
CLASSIFICATION OF TREES IN HYPERSPECTRAL CANOPY DATA USING MACHINE
LEARNING: COMPARATIVE ANALYSIS OF FOREST STRUCTURE COMPLEXITY
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ABSTRACT:

The classification of tree species by remote sensing is an important task with a broad range of applications, including forest man-
agement, environmental monitoring, and climate change studies. Hyperspectral imaging has proven to be a valuable tool for this
classification. Additionally, deep learning techniques have obtained outstanding results in hyperspectral classification. In this study,
we apply a neural network to the classification of aerial hyperspectral images of trees. The study was conducted at a research sta-
tion in southern Chile with 32 tree species. Our database has 3080 tree canopies that have been manually segmented and classified.
The goal of the work was to study the correlation between forest structure complexity and classification performance across three
different forest conditions: native forest, plantation of native species, and plantation of exotic species. The results show that clas-
sification performance is higher when forest structure and composition are simpler. We used a ResNet neural network as classifier
and compared its performance with support vector machine and random forest. The best performance was obtained using ResNet
in exotic plantations, the forest condition with the simplest structure, achieving an F1-score of 85.23%.

1. INTRODUCTION

Remote sensing is a powerful tool for classifying individual
trees in forests. However, the effectiveness of different meth-
ods can vary depending on the type of data available, the im-
agery’s resolution, and the forest environment’s complexity.
Methods fall into one of the following groups according to the
data type they use: (i) spectral data only (Onishi et al., 2022),
(ii) structural data only, i.e. point clouds obtained via photo-
grammetry or LiDAR scanning and the metrics derived from
them (Tinkham and Swayze, 2021), and (iii) combining both
types of data (Zhong et al., 2022). Nevertheless, gathering
structural data from LiDAR scanners remains highly expens-
ive for local applications. Therefore, we decided to use only
spectral data in this study.

Hyperspectral images have been widely used in various fields,
including remote sensing, for object classification and ana-
lysis (Datta et al., 2022, Osco et al., 2021). On the other hand,
deep learning methods have shown very good results in hyper-
spectral image classification (Paoletti et al., 2019). Deep learn-
ing techniques, particularly Convolutional Neural Networks
(CNNs), have proven to be effective in mapping forests and
trees using hyperspectral images (Zhong et al., 2022). By har-
nessing the capabilities of artificial intelligence (AI) and deep
learning, researchers have developed robust models for accurate
vegetation mapping. These models leverage the rich spectral in-
formation captured by hyperspectral sensors and are able to ex-
tract discriminative features from the data. Several studies have
demonstrated that hyperspectral data can be used to identify
tree species (Fricker et al., 2019, Modzelewska et al., 2020,
Zhao et al., 2021). However, one limitation of these methods
∗ Corresponding author

is the requirement for a large number of labeled samples dur-
ing the training stage (Jia et al., 2021, Wambugu et al., 2021).
In order to overcome this limitation, we adopted a simple ap-
proach based on the classification of spectra using ResNet, and
compared these results with two traditional methods, Support
Vector Machine and Random Forest. We hypothesise that the
classification performance will be higher the simpler the forest
structure and the simpler its composition (i.e. fewer species
per unit area). We assesssed the classification performance on
three different forest conditions present at the Frutillar Research
Station in southern Chile (Figure 1). First, the Winter Rainfall-
Valdivian native forest (7 species): A complex forest of mixed
tolerant species and multilayer canopy structure with a high ho-
rizontal species variation. Second, plantation of native species
(12 species): Small stands of one dominant native species (i.e.
low horizontal variation) with some woody understory veget-
ation. Third, exotic species plantations (13 species): Small
stands of one exotic dominant species with sparse understory
vegetation composed of herbs and ferns (i.e. low horizontal and
vertical variation).

2. MATERIALS AND METHODS

2.1 Image acquisition

Hyperspectral images obtained at the Frutillar research station
were acquired with NEO hyperspectral cameras using HySpex
VNIR-1800 and SWIR-384 (HySpex, Norsk Elektro Optikk
AS, Oslo, Norway) attached to a Cessna 162 aircraft operated
by Chile’s Heligraphics. The data were acquired in the sum-
mer of 2022 and pre-processed using the PARGE and ATCOR-
4 programs for orthorectification and atmospheric correction of
the scenes, respectively. The Minimum Noise Fraction (MNF)
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algorithm was applied to suppress redundant noise in the hyper-
spectral cube. Both cameras’ images were combined to obtain
an image with 466 channels ranging from 406 nm to 2515 nm.
Since the bordering channels contain noise, only 455 channels
from 466 nm to 2455.7 nm were used. The spatial resolution of
the final image is 0.5 m.

2.2 Database

A ground truth (GT) database was built by manually segment-
ing and labeling the crowns of individual trees, or areas of ve-
getation with the same specie, on a screen. Experts identified
the tree species using the images, and in field visits where GPS
equipment was used to identify the corresponding trees. The
resulting database contains 3080 polygons. The species were
divided into 3 different forest conditions:

(1) Native forest (NF): Caldcluvia paniculata (CAPA),
Chusquea quila (CHqu), Eucryphia cordifolia (EUCO),
Laureliopsis philippiana (LAPH), Luma apiculata (LUAP),
Nothofagus dombeyi (NODO), Podocarpus nubigenus (PONU).

(2) Plantation of native species (NP): Amomyrtus luma
(AMLU), Amomyrtus meli (AMME), Drimys winteri (DRWI),
Fitzroya cupressoides (FICU), Gevuina avellana (GEAV),
Laurelia sempervirens (LASE), Lomatia hirsuta (LOHI),
Nothofagus alpina (NOAL), Nothofagus alessandri (NOAS),
Nothofagus obliqua (NOOB), Persea lingue (PELI), Pilgero-
dendron uviferum (PIUV).

(3) Plantation of exotic species (EP): Acacia dealbata (ACDE),
Acacia melanoxylon (ACME), Alnus glutinosa (ALGL),
Calocedrus decurrens (CADE), Castanea sativa (CASA),
Chamaecyparis lawsoniana (CHLA), Eucalyptus camaldu-
lensis (EUCA), Eucalyptus globulus (EUGB), Pinus banksi-
ana (PIBA), Pinus ponderosa (PIPO), Quercus robur (QURO),
Sequoiadendron giganteum (SEGI), Sequoia sempervirens
(SESE).

Figure 1 shows the geographic location of the Frutillar research
station, and the manually delineated polygons of the vegetation.
To perform the experiments the database was divided into train,
validation, and test sets, as explained in section “3. Experi-
ments”.

2.3 Method

We classified the pixels of the image according to the tree
species. Then, we studied the classification performance
depending on the forest conditions. To perform the classific-
ation, three different methods were tested: Random Forest
(RF), Support Vector Machine (SVM) (Géron, 2022), and a
one-dimensional ResNet convolutional neural network (He et
al., 2016). The input to the classifiers was the spectrum in each
pixel. In order to remove the brightness variations, the spectra
were normalized by dividing the spectrum in each pixel by its
mean. The hyperparameters of the SVM and RM were adjusted
by using a halving grid search with a 5-fold cross-validation in
the training and validation sets. The following parameters were
considered in the adjustment of the hyperparameters of the RF:
(i) balanced weight for the classes on training; (ii) 100, 500 or
1000 estimators; (iii) Gini impurity, or Shannon information
gain for the split criterion; (iv) consider all the features (image
bands), or a reduction to 50, 100, 150, or 200 features by PCA.
The following parameters were considered in the adjustment
of the SVM: (i) balanced weight for the classes in training;

(ii) C =
{
2i | i ∈ {−5,−3,−1, 0, 1, 3, 5, 7, 9, 10, 13, 15}

}
;

(iii) lineal, polynomial, sigmoid, or radial basis func-
tion kernel; (iv) γ = {1/number of features ·
variance of the features, 1/number of features};
(v) one-vs-one or one-vs-the-rest classification strategies;
(vi) dimensionality reductions by PCA to 50, 100, or 150
features; (vii) standard normalization or a min-max scaler to
scale the features. The parameters of the ResNet were chosen
by assessing its performance using the training and validation
sets. The ResNet was built with three residual blocks, each one
with 3 convolutional layers followed by batch normalization
layers before applying the activation function (ReLu). The
number of filters used in the three residual blocks was 64, 128,
and 128, respectively. In each residual block, the size of the
filter kernels in the three convolutional layers were 24, 15,
and 9, respectively. The output of the last residual block was
connected with 3 fully connected layers of sizes 64, 32, and the
number of classes.

3. EXPERIMENTS

The polygons of the species in the database were divided into
3 groups, according to the different forest conditions (NF, NP,
EP). A 5-fold cross-validation scheme was used to evaluate the
classification methods (Russell and Norvig, 2009) in the differ-
ent forest conditions. Accordingly, five different sets for train-
ing, validation, and testing were built with the polygons of each
forest condition group. The partitions were mostly performed
randomly, with the only constraint that no polygon could ap-
pear in more than one test set. The following ratio was used for
the sets: 80% for training, 10% for validation, and 10% for test-
ing. Finally, all the spectra within each polygon were assigned
to their respective training, validation, or test set, and used to
evaluate the classification methods. Figure 2 shows the mean
spectra of the different species.

All classification methods were trained in the train sets of each
forest condition. Then, the methods were tested in the corres-
ponding test sets. The precision, recall, and F1-score were used
to measure the performance of the methods:

presicion =
TP

TP + FP
, (1)

recall =
TP

TP + FN
, (2)

F1 = 2 · presicion · recall
presicion+ recall

, (3)

where TP, FP, FN are the true positives, false positives, and
false negatives, respectively. The performance metrics were
computed for every specie within each set. Subsequently, the
average of each performance metric across the species was
computed in the cross-validation sets. Finally, the mean and
the standard deviation across the cross-validation sets were ob-
tained for each forest condition.

To explore the importance of each band in the classification, an
RF classifier was trained without a reduction of the number of
features (image bands). The same alternatives considered in the
previous experiments were used during the hyperparameter tun-
ing process, except for using PCA for dimensionality reduction.
This training was performed on all the cross-validation train-
ing sets of each forest condition. The importance of the bands
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Figure 1. Study area (Frutillar Research Station). The image shows the manual segmentations of tree canopies or areas of vegetation
with the same species

Figure 2. Spectra of the different species in the database.

was computed using the mean decrease in impurity (Breiman,
1984). Finally, the mean importance of each band and its stand-
ard deviation across the cross-validation sets were computed for
each forest condition.

4. RESULTS AND DISCUSSION

Table 1 shows the results obtained in each forest condition us-
ing different classification methods. The results were computed
for the test and training sets. The method that achieved the
highest performance on the test set across all forest conditions
was ResNet. The best F1-score in test (85.23%) was achieved
using ResNet on EP. The precision of RF was higher than those
of ResNet and SVM in NF and NP, nevertheless its recall was
very low. The method with the second-best performance was
SVM, reaching a F1-score of 82.35% on EP.

When comparing the performance metrics obtained in each
forest conditions, the performance in exotic plantation is higher
than that of native plantation, while the performance of native
plantation surpasses that achieved in native forest. A possible
explanation for this disparity lies in the complexity of the forest
stand. Exotic plantations, composed of broadleaf and conifer-
ous species, involve carefully planned and managed cultivation

techniques, resulting in a more uniform forest structure. Native
plantations, also tend to maintain a level of organization and
management resulting in better performance of the classifica-
tion methods used. Contrarily, native forests possess inherent
characteristics of natural and diverse ecosystems resulting in a
complex intermingling of various species within their structure.
This intricate composition presents a significant challenge when
attempting to assess them using either conventional or machine
learning techniques accurately.

An analysis of variance (ANOVA) and a multiple comparison
test were conducted to verify the statistical significance (p <
0.05) of the differences between the classification performance
of the different methods applied to the three forest conditions.
The Tukey’s HSD significant difference method was used in
the multiple comparison test. The F1-score was used to com-
pute the statistics because it is an overall performance metric
that takes into account both precision and recall. The ANOVA
analysis showed that the difference in performance obtained in
each forest condition and by using the different methods is stat-
istically significant (F = 52.86, p = 1.3e − 17). The Tukey’s
HSD analysis showed that the performance difference between
NP and EP obtained with the three methods is not statistically
significant. Nevertheless, the differences are very close to being
statistically significant with p-values of 0.99, 0.12, and 0.08 for
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Method Native forest [%] Native plantation [%] Exotic plantation [%]
Presicion

train test train test train test
RF 100.00 ± 0.00 65.91 ± 13.32 100.00 ± 0.00 82.48 ± 3.13 100.00 ± 0.00 84.94 ± 3.60
SVM 95.70 ± 7.74 54.38 ± 9.77 99.06 ± 1.87 74.87 ± 2.09 99.39 ± 1.22 84.97 ± 4.47
ResNet 99.99 ± 0.01 61.78 ± 6.70 99.87 ± 0.13 75.30 ± 2.97 99.99 ± 0.02 85.54 ± 3.92

Recall
train test train test train test

RF 100.00 ± 0.00 33.11 ± 5.91 100.00 ± 0.00 59.69 ± 2.97 100.00 ± 0.00 61.93 ± 2.95
SVM 99.21 ± 1.49 50.21 ± 5.76 99.59 ± 0.81 74.12 ± 3.63 99.88 ± 0.24 82.08 ± 3.53
ResNet 99.98 ± 0.02 56.04 ± 2.13 99.86 ± 0.15 78.53 ± 4.43 99.98 ± 0.03 86.61 ± 2.49

F1-score
train test train test train test

RF 100.00 ± 0.00 37.77 ± 6.72 100.00 ± 0.00 64.86 ± 2.54 100.00 ± 0.00 66.43 ± 2.66
SVM 97.17 ± 5.19 49.45 ± 6.95 99.31 ± 1.37 73.31 ± 2.98 99.62 ± 0.76 82.35 ± 4.01
ResNet 99.99 ± 0.01 56.70 ± 3.02 99.86 ± 0.14 75.89 ± 3.64 99.99 ± 0.02 85.23 ± 3.37

Table 1. Results of the classification methods in the three different forest conditions. The 5-fold cross-validation results were
computed in the train and test sets of each forest condition. The results are presented in the format [mean ± std].

RF, SVM, and ResNet, respectively. Figure 3 shows a boxplot
of the F1-score achieved in each forest condition by using the
different methods.

Figure 3. Boxplot of the F1-score obtained in the test sets for
each forest condition, utilizing different methods.

Figure 4 shows the importance of each band of the hyperspec-
tral image for classifying the different forest conditions. Cer-
tain wavelengths exhibited greater importance for classifying
specific forest conditions. For example, the wavelengths near
1500 nm were more important in the classification of NP than in
the classification of the NF and EP. The structural and physiolo-
gical characteristics, including pigment absorption, play a sig-
nificant role in differentiating between tree species based on
their reflectance properties (Jones and Vaughan, 2010). Our
results confirm that visible and near-infrared spectral bands are
particularly important in this regard. These spectral bands con-
tain the most prominent features that contribute to the discrim-
ination of tree species, especially between native and exotic
ones. In the visible range, various pigments, such as chloro-
phylls and carotenoids, absorb specific wavelengths of light,
resulting in distinct colorations of leaves. These differences
in pigment absorption contribute significantly to the visual dis-
crimination between tree species. In the wavelength range of
455 to 475 nm, chlorophyll b exhibits relatively low absorb-
ance, resulting in the reflection of light within that range. This
phenomenon contributes to the greenish coloration of leaves by
allowing some blue light to be reflected rather than absorbed.
The importance of bands between 540 and 570 nm is related

to changes in the efficiency of the photosynthetic light reac-
tion caused by xanthophyll pigments of the leaves. The spectral
bands between 700-730 nm reflex the influence of chlorophyll
a, where it exhibits a low absorbance, causing the light in that
range to be reflected rather than absorbed. This characteristic
results in the low reflectance of light in the near-infrared region
by tree leaves, making them appear dark or almost black in that
specific range. Within the Infrared spectral range, there are also
some important bands contributing to the discrimination among
species. In particular, we can distinguish two specific ranges,
from 950 to 990 nm and between 1060 and 1100 nm. The re-
flectance in these bands is primarily influenced by the internal
structure of the leaf known as the leaf mesophyll. These spaces
exist within the leaf mesophyll and are composed of air-filled
cavities or gaps between the cells. The presence of these air
spaces affects the reflectance of light in the near-infrared re-
gion.

5. CONCLUSIONS

Tree classification by means of hyperspectral images is a valu-
able tool that can be utilized for environmental studies and
forest management, among others. In this paper, we have shown
that the performance of this classification is affected by the
complexity of the forest structure. The simpler the forest struc-
ture and its composition, the better the classification will per-
form. The study was conducted at a research station in southern
Chile, where we classified 32 species belonging to the follow-
ing forest conditions: native forest, plantation of native species,
and plantation of exotic species. The hyperspectral image used
has 455 channels from 466 nm to 2455.7 nm. We built a data-
base for experimentation by manually segmenting and labeling
3080 crowns of individual trees or vegetation areas with the
same specie. Three classification methods were assessed: two
traditional methods, SVM and RF; and a ResNet neural net-
work. The best classification performances were achieved in
the simplest forest condition, plantation of exotic species. The
best result was obtained by using ResNet in exotic plantations,
reaching an F1-score of 85.23%. The ResNet classifier also
achieved the best results on the other two forest conditions. RF
was the worst-performing classifier in all the forest conditions.

We also studied the importance of each band in the classifica-
tion. The importance of the bands was estimated by computing
the mean decrease in impurity on the RF classifier. The results
indicate that visible and near-infrared spectral bands are partic-
ularly important in all the forest conditions. Additionally, two
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(a)

(b)

(c)

Figure 4. Importance of the different wavelengths in the classification of each forest condition. The red lines represent the mean
across the cross-validation sets for each forest condition, while the blue strips indicate the standard deviations. (a) Native forest.

(b) Native plantations. (c) Exotic plantations.

ranges related to the internal structure of the leaf (from 950 to
990 nm, and from 1060 to 1100 nm) were also found to be
important. The wavelengths near 1500 nm were particularly
important for classifying native plantations.

We are enhancing our database by adding more species and seg-
mented tree canopies to improve the accuracy of the data. In
addition, to improve the results, we are exploring more soph-
isticated deep learning techniques or hybrid models that could
effectively handle the increased complexity and variability of
forest conditions. One promising approach is to use instance
classification methods based on neural networks. These meth-
ods have the capability to incorporate both spectral information
and spatial texture from the image, enabling them to consider
the structural characteristics of tree canopies. The use of point
clouds can also further enhance the accuracy and effectiveness
of our data analysis.
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