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ABSTRACT:

This paper introduces a novel framework, Tree-GPT, which incorporates Large Language Models (LLMs) into the forestry remote
sensing data workflow, thereby enhancing the efficiency of data analysis. Currently, LLMs are unable to extract or comprehend
information from images and may generate inaccurate text due to a lack of domain knowledge, limiting their use in forestry
data analysis. To address this issue, we propose a modular LLM expert system, Tree-GPT, that integrates image understanding
modules, domain knowledge bases, and toolchains. This empowers LLMs with the ability to comprehend images, acquire accurate
knowledge, generate code, and perform data analysis in a local environment. Specifically, the image understanding module extracts
structured information from forest remote sensing images by utilizing automatic or interactive generation of prompts to guide the
Segment Anything Model (SAM) in generating and selecting optimal tree segmentation results. The system then calculates tree
structural parameters based on these results and stores them in a database. Upon receiving a specific natural language instruction, the
LLM generates code based on a thought chain to accomplish the analysis task. The code is then executed by an LLM agent in a local
environment and . For ecological parameter calculations, the system retrieves the corresponding knowledge from the knowledge
base and inputs it into the LLM to guide the generation of accurate code. We tested this system on several tasks, including Search,
Visualization, and Machine Learning Analysis. The prototype system performed well, demonstrating the potential for dynamic
usage of LLMs in forestry research and environmental sciences.

1. INTRODUCTION

Analysis of forest remote sensing data is essential for various
applications in forestry and environmental sciences(Turner et
al., 2006, Suratno et al., 2009, Indirabai et al., 2019, Sun et
al., 2019). The analysis of forest remote sensing data is often
subject to temporal constraints, necessitating the exploration of
more efficient method. Recent advancements in artificial in-
telligence have given rise to Large Language Models (LLMs),
which are machine learning algorithms capable of comprehend-
ing human natural language instruction and generating coherent
text (Zhao et al., 2023). By utilizing natural language as an in-
terface, researchers can employ LLMs to generate data analysis
code in a matter of minutes, a task that previously required sev-
eral tens of minutes to complete. Consequently, the integration
of LLMs into the analysis of forest remote sensing data is be-
ing considered as a means of enhancing efficiency in a similar
manner.

LMMs like GPT series have left a profound impression due to
their powerful intelligence (Ouyang et al., 2022). Naturally,
we are curious about whether we can employ similar models to
perform intelligent analysis of forest remote sensing data. How-
ever, the limited ability of LLMs to comprehend images and
generate accurate domain-specific knowledge hinders their ap-
plication in forest remote sensing data analysis. Vision serves as
the primary source of information for human cognition. How-
ever, the majority of language models struggle to comprehend
visual information, limiting their applicability. In recent years,
researchers have investigated methods to enable LLMs to pro-
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cess multimodal information. Among these studies, GPT-4 has
emerged as the leading model, exhibiting remarkable perform-
ance in understanding and accurately describing natural im-
ages (OpenAl, 2023). Additionally, open-source models such
as MiniGPT4 have proposed their own solutions (Zhu et al.,
2023). However, these approaches exhibit suboptimal perform-
ance on remote sensing imagery due to the fact that the majority
of these models are trained on natural images. To address this
limitation, researchers have proposed multimodal remote sens-
ing datasets and trained models that capable of understanding
remote sensing images and performing natural language-based
question answering (Lobry et al., 2020, Chappuis et al., 2022).
These models can understand natural language and provide an-
swers regarding the presence of specific concepts in the im-
ages. However, due to their complexity, these model are still
not capable of precise quantitative analysis or executing data
analysis tasks through code generation. Furthermore, most lan-
guage models exhibit limited performance when generating text
in specific professional domains due to a lack of fine-tuning
for those domains. A phenomenon known as “hallucination” is
also commonly observed in language models, where they gen-
erate information that does not exist in reality, such as providing
incorrect interpretations of natural laws (Ji et al., 2023). Con-
sequently, the lack of remote sensing image understanding abil-
ity and accurate professional knowledge are significant issues
that restrict the application of general language models in spe-
cialized domains.

To address the first issue and enable LLMs to understand forest
remote sensing images, we are considering the integration of
a separate image understanding module. This module is built
to convert the implicit information contained in the image into

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1729-2023 | © Author(s) 2023. CC BY 4.0 License.

1729



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023
ISPRS Geospatial Week 2023, 2-7 September 2023, Cairo, Egypt

explicit, structured information that LLMs can understand. For
forest remote sensing data analysis, it typically involves two
primary tasks: the individual tree crown (ITC) segmentation
and calculation of tree structural parameters. Among them,
the ITC segmentation remains a challenging problem. Current
research has explored various methods based on point clouds
or images for ITC segmentation. Among them, image-based
segmentation methods tend to employ supervised learning al-
gorithms like Mask R-CNN for accurate instance segmenta-
tion(Beloiu et al., 2023). These methods require a large num-
ber of high-precision training samples. To reduce the cost of
our approach, we are considering whether unsupervised or in-
teractive methods can be used for ITC segmentation to generate
structured information that LLMs can comprehend.

Recently, image representation learning (Vaswani et al., 2017,
Dosovitskiy et al., 2020) and self-supervised learning (He et al.,
2022) have advanced significantly, along with the availability
of large-scale data and computational resources (Kirillov et al.,
2023). These developments have enabled the learning of uni-
versal features that can be transferred across different domains
from massive image collections. In this context, a Large Vision
Model named Segment Anything Model (SAM) was proposed
(Kirillov et al., 2023), which can perform zero-shot image seg-
mentation guided by prompts. However, SAM still faces two
challenges in individual tree segmentation task: 1) the segment-
ation quality of SAM is highly sensitive to the input prompt, and
the segmentation granularity is not controllable without prior
knowledge. 2) SAM generates many redundant masks in its
segmentation output, which hinders the identification of indi-
vidual trees. This paper aims to overcome these challenges
and leverage the potential of SAM for single-tree segmentation
tasks by proposing a framework that does not require retraining
and can be easily adapted to new scenarios.

To address the second issue of empowering LLMs with domain-
specific knowledge and task execution capabilities, we are con-
sidering building a specialized knowledge base and an execu-
tion agent for LLMs. The specialized knowledge base is a

widely used solution to tackle the issue of hallucination in LLMs.

Meanwhile, the execution agent acts as a framework that con-
nects LLMs with the local execution environment. LLMs can
utilize the execution agent to execute generated code in the local
development environment, perform data manipulation, and gen-
erate visualization or data analysis results. Currently, there are
existing frameworks for knowledge base construction and task
execution for LLMs. However, designing the optimal frame-
work is still an open question. For the specific task of forest
remote sensing data analysis, it is worth discussing how to ad-
apt the existing frameworks, such as Prompt Engineering, to
suit the characteristics of this particular task.

Following above ideas, we propose a novel framework, Tree-
GPT. The purpose of Tree-GPT is to build an expert system cap-
able of understanding forest remote sensing images, possessing
domain-specific knowledge in forest ecology, and generating
code based on prompts to automatically execute data analysis
tasks. The core of this system consists of an LLM as the reas-
oning engine, an image understanding module to convert image
information into text, a Domain Knowledge Base to store pro-
fessional knowledge for LLM retrieval, and an LLM execution
agent for code execution. More specifically:

e LLM: The LLM and its accompanying backend execution
framework are pivotal components of Tree-GPT. In terms

of model selection, the study utilizes the cloud-deployed
OpenAl GPT-4 model, known for its high performance.
However, in theory, an LLM deployed locally would also
be suitable.

e Image Understanding: As the second key module of Tree-
GPT, the image understanding module encompasses two
functions: tree segmentation and calculation of tree struc-
tural parameters. To enable low-cost algorithm transfer,
the study employs the Structure-Aware Masking (SAM)
as the core and designs a new tree segmentation method to
address the challenges associated with SAM. This method
starts by employing a pre-trained tree detection model to
locate and outline trees (or uses an interactive approach) to
generate an initial prompt. Subsequently, the study inputs
the initial prompt and a grid prompt into SAM, resulting
in redundant tree segmentation outcomes. To refine the
segmentation results, a bipartite graph matching model is
utilized, leveraging the initial prompt as a guide. After ob-
taining the segmentation results, additional remote sensing
data is incorporated to compute tree structural parameters,
which are stored in a relational database for subsequent
data analysis access.

e Domain Knowledge Base: As the third key module of
Tree-GPT, the Domain Knowledge Base is a vector data-
base that stores forest ecology domain-specific knowledge
in embedded text form. This knowledge base allows for
retrieval of crucial information through keyword searches
and utilizes it as prompts to guide the LLM in generating
accurate professional knowledge outputs.

e LLM Execution Agent: Lastly, as the execution mod-
ule of Tree-GPT, the LLM execution agent serves as a
backend framework that connects the LLM’s code outputs
with the local runtime environment. The study has tailored
the Prompt Engineering framework to address the specific
tasks of forest remote sensing data analysis, including in-
formation retrieval, result visualization, and data analysis.
Task-oriented prompt design ensures the generation of pre-
cise code, facilitating efficient and effective data analysis.

In conclusion, Tree-GPT offers a user-friendly approach that
enables real-time data updates and analysis. This reduces the
time required for the processing workflow and allows research-
ers to allocate more resources towards data interpretation and
the understanding of ecological patterns. With its understand-
ing and generation capabilities provided by Large Language
Models, Tree-GPT offers a pertinent contribution to the field
of tree ecological parameter extraction.

2. RELATED WORKS

2.1 Individual Tree Crown (ITC) Segmentation

Efficient and automated ITC segmentation methods are crucial
for calculating tree factors (Yang et al., 2019). Existing meth-
ods for ITC segmentation can be classified based on the type
of data used, including point cloud based methods and image
based method. Current UAV point cloud based methods often
utilize unsupervised clustering techniques. Since the highest
point of a tree (which can be regarded as the tree’s center)
is easily identifiable in the point cloud, these methods typic-
ally determine the tree center by leveraging the elevation dif-
ferences. They then perform point cloud clustering using the
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Figure 1. Overall Framework of the Tree-GPT.

center as a seed point to segment the tree contour (Strfimbu and
Strimbu, 2015). However, accurately describing tree bound-
aries becomes challenging due to the lack of texture informa-
tion in point clouds. As a result, most methods rely on strong
prior assumptions such as the conical shape assumption to dif-
ferentiate between points at the boundaries of trees (Strimbu
and Strimbu, 2015, Yang et al., 2020, Qian et al., 2023). These
methods generally achieve acceptable results in most scenarios.
However, in subtropical or tropical regions, trees tend to have
broader and more expansive shapes with large crown areas (Lutz
et al., 2012). As a result, many trees’ growth patterns deviate
from the aforementioned prior assumptions, which limits the
generalization capability of these methods when applied to new
scenarios, necessitating repeated parameter tuning.

Based on image data, tree segmentation methods primarily util-
ize the color and texture differences of different trees in RGB
images or the tree height differences in the canopy height model
(CHM) to segment individual trees. Some studies have em-
ployed traditional morphological image segmentation methods,
such as watershed algorithms and their variants, to achieve tree
segmentation in RGB or CHM images (Tochon et al., 2015,
Wagner et al., 2018, Yang et al., 2019). However, the lim-
ited utilization of morphological image features hinders the ac-
curacy of these segmentation methods. In recent years, re-
search has focused on deep learning-based single-tree segment-
ation methods due to the advancement of deep learning tech-
niques. Compared to traditional image segmentation methods,
deep learning networks possess stronger feature extraction cap-
abilities and can learn features with certain generalization prop-
erties, thus enhancing the generalization of the methods (LeCun
et al., 2015). Currently, most deep learning-based single-tree
segmentation methods are based on the Mask-RCNN network
(He et al., 2017, Beloiu et al., 2023). Some methods have im-
proved edge extraction by enhancing the loss function (Zhang
et al., 2022), while others have considered incorporating multi-
modal feature extraction techniques within the Mask-RCNN

framework. They simultaneously use texture, color, and el-
evation information from both RGB and CHM images to im-
prove tree segmentation accuracy (Li et al., 2022). Although
deep learning-based instance segmentation methods for single-
tree segmentation show significant improvements over tradi-
tional image segmentation methods in terms of robustness and
generalization, most supervised deep learning methods suffer
from a fundamental limitation: their performance is heavily
constrained by the training data. Since deep learning is es-
sentially about finding a set of factors that best fit the distri-
bution of the training samples, the performance of the network
is determined by the extent to which the probability distribution
of the training samples aligns with the real-world distribution
(Goodfellow et al., 2016). For single-tree segmentation tasks,
high-precision open-source tree contour datasets are severely
lacking. Moreover, distinguishing and annotating tree contours
is extremely costly compared to natural images, making it dif-
ficult to rapidly annotate a large amount of data to train a tree
segmentation network with strong generalization and zero-shot
transfer capability.

3. METHOD

Tree-GPT is a specialized system designed to process remote
sensing data from forests. It comprises a GPT-4-based LLM, an
image understanding module, a Domain Knowledge Base, and
an LLM execution agent. The Tree-GPT workflow operates as
follows: given a natural language instruction L and a remote
sensing image I of the study area, the image understanding
module processes I and collaborates with other remote sensing
data from the study area to generate tree structure parameters
that can be used as inputs for the LLM and for data analysis.
These parameters are stored in a relational database R. Sim-
ultaneously, the professional domain knowledge base module
assesses L to determine if it is a knowledge-based question and
whether to invoke the professional knowledge base module to

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1729-2023 | © Author(s) 2023. CC BY 4.0 License. 1731



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023
ISPRS Geospatial Week 2023, 2-7 September 2023, Cairo, Egypt

answer it. If L is not a knowledge-based question, it proceeds
to the LLM execution agent module.

In the LLM execution module, if L does not involve code ex-
ecution tasks, the output result of the LLM is directly returned
in the FastChat frontend. If the result contains code execution
tasks, the corresponding code is generated based on prompt
templates and executed using the LangChain agent module in
a local runtime environment. During execution, data visualiz-
ation or analysis results are generated by calling image I and
database R.

3.1 Image Understanding Module

Mask Generation:The Tree-GPT model utilizes a tree target
detection framework and a bipartite graph matching method to
control the segmentation granularity of SAM. This generates
tree segmentation results that correspond one-to-one with the
tree position. Specifically, the single-tree segmentation mod-
ule uses points and target frames as SAM’s Prompt at the same
time to guide the generation of tree Masks. Among them, the
target detection module can use automatic or manual methods
to generate tree target detection frames, which are used to guide
SAM for tree segmentation and assign semantic information
to the segmentation results. The automatic target frame gen-
eration method uses RetinaNet (Lin et al., 2017) as the target
detection framework with ResNet50 (He et al., 2016) as the
backbone network and DeepForest (Weinstein et al., 2019) pre-
trained weights. Manual annotation of tree target frames can be
used as a supplement to automatic tree target detection to im-
prove the accuracy of tree detection in an interactive manner.
In addition to the target frame, we use a 48 x 48 grid sampling
point as the basic Prompt for SAM to deal with situations where
BBox Prompt guidance fails. This generates enough Masks for
subsequent matching with the target frame and obtains optimal
segmentation results of the tree. After obtaining the Prompt, we
input Point and BBox Prompt into SAM respectively and merge
the two sets of tree segmentation results to obtain redundant tree
segmentation results.

Best Mask Matching: After obtaining the redundant tree seg-
mentation results, we consider how to select the optimal tree
segmentation results that correspond one-to-one with the real
trees. Since SAM’s segmentation results do not contain se-
mantic information, we consider using the automatically or manu-
ally obtained tree target detection results as the real position of
the tree. We match the redundant Mask with the target detection
results to obtain the tree segmentation results corresponding to
the tree position. Specifically, we model this matching problem
as a bipartite graph matching problem in mathematics. Bipartite
graph matching, also known as bipartite matching, is a model
in graph theory where given two disjoint sets of vertices A and
B, and a set of edges £ C A x B, a matching M is a subset
of E such that no two edges share an endpoint. A maximum
matching is a matching M of maximum cardinality (maximum
number of edges). This problem can be defined as:

min: Z Z CijTij (1)

€A JEB
s.t. in]- =1, forallje B
1€EA
> @i =1, foralli € A )
JjEB

x;; € {0,1}, forall (i,5) € E

Where the matchings are represented by variables x;; for each
edge E(i, 7). ci; is the cost of matching vertex i to vertex j in
the bipartite graph. The constraints ensure that each vertex is
matched exactly once.

In short, the bipartite graph matching problem is used to solve
a set of elements in set B that correspond one-to-one with ele-
ments in set A. This correspondence is called maximum match-
ing. When solving bipartite graph matching, it is necessary
to define the cost of adding each edge, that is, the Cost mat-
rix. In this article, we aim to maximize the overlap between
the segmentation result and our detected target frame. We can
use GIoU (Rezatofighi et al., 2019) to characterize this degree
of overlap. The GIoU is defined as IoU minus the area of the
smallest enclosing box that covers both bounding boxes P and
G, excluding the union area of P and G and can be expressed as

follows: )
_ Area of Intersection

foll = Area of Union 3)

GIoU = IoU — Ac — Au @)

After obtaining the Cost matrix, we use the classic Hungarian
algorithm to solve bipartite graph matching and obtain the op-
timal segmentation result with the highest overlap with tree po-
sition.

Tree Structure Factor Estimation: After obtaining the tree
segmentation results, we use the 2D segmentation results to as-
sign labels to the point cloud within the corresponding range.
This allows us to obtain the 3D single-tree segmentation res-
ults. After obtaining the 3D segmentation, we calculate the
tree height, crown width, support height and crown area. We
store them in the tree database together with the 2D segmenta-
tion results, external target frame and tree position information.
Among them, the tree position is stored in the database in pixel
coordinates. The 2D tree contour is stored in the database in
MS COCO’s (Lin et al., 2014) compressed storage format.

3.2 Domain Knowledge Base

The Domain Knowledge Base is a vector database that stores
embedded text of ecological knowledge in the field of forestry.
The module first uses the OpenAIEmbedding API to embed the
text of ecological knowledge in the forestry field and convert it
into numerical vectors. The text is then segmented using the
LangChain framework’s text segmentation tool with a block
size of 4,000 tokens, and the resulting knowledge vectors are
split into several blocks and stored in the Chroma vector data-
base. When Tree-GPT receives a natural language instruction,
it is first embedded using the OpenAIEmbedding API and con-
verted into a numerical vector. The module then uses the Face-
book AI Similarity Search (FAISS) algorithm to retrieve relev-
ant information from the Chroma database, obtaining retrieval
results denoted as SS. These results are ranked, and text blocks
with a similarity greater than 0.6 are selected. These selected
text blocks are then used as new inputs to the LLM using the
prompt template *Given context, could you please explain the
meaning of query?’ to obtain the final inference result. This
allows the model to accurately answer knowledge-based ques-
tions in the professional domain.
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Figure 2. Visualization of individual tree crown(ITC) segmentation results. The first line shows tree crown segmentation results
(segmentation in 2D). The second line shows individual tree point cloud segmentation results (3D segmentation by projecting 2D
results to point cloud).

3.3 LLM Execution Agent

The LLM Execution Agent is a backend framework in Tree-
GPT that bridges the LLM’s generated code structure with the
local runtime environment. Built on the LangChain toolchain,
the LLM Execution Agent executes instructions in two steps:
Task Planning and Code Execution. In Task Planning, the LLM
decomposes natural language instructions into subtasks using
prompt templates and generates corresponding content for each
subtask. By breaking down tasks, the LLM is more likely to
generate accurate code, as the subtasks are simpler. TreeGPT
employs task planning templates, as shown in the Table 1.

Prompt
Templete Input Output
Natural Language Task
1. Thought Instruction Decomposition
. Task Type of
2. Action Decomposition Sub-Tasks
3. Action Input Sub-Tasks Code
. Running
4. Observation Code Results
Running Results +
5. Thought Instruction Output Text
Output Text+
6. Final Result - Running Results
(Visualization, etc.)

Table 1. Process of LLM Execution Agent.

4. EXPERIMENT RESULTS

We use data collected from Shenzhen, Guangdong Province,
China to verify the effectiveness of our method. The data was
collected in 2018, with an RGB orthoimage spatial resolution
of 0.025m and a Lidar resolution of 100 points per m?. In the
experiment, we cropped three 3000x3000 pixel areas to verify
the effectiveness of the method. In terms of language model
selection, we use the ChatGPT API to access the database to
maximize the accuracy of code generation.

Our experiments on Tree-GPT revolve around two tasks: tree
segmentation and data visualization and analysis based on nat-
ural language. The results are presented in Figure 2 and 3. As
shown in Figure 2, in the tree segmentation task, Tree-GPT’s
segmentation results are basically consistent with manual an-
notations. It can even be said that in some cases the manual an-
notation results may not be as accurate as SAM’s results. In ad-
dition, based on natural language-guided tree parameter query,
visualization and analysis results are presented in Figures 3 re-
spectively. The operating results of Tree-GPT are demonstrated
in various tasks, including simple visualization (directly gen-
erating scatter plots), information retrieval (finding the tallest
tree), complex visualization (drawing a tree growth diagram
based on the position and crown width of the tree and gener-
ating a box plot of trees grouped by height), code generation,
and statistical learning-based analysis and testing of tree ecolo-
gical parameters (estimating the Gaussian distribution paramet-
ers of tree height and using RMSE as a confidence measure).
As shown in the figure3, during the query, Tree-GPT can give
correct query results and visualize them in the figure. In the data
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Figure 3. The results of Tree-GPT’s operation.

visualization task, Tree-GPT can give basically correct results
in the first round. However, it may require multiple manual
guidance to achieve the best visualization effect. In the data
analysis task, Tree-GPT can implement simple machine learn-
ing code for various tasks.

5. CONCLUSION

In conclusion, Tree-GPT offers a user-friendly approach that
enables real-time data updates and analysis, thereby reducing
the time required for the processing workflow and allowing re-
searchers to allocate more resources towards data interpretation
and the understanding of ecological patterns. With its under-
standing and generation capabilities provided by Large Lan-
guage Models, Tree-GPT offers a pertinent contribution to the
field of tree ecological parameter extraction.
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