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ABSTRACT: 
 
The quest for rapid, non-destructive, and precise technologies for fruit quality estimation is motivated by the needs across the whole 
food production chain. One of the emerging technologies fulfilling these requirements is spectral imaging. However, despite 
documented successes, the technology is yet to become established in commercial applications. The best results reported in the 
literature rely on fixed, non-portable dedicated setups, and controlled light conditions, which limits the potential use cases along the 
food production chain. In our study, we investigate the possibility of estimating dry matter content (DMC) and total soluble content 
(TSC) of store-bought apples in non-regulated indoor conditions using a commercial, portable, hand-held imaging system featuring a 
hyperspectral camera. The acquired images are transformed into per-fruit representative spectral profiles, pre-processed, and 
analyzed using partial least squares (PLS), the established method in the chemometrics community. We achieved the R2 of 0.93 for 
TSC and 0.91 for DMC on the test dataset, with a mean absolute error of 0.71 °Brix for TSC and 0.7% for DMC, which is 
comparable to the state-of-the-art results presented in the literature. These results indicate that recent instrumental developments 
enable the deployment of spectral imaging systems in a wider range of tasks in food production, requiring portability and allowing 
for less stringent control of environmental conditions. 
 
 

1. INTRODUCTION 

Non-destructively estimating internal fruit quality is critical for 
different parts of the food production chain. It ensures that fruits 
are harvested at the optimal time, preventing losses due to over-
ripening, it helps producers to monitor the quality during 
storage and transportation, reducing the risk of fruit 
deterioration, and it helps consumers to receive produce that 
meets their expectations. Hence, such practices can help reduce 
waste, and, therefore, improve sustainability, efficiency, and 
profitability (Abasi et al., 2018). 
 
Hyperspectral imaging offers several benefits over other 
established methods for non-destructive fruit quality estimation, 
such as using the dedicated VIS-NIR handheld and table 
spectrometers (Goisser et al., 2021). Primarily, the estimation 
requires no contact with the fruit, it is fast, it can be used to 
evaluate large quantities, and it provides a higher level of 
completeness and analysis of heterogeneity (Pathmanaban et al., 
2019). The results presented in the literature clearly demonstrate 
that hyperspectral imaging can detect changes in pigments, 
moisture content, and sugar levels, which are all key indicators 
of fruit ripeness and quality heterogeneity (Pathmanaban et al., 
2019). However, these results almost exclusively relate to cases 
of using setups that were bulky, non-portable, specially 
designed for the purpose, and required chambers with a 
controlled environment, primarily light conditions (Fan et al., 
2016; Ma et al., 2022; X. Tian et al., 2019; Y. Tian et al., 2022). 
 
The recent advancements in hyperspectral imaging technology 
made it more affordable, accessible, and broadly applicable. 
The emergence of lower-cost portable systems allowed their 
integration with mobile mapping platforms and robots allowing 
for on-site, in-field, and more automatic deployment in a range 
of remote sensing tasks in agriculture. The literature regularly 
reports successful use cases of yield and nutrition status 
estimation, as well as stress detection, primarily relying on 
spectral analysis of leaves properties (Lu et al., 2020). However, 

to the best of the author's knowledge, there are no investigations 
answering whether such portable imaging systems would have 
adequate data quality to also estimate inner fruit quality with 
sufficient precision to be readily applicable in the industry. The 
current industry standard for portable spectroscopy is using 
handheld point spectrometers (Goisser et al., 2021) requiring 
direct contact with the fruit (or allowing a few cm distances) 
and providing single spectral profiles without any information 
about their spatial relations. Enabling on-site automatic 
hyperspectral imaging for fruit quality estimation across the 
whole production chain would allow for high throughput 
phenotyping, also supporting research efforts by notably 
increasing processable sample sizes for statistical analyses. 
 
To that end, in this work, we investigate the applicability of 
such a commercial and portable hyperspectral imaging system 
for estimating inner fruit quality. We demonstrate our results in 
the case of estimating total soluble content (TSC) and dry 
matter content (DMC) of store-bought apples in a standard non-
regulated indoor environment. We analyzed several different 
data processing pipelines commonly encountered in 
chemometrics to give clear recommendations to the end users. 
We test for generalizability by fitting the regression model for 
cases of single and multiple apple varieties. Finally, we 
investigated if additionally integrating RGB information helps 
the estimation, as it is an inexpensive data source commonly 
paired with hyperspectral imaging systems. 
 
This article is structured as follows. A short overview of the 
relevant state-of-the-art and motivation for the study are given 
in this section (Section 1). Section 2 presents the experiment 
setup, and describes used hyperspectral imaging system and 
data processing workflow; Section 3 presents the main results 
and related discussion, while the main conclusions are drawn in 
Section 4. 
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2. MATERIALS AND METHODS 

2.1 Experiment setup 

The reference values for TSC and DMC were obtained by 
established destructive methods, and these values were 
compared against the estimates based on the apples' spectral 
profiles acquired using a hyperspectral imaging system. Our 
setup is based on the common setup for calibrating commercial 
VIS-NIR handheld spectrometers, see e.g. (Zhang et al., 2019). 
Overall, we processed 80 apples of 8 different varieties, which 
were bought in a local supermarket (Table 1). Multiple varieties 
were used to test for the generalizability of the results. 
However, one variety had a larger sample size (39 apples, 
roughly 50%) to test if the estimation accuracy is altered when 
sample variability is reduced. 
 

VARIETY F# S#  µTSC σTSC µDMC σDMC 

Golden 10 30 12.93 1.35 15.05 1.47 

Gala 6 18 11.94 0.95 13.83 1.17 

Jazz 5 15 13.39 0.85 15.26 0.90 

Golden Delicious 39 117 16.24 2.91 18.56 3.24 

Green Star 5 15 11.36 0.50 13.21 0.58 

Pink Lady 9 27 14.44 1.18 16.74 1.07 

Juliet 5 15 13.74 1.54 16.20 1.74 

Gravenstein 1 3 12.70 0.26 14.70 0.16 

ALL 80 240 14.62 2.79 16.83 3.03 

Table 1. Apples information summary: number of processed 
fruits (F#) and overall samples (S#); per variety mean and 

standard deviation of reference TSC in °Brix and DMC in %. 
 

The apples were measured with a hyperspectral imaging system 
at an approximately 0.5-meter distance (indicated as optimal by 
the instrument), at 3 evenly distributed locations per fruit, 
marked approximately at their equator (simple dash with a 
number), and separated approximately by 120°. We captured 
one hyperspectral and one RGB image per location with the 
marker approximately aligned with the center of the image. The 
system was handheld during the data acquisition. 

 
For the destructive reference measurements, which directly 
followed, we carved out cylindrical samples (2.7 cm in diameter 
and 2 cm in height) with a borer around the marking signalizing 
the location of the image center. Each apple sample was first 
peeled and then split into 2 approximately equal halves. 
 
The first half was used for the estimation of TSC using a 
dedicated digital handheld pocket refractometer (model PAL-1, 
ATAGO Co., Ltd., Japan). The apple juice was pressed using an 
ordinary metal kitchen garlic press and applied on the 
refractometer for the readings using a plastic pipette. The 
application and reading were repeated 3 times for each sample 
to control for eventual erroneous readings. The average 
(median) value of three measurements was considered as the 
final value for each sample. The acquired reference values for 
TSC are expressed in Brix degrees (1 °Brix = 1 g of soluble 
solids in 100 g of solution) with the instrument's measurement 
range of 0 to 60 °Brix, accuracy of ± 0.2 °Brix, and resolution 
of 0.1 °Brix.  

 
The DMC was calculated as the ratio (%) of the dry and wet 
mass of the second halves of the cylindrical fruit samples. The 

weight measurements were taken using an analytical balance 
(KUBEI 996), with a resolution of 0.001 g and an accuracy of 
0.003 g. After wet weight measurements the samples were left 
for drying at 65°C in a fruit dehydrator (Graef model 
DA506EU) for 24h, after which the dry mass measurements 
were taken. The approach follows the similar experimental 
setup described in Kumar et al., (2015). 
 
The experiment was done in our measurement facilities with 
non-controlled light conditions but with a centrally regulated air 
conditioning system. 
 
2.2 Hyperspectral imaging sensor 

For the hyperspectral imaging, we used HAIP BlackMobile 
(Figure 1), a portable system adapted for handheld operations 
by HAIP Solutions GmbH (Hannover, Germany). It covers the 
spectral range of 500-1000 nm with 100 bands (5 nm width). 
The spectral range is comparable to the spectrometers dedicated 
to fruit quality estimation present in the reviewed literature 
(Goisser et al., 2021) and is, therefore, suitable for sensing TSC 
and DMC. 
 

 
 

Figure 1. Hyperspectral imaging system, HAIP BlackMobile 
 

The system comprises a push-broom imaging spectrometer, a 
4K RGB camera and a broadband LED light source. The 
hyperspectral images have a resolution of 640 x 480 pixels (22 
x 16.5 cm @ 0.5 m) and are captured during the LED light 
exposure over >3 s period. The instrument was used with 
default manufacturer settings, including the manufacturer's 
reflectance calibration using a white reference target as a 
reflectance standard.  
 
2.3 Data and data processing 

The reference values for the TSC and DMC are generated as 
described in Sec. 2.1, where some observations (less than 1%) 
were marked as outliers based on the experiment log and 
removed from further processing. Both values of interest were 
approximately uniformly distributed ranging from approx. 10-
20 °Brix for TSC and 12-24 % for DMC and they were 
mutually highly correlated (  = 98 %), which is a documented 
phenomenon for apples, as they primarily consist of sugars and 
water (Travers et al., 2014).  
 
The hyperspectral images (Figure 2) are transformed into single 
representative (mean) spectral profiles for each of the 3 
locations distributed over each fruit (Section 2.1). 
Approximately centrally located image patches of 50 x 50 
pixels (150 x 150 for RGB images due to higher resolution) are 
separated from the entire image, providing 2500 individual 
spectral profiles. This size of the patch approximately 
corresponds to the size of the apple sample acquired for the 
destructive reference measurements. 
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In Figure 2 we can observe systematic distortion of the 
reflectance values due to partially specular reflection from the 
fruit's surface. We presume that the impact of this phenomenon 
primarily affects the overall magnitude of the acquired spectra 
generating an offset that can be successfully mitigated by 
signal-processing strategies. Therefore, the collected spectral 
profiles underwent preprocessing using several established 
strategies (Wang et al., 2015), with the goal of finding the one 
proving the best TSS and DMC estimation results. We tested: 1) 
baseline correction by mean subtraction ("Mean"), 2) standard 
normal variate ("SNV"), 3) calculating 1st and 4) 2nd derivative 
of the reflectance spectra, 5) vector norm signal normalization 
("Vnorm"), 6) transformation of the reflectance R into 
absorbance A spectra ("Abso") using the simplified relationship 
A = log (1/R). Besides mitigating eventual distortions in the 
spectra, this step has the role of feature engineering and has the 
potential of increasing the sensitivity towards signals of interest. 
 

 
 

Figure 2. Exemplary hyperspectral (colormap: reflectance at 
670 nm wavelength) and RGB image; black rectangles - 

processed image patches. 
 
The representative spectral signatures for each fruit sample were 
generated by computing the mean from 2500 samples (pixels). 
These representative profiles (case: transformation just by 
subtracting the mean value) are given in Figure 3 for all fruit 
samples (color according to the reference TSC value; DMC 
directly comparable). As can be seen in the figure, the 
representative profiles are smooth due to averaging a high 
number of individual spectra. Hence, we investigated the impact 
of signal-smoothing strategies to a limited extent. We only 
investigated the impact of applying the Savitzky-Golay filter 
(filter settings based on trial and error: window size = 7, 
polynomial degree = 3) which is one of the domain standards 
(Wang et al., 2015). 
 
Several clear features related to TSC can be observed in Figure 
3. The most prominent one is the drop of reflectance (increased 
absorbance) at 670 nm for the fruit samples with low TSC. This 
phenomenon is related to chlorophyll a concentration in 
mesocarp and is known to be an important indicator of fruit 

maturity (Musacchi & Serra, 2018). Further features visibly 
separating samples with different TSC values can be observed 
over wider spectral bandwidths in visible and early NIR regions. 
This initial inspection points out the apparent ability of the 
imaging system to screen for the values of interest. 
 
Such reflectance spectra as presented in Figure 3 were used as 
input for the estimation of TSC and DMC (each of them 
separately), following the signal pre-processing. The estimation 
was done using Partial Least Squares (PLS) with fine-tuning the 
number of explanatory (latent) variables based on the L2-norm. 
The abovementioned features of the spectral profiles exhibit 
higher bandwidths than the spectral resolution of the used 
imaging system. This suggests that PLS's inherent ability for 
dimensionality reduction, by mapping the original datasets into 
a subset of latent variables, will be well utilized and that a 
relatively small number of latent variables will be required for 
the regression. 
 

 
 

Figure 3. Rainbow plot of all acquired reflectance spectral 
profiles (average, representative profiles per sample / 

hyperspectral image) colored according to reference TSC value. 
 
The dataset is split into test and training data using the Kennard-
Stone algorithm (Kennard & Stone, 1969) with a 25 to 75 % 
ratio. We chose PLS due to its attested success in this 
application domain (standard chemometric tool), as well as to 
be directly comparable with the results reported in comparable 
studies. We did not investigate the estimation using potentially 
more powerful machine learning approaches, such as CNNs 
despite some evidence that they could outperform the PLS 
(Mishra & Passos, 2022). This decision was made primarily due 
to an insufficiently large dataset for training complex regression 
models. However, we did an investigation of a limited scope, 
testing some of the common machine learning regression 
algorithms as alternatives to PLS. The key take-away messages 
are briefly presented in the following section. 

 
3. RESULTS AND DISCUSSION 

Figure 4 presents the best results for estimating TSC and DMC 
from hyperspectral images of apple samples belonging to 8 
different varieties. Expectedly, the results are directly 
comparable for both values of interest. With the achieved R2 of 
0.8 or more, they demonstrate good generalizability of the 
regression model across the whole apple species. However, they 
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fall slightly short of the best results for hyperspectral imaging 
reported in the literature, which are commonly reporting R2 in 
the range of R2 0.88-0.94 for TSC (Fan et al., 2016; Ma et al., 
2022; X. Tian et al., 2019; Y. Tian et al., 2022). However, most 
of the comparable studies (including all the above-mentioned 
ones), report the regression results for the models that are 
calibrated for a single variety of apples.  
 

 
 

Figure 4. Best estimation results for TSC and DMC: multi-
variety case (8 apple varieties, all samples from Table 1). 

 
If our estimation model is calibrated for the single apple variety 
as well, as in the case presented in Figure 5, the results are 
further improved reaching state-of-the-art success (R2 of 0.93 
for TSC and 0.91 DMC). Hence, it is apparent that new portable 
imaging systems, such as the one used in this study, can deliver 
results of comparable quality, with less stringent setup 
requirements. From the direct discussion with the industry 
contacts, we received the information that surpassing R2 values 
of 0.90 signals that the technology is deployment ready. Hence, 
these results also signalize that such portable hyperspectral 
imaging systems can be readily utilized with standard 
chemometrics and spectroscopy data processing workflows with 
satisfactory results. 
 
We expanded our analysis to give a rough impression of the 
data processing factors that can or cannot influence the 

estimation results. A brief summary of our observations is 
presented in the following paragraphs.  
 
Feature (explanatory variables) importance: The optimal 
number of explanatory latent variables ranged from 10 to 33 for 
different cases of TSC/DMC estimation and different signal 
processing strategies. Comparably, the most relevant 
wavelengths were also case-dependent, and there were no 
distinctly dominating ones, as PLS projects multiple 
wavelengths into latent variables. However, generally most 
dominant clusters can be identified, and they were around peaks 
at 670 and 730 nm, with further contributing regions around 
910, 500-530, and 970-1000 nm. These observations are mostly 
consistent with the comparable literature relying on VIS-NIR 
hyperspectral imaging (Fan et al., 2016), besides one 
discrepancy (500-530 nm band). This confirms that the used 
portable imaging system has a comparable sensitivity across the 
spectral range. 
 

 
 

Figure 5. Best estimation results for TSC and DMC: single-
variety case (Golden Delicious). 

 
Spectrum smoothing (pre-processing): Applying the Savitzky-
Golay filter induced small but consistent improvements of 3-
15% in MAE and 1-4% in R2 value for different signal 
transformation strategies and TSC and DMC estimation. 
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Applying other alternative smoothing filters (e.g. moving 
average window) yielded smaller or negligible improvements. 
 
Spectrum transformation (pre-processing): As can be seen in 
Table 2, the selection of signal transformation strategy had a 
small to negligible impact on the overall estimation success. 
Transforming raw signatures into SNVs and absorbance 
provided the most consistent benefits. However, the individual 
best results presented in Figures 4 and 5 were achieved with 
different strategies. Moreover, in the single-variety case, TSC is 
the best estimated using the unprocessed reflectance spectra. 
 

  Multi-Variety Case 
 Raw Mean SNV 1st 2nd Vnorm Abs 

TSC R2 0.77 0.72 0.82 0.75 0.73 0.79 0.83 

DMC R2 0.80 0.75 0.82 0.72 0.75 0.80 0.80 

TSC MAE 0.95 1.11 0.82 0.93 0.99 0.87 0.80 

DMC MAE 0.90 1.04 0.95 1.04 1.07 0.91 0.90 
  Single-Variety Case 

 Raw Mean SNV 1st 2nd Vnorm Abs 

TSC R2 0.93 0.87 0.90 0.83 0.77 0.82 0.88 

DMC R2 0.88 0.84 0.91 0.83 0.80 0.82 0.87 

TSC MAE 0.71 0.82 0.75 0.88 1.15 1.04 0.76 

DMC MAE 0.97 0.92 0.73 0.99 1.08 1.08 0.89 

Table 2. TSC and DMC estimation results for multi- and single-
variety cases using different signal transformation strategies 
listed in Section 2.3; where Raw corresponds to unprocessed 
signal and other used abbreviations correspond to the ones 

given in 2.3. (MAE of TSC is given in °Brix and of DMC in %). 
 
Per-fruit averaging of the spectra: We also investigated if the 
results can be improved by using one average representative 
spectra per single fruit instead of per individual sample of the 
fruit (see Section 2.1 for details). This strategy was notably 
successful in the single-variety case. The MAE dropped by 43% 
for DMC and 53% for TSC, while the R2 increased to 0.98 for 
both values. Such a strong improvement is probably achieved 
due to reducing locally present data artifacts and noise both in 
the reflectance spectra and in the reference values (the noise is 
not negligible in the latter). Interestingly, in the multi-variety 
case, such improvements were not observed, and we do not 
have a plausible hypothesis for this observation. 
 
Inclusion of RGB data: We additionally investigated if 
including the RGB data can improve the TSC and DMC 
estimation, as the RGB imagery is automatically captured with 
the used imaging system. Within this analysis, in the pre-
processing step, we applied z-score normalization of features to 
account for notable scale differences between the pixel values 
of hyperspectral and RGB images. Additionally, we conducted 
baseline correction by mean subtraction to RGB images (other 
pre-processing strategies would be infeasible). The inclusion of 
RGB values failed to induce any noticeable improvement 
relative to the best cases presented in Figures 4 and 5. 
Interestingly, if RGB values alone were used as a predictor of 
TSC and DMC, in the single-variety case, they achieved R2 of 
0.59 and 0.64 respectively. In the multi-variety case, they were 
barely better than a random guess achieving R2 of 0.01 and 0.02 
for TSC and DMC respectively. 
 

Alternative regression algorithms: Although we dismissed deep 
learning as a viable alternative due to limited data size, we 
conducted a trial of a limited scope using several established 
machine learning algorithms. Namely, we tested: Lasso (L1-
norm on parameters), Random Forest, boosted trees, Gaussian 
Process regression, and Support Vector Machines (linear). All 
algorithms were trained with 75-25% train-test split, the L2-
norm loss function, with the hyper-parameter tuning of all 
eligible parameters using k-fold (k = 10) cross-validation using 
Bayes optimization algorithm over 100 iterations. Lasso 
regression yielded comparable, or for a few percent worse 
results relative to the PLSs, while the other algorithms notably 
underperformed. The most plausible cause for this is that, unlike 
PLS and Lasso, the remaining algorithms do not have an 
intrinsic mechanism for coping with a high number of mutually 
strongly correlated explanatory variables. However, we did not 
further pursue this analysis through additional variable 
selection, as it was not the main focus of the study.  
 

4. CONCLUSION 

In this work, we demonstrated the successful estimation of dry 
matter content (DMC) and total soluble content (TSC) of store-
bought apples using a commercial and portable hyperspectral 
camera in a no-light-controlled indoor environment. The 
achieved results of the R2 of 0.93 and 0.91 for TSC and DMC 
respectively, MAE of 0.71°Brix for TSC, and 0.7% for DMC 
are directly comparable with the state-of-the-art results of 
dedicated and non-portable imaging setups operating in dark 
chambers. The implemented workflow is a simple chemometric 
standard, relying on single per-image representative 1D spectral 
profiles and the partial least squares (PLS) algorithm. These 
results suggest that the achieved instrumental development 
enables the broadening of use cases for hyperspectral imaging 
towards automated and remote high-throughput phenotyping, 
potentially relying on mobile mapping platforms and robots. 
Further work is necessary to investigate if such portable devices 
are readily applicable for on-tree fruit quality estimation and if 
the results are significantly degraded by the presence of sun 
illumination. Additionally, the question of up to which distances 
a comparable estimation success is obtainable remains 
unanswered. Our future work will focus on investigating the 
generalizability of these results across different fruits and the 
possibility of remote estimation of further fruit quality metrics, 
primarily fruit firmness, and acidity. 
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