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ABSTRACT:  

 

Silver birch (Betula pendula Roth) is a deciduous pioneer tree species with significant economic and ecological importance due to its 

rapid growth, high genetic variability and adaptability to diverse climates and environments. In this regard, understanding the factors 

that influence silver birch tree growth variability and its seasonal patterns has been a subject of research interests, which aim at effective 

forest management and ecological analyses. Tree size, competition, light availability, and topography has been considered significant 

factors affecting tree growth patterns. However, their relative contributions are not well understood. This is because, to study the 

interactions between neighbor trees and their competitive responses requires complex measurements. Accurately measuring tree 

attributes, such as 3D canopy shape and arrangement, is challenging but has been made possible through advancements in high-

resolution 3D remote sensing, specifically laser scanning technology. This study shows the potential of high-spatial and temporal 

resolution LiDAR time-series from a permanent laser scanning setup to detect detailed structural changes and timing in individual tree 

canopies, focusing on assessment of the structural canopy growth characteristics of silver birch trees. We first investigate how silver 

birch trees respond to competition and neighboring species. Our results focusing on canopy height increment show that tree size, 

competition, neighboring species, and water availability affect the rate of vertical (height) growth of the studied silver birch trees. 

Further, we detect the timing in canopy vertical and horizontal growth using LiDAR time-series. Significant variations of up to one 

week were detected among trees, providing insights for future studies on growth dynamics of silver birch in coniferous-dominant 

forests. 

 

 

1. INTRODUCTION 

Tree canopy height and area growth rates can demonstrate 

considerable inter-variation among individual trees, even within 

the same species at same forest (Sánchez-Salguero et al., 2015). 

An understanding of the factors that affects growth variability 

between trees and annual seasonality can significantly contribute 

for forest management decisions and complex ecological 

analysis, including derived forest process such as carbon 

accumulation (Stephenson et al., 2014). A recognized factor that 

impacts tree growth and survival is resource competition 

(Sánchez-Salguero et al., 2015, Aakala et al., 2018, Chin et al., 

2023).  

 

According to Stoll and Weiner (2000), the positive and negative 

interactions between neighbor trees and their competitive 

responses occur at small spatial scales (e.g. 5m radius), requiring 

tree level analysis. Although tree size, competition, light 

availability, and topography have been widely discussed in the 

literature as main factors influencing tree growth patterns, the 

extent of their relative contributions are still not well understood 

(Zhang et al., 2017). The challenge arrives from the need of 

accurate measurements of standing tree, like accurate three-

dimensional (3D) canopy shape and its arrangement with 

respecting to neighbouring trees.  

 

Over the previous two decades, we have witnessed a notable 

evolution in our ability to accurately measure and analyse the 

structure and dynamics of trees with high-resolution 3D close 

range sensing data (Liang et al., 2022). Indeed, the real value of 

high-spatial resolution forest data acquisition is evidently 
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demonstrated by the fact that full three-dimensional data enable 

to quantify features that have been impossible to measure before 

with other techniques (Lines et al., 2022). Laser scanning 

technology enables a unique 3D data collection and 

representation of trees structure as the laser beam has high 

penetrability in the canopy. When a tree grows and 

neighbourhood interactions take place among the canopies, 

georeferenced 3D LiDAR observations capture the structural 

changes, and they enable the understanding of tree growth 

dynamics. Moreover, it is possible to extract and estimate tree 

canopy parameters over time, such as horizontal (area) and 

vertical (height) canopy growth.  

 

For instance, canopy height (Wang et al., 2019), leaf area (You 

et al., 2022), and biomass (Xu et al., 2021) have been previous 

estimated from aerial and terrestrial LiDAR point clouds. 

However, to estimate the uncertainties of forest attributes 

measurements are still non-trivial. According to Wang et al. 

(2019) and Jurjevic et al. (2020), the accuracy of tree height 

estimated based on ALS, UAV or TLS point clouds can range 

between few centimetres to meter-level of accuracy, depending 

on tree canopy shape, plot complexity, point cloud density, and 

data acquisition geometry. Tompalski et al. (2014) showed that 

bias in tree height estimates have a clear impact on further 

analyses and attribute estimates, such as an individual tree 

volume. The uncertainty impacting forest analysis becomes even 

more severe when repeated measurements are required, such as 

in estimating individual tree growth. 

 

Permanent laser scanning (PLS) systems have been suggested as 

another potential alternative for tree growth estimations. PLS 
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systems provide well registered LiDAR time-series as they 

monitor their respective forest scene from a fixed point of view. 

Yet, PLS systems measuring dense spatio-temporal time-series 

are still rare (Campos et al., 2021), and their use is especially 

underexplored in forest growth dynamic analyses. Here, we 

explore the potential of PLS time-series to monitor deciduous 

silver birch trees (Betula pendula Roth.) canopy growth 

dynamics and neighborhood characteristics. The vertical and 

horizontal growth characteristics were monitored using high 

temporal and spatial resolution LiDAR data time-series collected 

with the Finnish Geospatial Research Institute (FGI) PLS setup, 

FGI Lidar Phenology station (LiPhe) (Campos et al., 2021). We 

used LiPhe dataset collected over the 2020 growth season (April 

2020 – April 2021) to detect and quantify silver birch growth 

dynamics and growth timing on weekly basis. Our aim is to 

investigate whether silver birch canopy follows some species-

specific growth rules as effect to their local neighbourhood. We 

especially focus on the joint effect of competition and species 

identity on the growth rate of tree stands in terms of canopy 

height (Section 3.1) and its timing (Section 3.3). 

2. MATERIALS AND METHODS 

2.1  LiPhe LIDAR time-series  

The FGI-Lidar Phenology station was designed to monitor daily 

and seasonal phenological changes in boreal tree species. The 

LiPhe data is capable of capturing changes with a temporal 

resolution as fine as one hour and a centimetric spatial resolution 

(1 cm between neighboring points within 100 m). Figure 1 

illustrates the setup of LiPhe, comprising a Riegl VZ-2000i 

scanner mounted on a 35-meter tower above the forest canopy. 

The LiPhe station data have an intermediate data acquisition 

geometry between the ground and aerial perspective. The laser 

scanning system is tilted at a 60-degree angle downward, offering 

a unique point of view to measure the tree tops and outline 

changes of the below forest canopy within 200 m (Figure 1.b). 

LiPhe setup details can be found at Campos et al. (2021). 

 

The LiDAR time-series used in this work is a subset of LiPhe 

dataset. In total, 91 time-points covering one year were selected 

between April 2020 and April 2021 with a bi-weekly temporal 

resolution (two scans per week). The scans were selected 

considering stable scanning conditions with no precipitation and 

prevailing wind speeds less than 3 m/s. Meteorological and 

atmospheric aerosol data are continuously monitored by the 

SMEAR station (SMEAR II, Junninen et al., 2009), facilitating 

scan selection based on weather conditions and study objectives.  

 

 
 

Figure 1. FGI-LiDAR phenology station: (a) the 35-m high 

measurement tower where LiPhe is installed. The laser scanner is 

securely mounted on a designed frame, located in the rear corner 

of the tower. Measurement computer is housed within a 

weatherproof container visible on top of the tower. (b) RIEGL 

VZ-2000i laser scanner mounted in the tower and top view over 

the test forest. 

 

2.2 Silver birch dataset 

 

Silver birch is a broadleaf pioneer tree species widely distributed 

in temperate climatic zones with significant economic and 

ecological importance, especially in northern Europe (Beck et al., 

2016). In terms of economic value, silver birch is outstanding to 

its rapid growth and desirable stem characteristics, for instance, 

for furniture production (Stener et al., 2017, Dubois et al., 2020). 

From the ecological point of view, the high genetic variability 

and remarkable adaptability to diverse climates and 

environments make the silver birch a relevant species for 

studying adaptation mechanisms (Jansons et al., 2016, Oksanen, 

2021, Possen et al., 2021). These recognized factors motivated 

recent studies on silver birch structural growth dynamics and 

management (Aun et al., 2021, Konôpka et al., 2021, Skovsgaard 

et al., 2021, Holmström et al., 2021, Matisons et al., 2022, Sitko 

et al., 2022, Martin-Blangy et al., 2023) and encouraged the 

choice of silver birch as main subject of the present study. It is 

important to highlight that different species have different 

responses to neighbouring factor, which can result in even more 

complex analysis. Therefore, to ensure the consistency of our 

findings, we focus in particular on silver birch species within the 

context of a coniferous-dominated boreal forest. 

 

The silver birch trees under study are situated within the scanning 

area of LiPhe at the Hyytiälä forestry field station in southern 

Finland. The research is conducted in a coniferous-dominated 

boreal forest occupied by Scots pine (Pinus sylvestris L.), 

Norway spruce (Picea abies H. Karst) and silver birch, listed in 

order of predominance. The scanned forest is approximately 61 

years old (2023) and it has an estimated stem density of 625 trees 

per hectare. Figure 2.a shows the distribution of silver birch trees 

(green) in the research area, in which the scanner position is 

represented with the orange triangle, silver birch trees positions 

are marked in green, while all the remaining trees mapped are 

presented by grey dots. Figure 2.b shows an example of an 

individual silver birch point cloud colorized by scanner-

calibrated intensity values (LiDAR-Reflectance). 

 

Figure 2. Dataset overview: (a) Research forest area (gray), 

highlighting silver birch (green dots) and LiPhe scanner position 

(orange triangle) and (b) example of silver birch tree point cloud. 

A total of forty-three silver birch trees with full visibility (stem 

and canopy) to the LiPhe laser scanning system were selected for 

closer investigation (Figure 2). As mentioned, ninety-one (91) 

complete point clouds were processed, aiming to accurately 

monitor the studied silver birch trees over the period between 
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April 2020 and April 2021.The silver birch point clouds (time-

series) were obtained using a comprehensive data processing 

framework which starts from LiPhe raw point clouds (full forest 

scene), resulting in georeferenced tree level point clouds 

(ETRS89/TM35FIN coordinate system). The data processing 

steps involve point cloud registration, georeferencing, stem 

detection, coarse-to-fine point cloud segmentation, data 

resampling by voxelization (5 cm voxel), and estimation of tree 

parameters (such as tree canopy height and area over time). The 

entire pipeline was implemented using Python programming 

language. 

 

Despite of the small number of silver birch trees to be analysed, 

data selection was performed considering a representative sample 

of the variability of both local conditions and tree density 

featured by their neighborhoods in the research area (Figure 3). 

A neighbouring tree was defined as those within a 5-meter radius 

cylinder centred at the study tree's stem. Figure 3 shows in panel 

(a) the number of silver birch trees according to the neighboring 

species combination, while, panel (b) summarize the number of 

trees by number of neighbors within 5-m radius ranging from 

zero to sixteen. 

 

 

Figure 3. Summary of silver birch trees neighbourhood 

variability in terms of neighbouring species (a) and density of 

neighbours (b), ranging from zero to sixteen neighbours. 

2.3 Tree parameter estimation 

Aiming to demonstrate the potential of PLS time-series data in 

detecting detailed structural changes, we have successfully 

extracted silver birch canopy parameters and neighborhood 

information from LiPhe dataset. The main parameters extracted 

from the LiDAR time-series for each of the forty-three silver 

birch trees were the tree initial height (HApril20) and area (AApril20) 

(April/2020), absolute and relative growth in height (ΔH) and in 

area (ΔA), number of neighbours (NN) and neighbouring species 

(Figure 3), competitive index (CI) and topographic wetness index 

(TWI). Table 1 summarizes the methods and equations used in 

estimating these tree parameters.  

 

Two distance-dependent competitive indexes (CI6 and CI8) were 

used to estimate the tree competition based on tree height (Hj), 

neighbouring trees height (Hi), and the distance between them 

(Lij). The competition indices applied in the study are well-

established indices derived from Rouvinen and Kuuluvainen 

(1997). The TWI was calculated as a function of total catchment 

area (TCA), flow width (FW) and slope (S) (Kopecký et al., 

2021), which was computed using a LiDAR-DTM (digital terrain 

model) of LiPhe research area and SAGA-GIS (System for 

Automated Geoscientific Analyses).  

 

Parameters Method 

HApril20 99.95th height percentile 

ΔHabs 𝐻𝐴𝑝𝑟𝑖𝑙21−𝐻𝐴𝑝𝑟𝑖𝑙20 

ΔH (𝐻𝐴𝑝𝑟𝑖𝑙21−𝐻𝐴𝑝𝑟𝑖𝑙20) 𝐻𝐴𝑝𝑟𝑖𝑙20⁄  

AApril20 2D (x, y) Alphashape; Vauhkonen et al. (2010) 

ΔAabs 𝐴𝐴𝑝𝑟𝑖𝑙21−𝐴𝐴𝑝𝑟𝑖𝑙20 

ΔA (𝐴𝐴𝑝𝑟𝑖𝑙21−𝐴𝐴𝑝𝑟𝑖𝑙20) 𝐴𝐴𝑝𝑟𝑖𝑙20⁄  

CI6 ∑ tan−1[(𝐻𝑗 − 0.8𝐻𝑖) 𝐿𝑖𝑗⁄ ]𝑛
𝑗=1 , 𝐻𝑗 > 0.8𝐻𝑖 

CI8 ∑ tan−1[(𝐻𝑗 − 𝐻𝑖) 𝐿𝑖𝑗⁄ ]𝑛
𝑗=1 , 𝐻𝑗 > 𝐻𝑖 

TWI ln(𝑇𝐶𝐴/𝐹𝑊) tan(𝑠)⁄ ; Kopecký et al. (2021) 

Table 1. Summary of methods applied for the estimation of tree 

parameters based on LiDAR data time-series. 

 

Figure 4 shows examples of height and area growth monitoring 

of an individual silver birch trees by LiPhe. The outlines (leaf-

off) of the tree canopy at Apr. 2020, Oct. 2020 and Apr. 2021 are 

presented in Figure 4 (a), while the area growth and direction are 

quantified in Figure 4 (b). The example case shows a canopy 

growth towards South and Southwest direction with maximum 

magnitude around 0.4 m. Figure 4(c) illustrates the variations of 

the median scanner-calibrated intensity values, referred to as 

LiDAR-Reflectance, across various canopy heights over the year 

2020. The scanner-calibrated intensity values are defined by 

Riegl (RIEGL Measurement Systems, 2020) as a property 

representing the proportion of incident optical power reflected by 

a specific target at a wavelength of 1,550 nm, measured in 

decibels (dB).The individual tree point cloud was divided in four 

height segments (bottom, lower-mid, upper-mid and top) defined 

between the 0-50th, 50-70th, 70-90th and 90-100th height 

percentiles of the birch tree canopy at the first time point 

(April/2020). By monitoring the LiDAR-Reflectance response 

over the time-series, it is possible to detect and time the signal of 

the sprouting and growing of new leaves in spring 2020 and the 

falling of the leaves in autumn. The highest magnitude 

reflectance variations were detected in the top layer of the tree, 

where most of the new growth happens. Figure 4 (d) illustrates 

the height growth timing with the growth starting in May 2020 

and ending after the beginning of the fall (Sep 2020), with the 

total magnitude of 40 cm. 

 

The relationship between neighbourhood (competition and 

species) and tree relative growth in height (Section 3.1) and area 

(Section 3.2), as well as the detection of the timing of the growth 

(Section 3.3) were investigated based on the parameters 

estimated from the LiPhe-LiDAR time-series (Table 1). We 

discuss the results against previous conclusions in existing 
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literature based on traditional forest inventory methods (in situ 

survey). 

 

 
Figure 4. Example of silver birch growth dynamics over 2020 

growth season: (a) outlines of the tree canopy at Apr. 2020 

(black), Oct. 2020 (cyan) and Apr. 2021 (gray); (b) Azimuthal 

canopy growth direction; (c) Median LiDAR-Reflectance 

response at 0-50th, 50-70th, 70-90th and 90-100th height 

percentiles and (d) silver birch height estimated overtime.  

 

3. RESULTS AND DISCUSSION 

3.1 Silver birch height growth and neighbourhood effects. 

Table 2 present the minimum, maximum and average height 

(μHApril20) and canopy area (μAApril20) of the forty-three silver 

birch trees in April 2020. As well as the standard deviation of the 

canopy height and area between the trees (σHApril20, σAApril20). 

The development of the silver birch canopy is summarized by the 

same statistics for absolute and relative vertical (ΔHabs, ΔH) and 

horizontal growth (ΔAabs, ΔA) of the studies trees. Evidently, a 

distinct variability in both height and canopy area growth rates 

can be observed among the silver birch trees in the research area. 

The absolute height growth rates vary between 11 cm and 48 cm 

within the dataset, while the absolute canopy area growth ranges 

from 1.55 m2 and 17 m2. Those variability shows that silver birch 

trees have different growth patterns even when they are living 

under similar general forest stand conditions. Thus, the detection 

of asymmetry growth patterns highlights the important role of 

driving factors at micro scales, particularly the interactions 

among neighbouring trees within a microenvironment at local. 

Neglecting these relations can lead to a misunderstanding of the 

interaction between individual trees and the entire community, as 

also discussed by Stoll and Weiner (2000). 

 

An indication that competition and water availability stimulate 

vertical growth was detected. Our analysis shows that silver birch 

relative height growth (ΔH) has existing correlations with tree 

height (-0.47), CI6 (0.3), CI8 (0.43) and TWI (0.38). Figure 5 

shows the correlation matrix between those variables with ΔH. 

We further investigated the effects of tree initial height, CI8 and 

TWI on the relative height growth of silver birch trees using 

linear mixed-effect regression analysis (Bates et al., 2015). A 

small correlation between competition and the number of birches 

(NB), pines (NP) and spruces (NS) was detected. Therefore, the 

influence of the dominant coniferous or deciduous neighborhood 

in ΔH was also assessed. Table 3 show the summary of 

significant explanatory variable defined by the linear mixed 

effect models. An explanatory variable was considered 

significant if its p-value (p) was less than 0.05. 

 

Tree 

param. 

HApril20 

(m) 

ΔHabs 

(m) 

ΔH 

(m) 

AApril20 

(m2) 

ΔAabs 

(m2) 

ΔA 

(m2) 

Min. 11.05 0.11 0.006 1.55 0 0 

Max. 25.45 0.48 0.04 17.5 2.42 0.32 

μ 18.28 0.26 0.01 6.49 0.50 0.08 

σ 2.97 0.09 0.01 3.39 0.48 0.06 

Table 2. Minimum, maximum, average and standard deviation 

of the estimated height and area (April 2020) and absolute and 

relative height and area growth based on LiDAR data time-series 

between April 2020 and April 2021. 

 

 

Figure 5. Correlation matrix containing the correlation 

coefficients between relative growth in height (ΔH) and the 

possible explanatory variables, tree height at April 2020 (H20), 

competitive index (CI6 and CI8), topographic wetness index 

(TWI), number of neighbours (NN) and number of silver birch 

(NB), Scots pine (NP) and Norway spruce (NS) as neighbours.  

 

By the results of the linear mixed effect models, we found 

indications that initial tree height (tree size), competition and 

water availability expressed by TWI have the most significant 

impact on relative growth in height.  

 

Predictors Estimates CI p 

HApril20 -0.00 -0.00 - 0.00 0.002 

CI8 0.00 0.00 - 0.00 <0.001 

TWI 0.01 -0.00 - 0.01 0.005 

NDECIDUOUS -0.02 -0.04 - 0.00 0.041 

NCONIFEROUS 0.02 0.00 - 0.04 0.041 

Table 3. Significant explanatory variable defined by the linear 

mixed effect models results. 

 

The growth of silver birch trees in the studied dataset is 

negatively influenced by the initial tree size (HApril20), with 

smaller silver birch trees demonstrating more pronounced 

relative height growth during the 2020 growth season. While 

some authors have found a positive contribution of initial tree 

size to ΔH in silver birch, especially in earlier growth stages, 

(Jõgiste et al., 2003, Kund et al., 2010), it is important to consider 

that the relationship between growth rate and tree size is 
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multifaceted, particularly in mixed-species forests (Río et al 

2014, de-Dios-García et al 2015, Zhang et al., 2017, Martin-

Blangy et al., 2023). Previous studies discussed that tree height 

growth rates are dependent on age and hydraulic mechanisms 

(Koch et al., 2004). 

 

TWI exerts a positive influence on the relative growth in height 

(ΔH). Higher water availability stimulates greater relative growth 

in height of the silver birch trees in the research area. Despite of 

silver birch adaptability to different soil moisture conditions, 

previous works also highlight the positive effect of water 

availability on silver birch relative height and stem diameter 

growth rates (Possen et al., 2011, Jansons et al., 2016). In the 

same direction, Mohamedou et al. (2017) show the potential of 

TWI derived from LiDAR data to improve silver birch growth 

predictions, expressed by increment in diameter at breast height. 

 

Competition (CI6 and CI8) affects positively the relative growth 

in height (ΔH) of the silver birch trees in the research area. This 

result aligns with the conclusions presented by Kaitaniemi and 

Lintunen (2010), who also observed an effect of the interaction 

between competition and neighbor identity in silver birch height 

growth. Their study concluded that increased competition, as 

expressed by CI6, accelerated height growth in silver birch. 

Konôpka et al. (2020) observed that under severe competition, 

silver birch trees tend to allocate more resources towards height 

growth rather than diameter growth. These previous works 

highlighted as well, similar silver birch growth strategy, in which 

diameter at breast height, basal area and biomass growth was 

negatively affected by competition from neighboring trees but 

positively affect height increment (Kaitaniemi and Lintunen, 

2010, Konôpka et al., 2020).  

 

Considering the neighbourhood composition, our findings 

suggest that an increased proportion of birch trees in a 5-m radius 

neighbourhood leads to a reduction in relative growth for height. 

Conversely, a higher percentage of coniferous trees in the 

neighbourhood composition corresponds to larger ΔH. Negative 

impact of silver birch neighbourhood was also suggested by 

previous works. For instance, Hynynen et al. (2011) concluded 

that height growth of birch species was considerably greater in 

pine-dominated than in birch-dominated stands. 

 

3.2 Silver birch area growth and neighbourhood effects. 

Similar to height growth rates, we investigated the correlations 

between tree height (HApril20), canopy area (AApril20), competition 

(CI6, CI8), and TWI with relative area growth of silver birch 

trees (ΔA). Figure 6 shows the correlation matrix between those 

variables with ΔA. Silver birch initial area (AApril20) has 

significant correlations and inverse correlations with tree height 

(0.81), CI6 (-0.62), CI8 (-0.58), number of neighbours (-0.31) 

and TWI (-0.31), which may initially indicate that those variables 

play a role on shaping canopy architecture (Kaitaniemi and 

Lintunen, 2010, Martin-Blangy et al., 2023). No significant 

correlations were found between tree size, competition and TWI 

with ΔA. 

 

 
 

Figure 6. Correlation matrix containing the correlation 

coefficients between relative growth in area (ΔA) and the 

possible explanatory variables, tree area at April 2020 (A20), 

competitive index (CI6 and CI8), topographic wetness index 

(TWI), number of neighbours (NN) and number of silver birch 

(NB), Scots pine (NP) and Norway spruce (NS) as neighbours.  

 

Less significant results were found regarding silver birch area 

growth effect by linear mixed-effect model results. Preliminary 

assessment indication that TWI (p = 0.018) and tree size (p = 

0.041), expressed by the relationship between HApril20 x AApril20, 

positively influences area growth of the studied silver birch trees.  

Previous works have suggested that light and water availability 

(Martin-Blangy, 2023, Forrester and Bauhus, 2016), competition 

(Lintunen and Kaitaniemi, 2010) and tree-size (Guillemot et al., 

2020) can be explanatory variables of tree canopy growth and 

architecture changes. However, they also highlight that due to the 

intricate relationship between canopy architecture, local 

environmental conditions, and tree growth, it becomes 

challenging to separate the effects. For instance, Forrester and 

Bauhus (2016), concluded that mixture effects of light 

interception in canopy dimensions would become stronger when 

water is not a limiting resource. 

 

Although no significant effect of competition on relative area 

growth was observed in this study, Lintunen and Kaitaniemi 

(2010) have demonstrated that in silver birch trees, canopy 

structural variables (branch-level) are influenced by the 

interactive effects of neighbour identity and competition. These 

results and the high level of mixture effects complexity suggests 

that more complete analysis need to be performed to better 

understand the structural canopy growth characteristics of silver 

birch trees detected by LiDAR time-series. 

 

3.3 Silver birch canopy height and area growth timing 

By considering the height, canopy area, and LiDAR-Reflectance 

changes over time derived from the LiDAR time-series (Figure 

4), we could identify the timing of silver birch growth during the 

2020 season. Figure 7 shows an example of the tree height 

variation from April to December 2020. The start of the growth 

in height (magenta asterisk) and the point of height growth 

stabilization (green asterisk) were detected using a signal 

processing framework designed to identify breakpoints in the 

time-series (Truong, Oudre, and Vayatis, 2020). Table 4 presents 

the minimum, maximum and median day of the year (doy/2020) 

associated with the timing of height, area (canopy 2D 

alphashape) and leaves initial growth (LiDAR-Reflectance) of 
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the studied silver birch trees, as well as the total difference and 

standard deviation in days between the trees.  

 

Param. Min 

(doy) 

Max 

(doy) 

∆ 

 (days) 
�̅� 

(doy) 

σ 

(days) 

Height. 125 167 42 137 9.5 

Area 125 137 12 125 4.3 

Leaves 137 149 12 139 2.4 

Table 4. Minimum (Min), maximum (Max), maximum 

difference (∆), median ( �̅� ) and standard deviation (σ) of the 

estimated timing (day of the year) of canopy height, area and 

leaves initial 2020-growth based on LiDAR data time-series. 

 

 
Figure 7. Example of silver birch height increment overtime over 

2020 growth season and timing detection of the start of growth 

(magenta asterisk), in which the curve in grey show the estimated 

height values by 99.95th height percentile and in blue the 

smoothed curve by Savitzky–Golay based filter. 

 

Based on our findings, the 2020 growth season in the studied 

silver birch trees occurs between earlier May and late August. 

The detection of both height and area growth among the studied 

trees begins on May 4th (doy 125). Certain trees exhibited earlier 

and delayed height growth in relation to the median (May 16th). 

Most part of trees start the height growth around May 16th and 

May 18th (doy 137 – 139). The variability in horizontal growth 

initiation among the trees was estimated to be around two weeks. 

In contrast, vertical growth differences range up to a month, with 

an average deviation of approximately 10 days between 

individual trees. The silver birch trees that experience late initial 

height growth (doy > 150) are mostly suppressed trees with more 

than 10 neighbours. However, further investigations are 

necessary to explore the drivers influencing the variability in 

growth height and area timing. 

 

Interestingly, there was an estimated difference of around 10 days 

when comparing the initiation of area growth detected by 2D 

Alphashape method and detected by changes in LiDAR-

Reflectance. This discrepancy can be attributed to the sensitivity 

of LiDAR-Reflectance response to leaf-related changes, 

indicating the growth of leaves. On the other hand, the 2D 

Alphashape outline can be sensitive to the branch angles, which 

are direct influence by the burden of snow, water content and 

leave density. These results highlight the complexity of canopy 

area change detection. Further studies aiming for precise canopy 

area estimation should consider branch angles calibration 

methodologies. These distinct indicators from LiDAR time-

series can provide different insights into the aspects and stages of 

tree canopy growth during the spring season. 

 

The results show in Table 3 can be discussed according to the 

main trigger of bud break and tree growth in spring, temperature 

and photoperiodic (Walde et al., 2022). According to 

Ruosteenoja et al. (2011), the growing season in the studied 

region begins once the mean daily temperature exceeds 5 degrees 

Celsius. This climatic condition is typically observed between 

April and early May in southern Finland, approximately six 

weeks after the March equinox. Prior to spring growth 

progression, tree species native to temperate climates, such as 

silver birch, require a chilling period that inhibits budburst during 

the warmer mid-winter period. This chilling requirement is 

characterized by a specific time frame in which temperatures 

range between 0°C and 5°C, or even higher, depending on the 

species (Harrington et al., 2010). 

 

To compare the temperature at Hyytiälä research area in the 

detected days to the requirements mentioned above (Table 4), we 

estimated the cumulative growing degree-days (GDDs) for the 

year 2020 and assessed the length of day. GDD is a well know 

indicator of plant growth development which consider the 

accumulated heat based on the average daily temperatures 

compared against a base temperature. Typically, the base 

temperature for most plant species is around 5°C, which was 

applied in this study. If the average temperature was below the 

base temperature, the accumulative GDD value was considered 

zero. GDDs was estimated considering January 01 as the starting 

day. Temperature (above canopy – 33.6 m) and length of the day 

were obtained from SMEAR II.  

 

According to our calculations the 2020 accumulated GDD 

reached values greater than 5 degrees at April 21 (at 33.6 m – 

above canopy) with a length of the day of 15 hours and 24 

minutes. We detect the first signal of height and area growth on 

May 4 (doy 125), when the accumulated GDD above canopy was 

higher than 10 degrees (12.21°C) with a length of the day of 16 

hours and 34 minutes. Therefore, the detected days are consistent 

with the conditions that trigger the growth described in previous 

works (Harrington et al., 2010, Ruosteenoja et al., 2011, Walde 

et al., 2022).  

4. CONCLUSIONS 

This study arrived in the follow perspectives and conclusions:  

 

• LiDAR time-series analysis proved to be a reliable tool for 

accurately detecting the timing of growth and quantifying it 

when a temporal resolution adequate to detect the spring 

events is considered (< 1 week).  

 

• Permanent laser scanner setups provide a unique approach 

for generating long-term LiDAR time-series. LiPhe dataset 

enables consistency analysis of forest growth dynamics 

supported by previous works conclusions based on 

traditional forest inventory surveys. The findings highlighted 

the importance of conducting individual tree analysis, 

especially regarding the asymmetry growth patterns detected 

at micro scales. 

 

• In addition, the directionality of the growth through the gaps 

directions shows the potential of PLS time-series to support 

the understanding of how trees fill the canopy space 

occupation, which has recognized relevance for forest 

management. 
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• Future works addressing PLS occlusion limitation, aiming to 

increase the sample size of study trees are need. The LiPhe 

oblique perspective can suffer with occlusion caused by 

vegetation obstructions, especially during the growth season. 

Increasing the number of study trees would enhance the 

representativeness of the silver birch growth dynamic 

conclusions.  

 

• Regarding growth dynamics, silver birch vertical growth 

(canopy height) was affected by tree size, competition, 

neighboring species, and water availability expressed by 

TWI.  

 

• Silver birch horizontal growth (area) was affected by initial 

tree size in April 2020 and TWI. Although the results were 

inconclusive, the LiDAR time-series data demonstrated the 

potential to extract additional information that may 

contribute to explaining the observed variations in tree 

growth area. These findings are specific to the silver birch 

species and the particular area of study. 

 

• Future works exploring the factor that drive the variability in 

initial canopy height and area growth timing detected by 

LiDAR time-series are recommended. 
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