½, and a final convolutional
layer that generates RGB images. During training, nine residual
blocks were utilized to with image size of 256x256. For the dis-
criminator, a PatchGans approach (Isola et al., 2016) was em-
ployed with a resolution of 70x70. The discriminator is trained
to classify overlapping image patches. The patch architecture
possesses fewer parameters compared to a full image discrimin-
ator, making it suitable for discriminating arbitrary image sizes.

3.5 Training

Initially, we utilized a pre-trained version of the network to gen-
erate the images. However, the results did not meet our ex-
pectations. Consequently, we proceeded to retrain the network
from scratch. Our training was conducted on the Berkeley Deep
Drive dataset(Yu et al., 2018), which contains images captured
from the viewpoint of a car dashboard. For training purposes,
we utilized a total of 12,454 daytime images and 22,884 night-
time images. The network underwent training for a total of
135 epochs. In Figure 2, we observe the original image along-
side the translated nighttime images generated by both the pre-
trained network and the network trained from scratch. The im-
age generated by the pre-trained network exhibits scattered ex-
tra lights that should not be present, whereas these lights are
absent in the version generated after the training process.

Figure 2. Arranged from top to bottom are the original image,
the image translated by the pre-trained network, and the image

translated by the network trained from scratch.

4. DEPTH ESTIMATION

The network utilized for depth estimation is inspired from the
work of (Godard et al., 2018) and (Zhou et al., 2017). Their net-
work was originally trained for depth estimation on the KITTI
dataset (Geiger et al., 2013), which exclusively comprises day-
time images. We performed fine-tuning on their network by in-
corporating the translated images generated from day to night.
In this section, we will delve into the fundamental concepts em-
ployed by their network, explain the derivation of the loss func-
tion, and explore the network architecture.

4.1 Self-supervised learning

Self-supervised learning is a form of unsupervised learning
wherein the data itself acts as the source of supervision. It in-
volves defining an auxiliary task, known as the pretext task,
which guides the loss function for the primary task. Typically,
the outcome of the pretext task is not of primary concern. In-
stead, the focus lies on the intermediate representation. In this
case, image reconstruction serves as the pretext task (Godard
et al., 2018). The ultimate goal is not the final result of the re-
construction, but rather the intermediate variable utilized in the
process, which is the depth in this particular scenario.

4.2 Self-supervised Loss

The framework proposed by (Godard et al., 2018) and (Zhou
et al., 2017) involves training two networks simultaneously: a
CNN for single view depth estimation and a camera pose estim-
ation network. The supervision signal is derived from a pretext
task known as view synthesis. In this task, the network aims
to predict the view of a target frame, denoted as It, based on
the depth map of that frame, other images capturing the same
scene from different poses (referred to as source frames), and
the pose mapping between the target and source frames. The
source frames It−1 and It+1 are selected as the previous and
following frames in a frame sequence relative to It. The pose
network predicts the relative pose between consecutive frames.

To reconstruct the target view It, pixels are sampled from a
source view Is using the predicted depth map D̂t and the rel-
ative pose ˆTt→s. Let pt denote the pixel coordinate in It and
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K denote the camera intrinsics. The projection of pt into Is,
representing the pixel coordinates of the corresponding pixel in
Is, can be determined as follows:

ps ≈ K ˆTt→sD̂t(pt)K
−1pt (3)

Applying the same process for each pixel in It while consid-
ering It−1 and It+1 as the source frames, this way, we project
pixels of the target frame onto the source frames. The pixel
value of every pixel in the target is predicted by interpolating the
values of ps and its neighboring pixels of both source frames.
By following this procedure, an estimated target frame I′t is
obtained. The depth network is trained by minimizing the pho-
tometric reprojection error Lp, where pe represents the photo-
metric reconstruction error:

Lp =
∑
t′

pe(It, I
′
t) (4)

Here pe is a photometric reconstruction error, e.g. the L1 dis-
tance in pixel space between the original target frame and the
predicted.

4.3 Network Architecture

The depth estimation network employs a U-Net architecture
(Weng and Zhu, 2015), which consists of an encoder-decoder
network with skip connections. The encoder network is based
on ResNet18 (He et al., 2015), and the weights are initialized
using pretrained weights from ImageNet (Russakovsky et al.,
2014).

For the pose estimation network, the architecture is derived
from (Wang et al., 2017). It also utilizes ResNet18 (He et al.,
2015) as its foundation. The network takes two frames as input
and produces a single 6-degrees of freedom (DOF) relative pose
between the frames.

In the training process for monocular depth estimation, a se-
quence of three consecutive frames is utilized, and the pose is
estimated between every two consecutive frames within that se-
quence. To augment the data, horizontal flipping is applied, and
there is a 50% chance of altering the brightness, contrast, sat-
uration, and hue jitter. The augmentation is performed on all
three input images in a consistent manner.

The models are implemented using PyTorch (Paszke et al., n.d.)
and trained using the Adam optimizer (Kingma and Ba, 2014)
for 20 epochs. A patch size of 12 is used, and the training is
conducted on the KITTI dataset (Geiger et al., 2013). Both the
input and output images have a resolution of 640x192. During
training, the learning rate starts at 10−4 for the first 15 epochs
and then drops to 10−5 for the remaining five epochs.

The training process described above was conducted by the ori-
ginal authors exclusively using daytime images from the KITTI
dataset. In the following sections we will describe our fine-
tuning process.

5. EXPERIMENTS

Firstly, we will discuss the results of the image translation and
highlight some of the challenges encountered. Subsequently,

we will present the various scenarios employed to evaluate the
performance of the depth estimation network. The test set util-
ized in all of our experiments consists of selected images from
the KITTI dataset that have undergone translation from day to
night.

5.1 Incompatible resolution challenge

The first challenge we encountered in our work arose from util-
izing two different networks. The image translation network
from (Zhu et al., 2017) produced images with a fixed resolu-
tion of 256x256, irrespective of the input resolution. However,
this resolution was incompatible with the depth estimation net-
work, which expected inputs of size 640x192. Additionally, the
images in the KITTI dataset had dimensions of 1241x376.

Resizing the images resulted in significant degradation in qual-
ity. To address this issue, we employed a strategy of dividing
the images into sub-images and feeding them to the network in-
dividually. Subsequently, the translated sub-images were com-
bined to form the final translated image.

Initially, we experimented with dividing the image into four
non-overlapping sub-images. As depicted in Figure 3, it was
evident that the different divisions were easily distinguishable.
Each pixel in the input image contributed to the overall color
palette of the output image, resulting in a fragmented appear-
ance. To mitigate this effect, we adopted a different approach
and divided the image into overlapping sub-images with a ho-
rizontal shift of 20 pixels. In the final image, each pixel’s value
was calculated as the average of all values from the sub-images
that contained that pixel. As shown in Figure 4, the region
in the middle was present in all four sub-images, resulting in
the values of that region in the final image being the average
across the four sub-images. It’s worth noting that we used more
than four sub-images by applying a 20-pixel shift, which ulti-
mately resulted in a final image dimension of 640x192. Figure
3 demonstrates the noticeable improvement achieved through
this approach.

Figure 3. Comparison of the non-overlapping division (up) and
overlapping division versions (down).

5.2 Translation Results

The pre-trained translation model’s results were not consist-
ently perfect, with certain common errors observed in some
translated images. Figure 2 demonstrates an instance where the
network erroneously predicted additional non-existent lights on
the left side of the first image. The network’s objective is to
learn how to illuminate lights that are not naturally lit during
the day but should appear at night, such as car headlights. How-
ever, there are instances where the network mistakenly iden-
tifies other image elements as lights when they are not. To
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Figure 4. Demonstration of the 20 pixel shift

address this issue, we conducted training from scratch on the
Berkeley Deep Drive dataset, resulting in a significant reduc-
tion of such errors.

5.3 Evaluation Metrics for Depth Estimation

We follow the evaluation metrics employed by (Godard et al.,
2018), which consist of error metrics where lower values in-
dicate better performance, as well as accuracy metrics where
higher values indicate better performance.

5.3.1 Relative error using the absolute

AbsRel =
1

n

n∑
1

∣∣∣∣gt − pred

gt

∣∣∣∣ (5)

Where gt is the ground truth depth map generated from the Ve-
lodyne sensor points included in the KITTI dataset, and pred is
the predicted depth map.

5.3.2 Relative error using square

SqRel =
1

n

n∑
1

(
gt − pred

gt

)2

(6)

5.3.3 Root mean square error

RMSE =

√√√√ 1

n

n∑
1

(gt − pred)2 (7)

5.3.4 Root mean square error of the log

RMSElog =

√√√√ 1

n

n∑
1

(log(gt)− log(pred))
2 (8)

5.3.5 Accuracy metric using threshold

δ = max

(
gt
pred

,
pred

gt

)
(9)

δ < 1.25 =
pixels where δ < 1.25

n
(10)

δ < 1.252 =
pixels where δ < 1.252

n
(11)

δ < 1.253 =
pixels where δ < 1.253

n
(12)

where δ = threshold
n = number of samples

5.4 Fine Tuning Parameters

The parameters that were chosen for the fine tuning were: a
learning rate of 104 , training with Adam (Kingma and Ba,
2014), batch size was 10 and smoothness term for regulariza-
tion λ was 0.001. All the training in the following scenarios
was conducted for 22 epochs.

5.5 Different Scenarios and Quantitative results

The test set is 697 images translated from KITTI(Geiger et al.,
2013) from day to night. These images were used to evaluate
the next scenarios.

• We initially evaluated the pretrained network from (God-
ard et al., 2018) on the original daytime images of the test
set, without performing any fine-tuning or image transla-
tion on our part.

• We then evaluated the performance of the pretrained net-
work on the translated night images of the test set without
any fine-tuning.

• A total of 39810 images were generated for training pur-
poses, along with an additional 4424 images for validation.
For each image that underwent translation for training or
validation, the preceding and subsequent frames were also
translated. It’s important to note that the generated data
was not subjected to any filtering; it was all utilized for
fine-tuning the network. Subsequently, the network’s per-
formance was evaluated on the same test set.

• The images underwent a filtering process using the GANs’
discriminator network. This discriminator acts as a clas-
sifier, determining whether images are genuine nighttime
images or not, and assigning a score ranging from 0 to 1,
where a score of 1 indicates a real image. The training im-
ages were filtered based on this score, selecting only those
with a score higher than 0.85. As a result, 3600 images
were chosen for training, while the validation and test sets
remained unchanged.

• The filtering process was repeated using the same method-
ology as before, but this time employing a cutoff score of
0.7. As a result, 17293 images were chosen for training.

As observed from Table 1, the first two rows serve as the
baseline for our comparison. The test on daytime images rep-
resents the ideal scenario, showcasing the performance of the
network trained specifically on daytime images. If our test res-
ults approach those of the daytime images, it indicates that our
depth estimation works well at night, similar to how the pre-
trained version performs during the day.

The second row corresponds to the test on translated night-
time images using the pretrained network without any fine-
tuning. This serves as our starting point for improvement. Sub-
sequently, the remaining rows in the table demonstrate our tests
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Scenario The lower, the better The higher, the better
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Daytime images (no fine-tuning) 0.115 0.905 4.863 0.193 0.877 0.959 0.981
Nigttime images (no fine-tuning) 0.177 1.481 6.550 0.271 0.737 0.903 0.957
Nigttime images (fine-tuned using all data) 0.132 1.057 5.489 0.219 0.836 0.944 0.975
Nigttime images (fine-tuned, filtered score of 0.85) 0.148 1.232 5.619 0.234 0.813 0.935 0.971
Nigttime images (fine-tuned, filtered score of 0.7) 0.133 1.064 5.385 0.216 0.842 0.946 0.976

Table 1. Evaluation of different training and test scenarios

after the fine-tuning process. We observe a significant enhance-
ment compared to the initial nighttime test, although the per-
formance has not yet reached the level of the daytime test.

Further analysis involves the filtering test, where we selectively
choose translated images based on their authenticity score as
determined by the discriminator. Initially, we select all images
above a score of 0.7, amounting to approximately 17 thousand
images. This filtering mildly improves some of the evaluation
criteria compared to not filtering at all. However, when using a
stricter threshold of 0.85, resulting in 3600 images, the perform-
ance is worse than not filtering at all. This observation indicates
that the variety and size of the training set play a crucial role in
the overall outcome.

Table 2 presents a comparison of various depth estimation
methods conducted by (Godard et al., 2018) using daytime im-
ages from the KITTI dataset. The methods are denoted by D, S,
and M, representing the use of depth ground truth for supervi-
sion, self-supervised stereo vision, and self-supervised monovi-
sion, respectively. In the last row, we showcase our best results
evaluated on nighttime images. It is important to note that the
test is not perfect since it was not conducted on the same data.
However, our intention is to demonstrate the performance of our
model in its specific task (night depth estimation) compared to
different models designed for day depth estimation.

As observed from the table, the evaluation results of our model
fall somewhere between the results of the other approaches. It
is evident that our model does not perform as well on nighttime
images as it does on daytime images. Nevertheless, it remains
comparable to other methods specifically developed for day-
time depth estimation. It is worth noting that the other models
were tested on original daytime images, while our model was
evaluated on generated nighttime images.

5.6 Qualitative Test

The model was tested on actual nighttime images obtained from
the Berkeley Deep Drive dataset(Yu et al., 2018). Although
we do not possess the ground truth depth information for this
dataset, we utilized it solely for qualitative purposes, comparing
the appearance of the depth maps generated by the model before
and after fine-tuning. The Berkeley dataset comprises images
captured in various environments, including nighttime scenes.
The results can be observed in the Figure 5.

6. CONCLUSION

Our approach has demonstrated remarkable results in the task
of depth estimation. Based on the conducted experiments, we
conclude that image translation holds immense potential as an
affordable image synthesis tool for generating data that can
be utilized by various tasks. However, it requires further re-
finement and examination to understand the impact of data on
training. Furthermore, image translation holds promise beyond

day and night scenarios, such as simulating different seasons or
transforming images from a simulated environment to resemble
those captured in real-life scenes.
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Liu D 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Klodt D∗M 0.166 1.490 5.998 - 0.778 0.919 0.966
AdaDepth D∗ 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986

DVSO D ∗ S 0.097 0.734 4.442 0.187 0.888 0.958 0.980
SVSM FT DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984

Guo DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Zhou † M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet † M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DDVO M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO M 0.162 1.352 6.276 0.252 - - -
Ranjan M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth ’(M)’ M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth 2 w/o pretraining M 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 (1024× 320) M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Ours nighttime images M 0.133 1.064 5.385 0.216 0.842 0.946 0.976

Table 2. Comparison of different depth estimation approaches as reported by (Godard et al., 2018) against our approch

Figure 5. From top to bottom: the original images, the depth maps before fine-tuning, and the depth maps after fine-tuning.
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