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ABSTRACT: 
 

In this work, an ensemble of machine learning algorithms was trained using stratified sampling from an existing European-scale 

biomass map from 2018 to predict an updated version for 2020. The objective of stratification is to make sure that the full range of 
biomass values is represented. The sampled biomass values from 2018 were filtered to remove areas that did were subject to forest 

disturbances between 2018 and 2020. This information was available from forest cover/loss/gain maps derived from satellite 

imagery. We train using a total of 49 features derived from the following sources: bioclimatic data, maps of land-cover, tree cover, 
tree height, annual composites of vegetation indices per pixel (EVI and NDVI) obtained from Sentinel-2, radar backscatter median 

annual values from Sentinel-1 and ALOS-2, and the ALOS DSM (3D) elevation grid. A model was created dividing Europe into 19 

tiles to limit variability due to very different bioclimatic zones. The result is a raster with 100 m x 100 m resolution and an estimated 

value of biomass (Mg ha-1) at each node. Overall results on validation data over Europe report a root mean square error (RMSE) of 
32.4 Mg ha-1 and a mean absolute error (MAE) of 21.5 Mg ha-1; when considering single tiles, the largest RMSE was 54.7 Mg ha-1 in 

tile D2, which can be explained by the very high variance of climate, environment, terrain topography and biomass values as the tile 

enclosed the Alpine region and the western part of Eastern Europe. 
 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

The European Union (EU) is covered by forests for 38% of its 

total land area. It is important to harmonize the estimates of 

forest biomass over all of Europe to support EU policies on 

bioeconomy and renewable resources, to design and implement 
effective and sustainable forest management practices, and to 

improve actions on climate change mitigation (Avitabile and 

Camia, 2018). Forest biomass values fluctuate over time due to 
natural forest dynamics, management practices, or the impacts 

of disturbances of biotic or abiotic nature. In addition, it is 

important to accurately estimate forest biomass, which is also 
related to row material production, which allows storing carbon 

in wood products (Verkerk et al., 2019). Due to the 

abovementioned, it is quite relevant to have technological tools 

from remote sensing that can permanently and systematically 
quantify and monitor changes in forest biomass at larger scales. 

 

Several biomass maps at a pan-European and global scale have 
been produced by many authors in the last decade, such as 

Kindermann et al., (2008), Gallaun et al., (2010), Barredo et al., 

(2012), Santoro et al., (2022), and Araza et al., (2023), through 
varied spatial resolutions (100 m – 1 km). The main inputs for 

producing maps at large scales are mostly through remote 

sensing data and field measurements. In remote sensing, the 
most common products used to compute maps at a pan-

European and global scale are MODIS, Landsat, Sentinel 

(combining active and passive sensors), climate, and land cover 

data, among other remote sensing inputs. Recently, new 
missions have been launched related to biomass estimation in 

the last few years (e.g., NISAR, GEDI, and BIOMASS) 

(Duncanson et al., 2019). On the other hand, the field 

measurements consist of plots of fixed area, which can vary 
from 0.01 to almost 1 ha (Nesha et al., 2022), and in some 

cases, these plots are permanently measured through national 

forest inventories (NFI). The ground-truth data is a critical input 
for training, validating, and, thus, producing accurate maps. 

 

Estimating accuracy of maps with cell resolution that is much 
larger than the typical area of ground plots in forests is difficult 

due to the unknown representativeness of ground truth data with 

respect to the larger pixel if falls in. This issue is also related to 

the harmonization of the biomass plots and data. Different 
countries use different sampling designs in data collection and 

biomass compartment definition, and often have different years 

of data acquisition, different plot shapes and sizes, and plots that 
are not uniformly distributed (Vidal et al., 2016; Herold et al., 

2019). At the European scale, Avitabile and Camia (2018) 

reported accuracies among six biomass maps in a range between 
57 and 61 relative root mean square error (RMSE). Moreover, 

global biomass maps have been the goal of several 

investigations and funded projects. Saatchi et al., (2011) 
reported uncertainty between ±6% and ±53% of total biomass 

(above- and below-ground) across large areas, with a more 

limited ±5% at the national scale. In addition, the coarse spatial 

resolutions of global biomass maps limit their applications for a 
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more detailed analysis in the quantification of carbon stocks and 

expected fire behaviour. 

 

To the authors’ knowledge, at the time of writing this article, 
the latest and most detailed maps at global scale with rigorous 

accuracy assessments have been estimated by the Climate 

Change Initiative Biomass project for 2018. As reported by the 
project, “the biomass data are derived from a combination of 

Earth observation data, depending on the year, from the 

Copernicus Sentinel-1 mission, Envisat’s ASAR instrument, 
and JAXA’s Advanced Land Observing Satellite (ALOS-1 and 

ALOS-2), along with additional information from Earth 

observation sources”. The AGB is provided in Mg ha-1 in the 

raster dataset. Estimates of above-ground biomass uncertainty 
expressed as the standard deviation in Mg ha-1 are also provided 

(Santoro and Cartus, 2021). 

 
The main objective of this research was to use different layers 

from earth observation and derived products that describe 

features that can be used to predict biomass over the Earth’s 
surface. Features considered are related to canopy height, 

canopy cover, vegetation types, annual composites of NDVI 

using Sentinel-2 data, SAR backscatter, an elevation grid 

(ALOS 3D), and bioclimatic variables. These independent data 
are used to predict aboveground biomass through the artificial 

intelligence (AI) approach of stacked ensemble machine 

learning (ML) learners. 
 

 

2. MATERIALS AND METHODS 

We build on the results of the Biomass_CCI to provide an 

updated version of AGB at European scale with 100 m 

resolution for the year 2020.  

 

2.1 Features 

The variables used as features (independent variables) are the 

following 49 potential covariates. Data sources came from 
various raster grids that were resampled at 100 m resolution. 

Where the original data was at a higher resolution, an 

appropriate aggregation operator was applied depending on the 
variable. Where the original data resolution was considerably 

lower, e.g., bioclimatic features - resolution at 1 km – simple 

linear interpolation was used. Below, the variables are reported 

and described. 
 

• 19 bioclimatic variables resolution from the WorldClim 

database created at University of California, Berkeley – 

~1 km resolution (Hijmans et al., 2005); 
o bio01 Annual mean temperature  

o bio02 Mean diurnal range  

o bio03 Isothermality (bio02/bio07)  
o bio04 Temperature seasonality  

o bio05 Max temperature of warmest month  

o bio06 Min temperature of coldest month  
o bio07 Temperature annual range (bio05-bio06)  

o bio08 Mean temperature of wettest quarter  

o bio09 Mean temperature of driest quarter  

o bio10 Mean temperature of warmest quarter  
o bio11 Mean temperature of coldest quarter  

o bio12 Annual precipitation  

o bio13 Precipitation of wettest month  
o bio14 Precipitation of driest month  

o bio15 Precipitation seasonality  

o bio16 Precipitation of wettest quarter  
o bio17 Precipitation of driest quarter  

o bio18 Precipitation of warmest quarter  

o bio19 Precipitation of coldest quarter 

• 1 topographic feature, Earth surface elevation (digital 

surface model – DSM) from ALOS World 3D - ~30m 

resolution dataset (Tadono et al., 2016, 2014); 

• 2 canopy-related features  
o canopy heights - ~10 m resolution aggregated at 100 

m with the average heights (Lang et al., 2022) 

o canopy cover fraction – global canopy cover map 
updated to 2020 using the loss/gain layer map – 

original resolution ~30 m (Hansen et al., 2013) 

• 2 vegetation indices from optical Landsat 8 annual 

composites of the 95th percentile values – 30 m original 
resolution, resampled to 100 m using the median operator 

for spatial aggregation. 

o Enhanced Vegetation Index (EVI) (Main et al., 2011) 

o Normalized Difference Vegetation Index (NDVI) 

• 5 land cover maps at 10 m resolution: one map with 
aggregated overall majority land cover class in the 100 m 

x 100 m pixel and 4 with fractional information of the 

different vegetation classes (forest, shrubland, grassland, 
and agriculture) - (Zanaga et al., 2021); 

• 4 RADAR backscatter features,  

o 2 from ALOS, HH, and HV polarization – 25 m 

resolution, resampled with median values inside the 
100 m final resolution (Shimada et al., 2014). 

o 2 features from Sentinel-1, VV and VH polarization 

of C-Band backscatter available from GEE pre-

processed with Sentinel-1 Toolbox for (i) thermal 
noise removal (ii), and radiometric calibration (iii) 

terrain correction. The final terrain-corrected values 

are converted to decibels via log scaling 
(10*log10(x)). We then processed for correcting for 

incidence angle (Pirotti et al., 2023) using ALOS 3D, 

which has an accuracy <10m for height values; 
Aggregation was done over time and space. Time-

wise the Sentinel-1 backscatter from VV and VH 

polarizations was aggregated with median values over 
the summer months of the year 2020 (01 June 2020 to 

01 September 2020). This was done to minimize the 

effect, on backscatter RADAR values, of snow and ice 

in the canopy at higher elevations and at higher 
latitudes. Space-wise the 10 m pixels were mapped to 

a 100 m final resolution with median values as well; 

• 16 vegetation types map - 1 overall vegetation class of 

type with the highest probability was derived from these 
maps (Bonannella et al., 2022). It should be noted that 

these are small scale probability maps estimated from AI. 

As such, they represent the probability of a species being 
present according to bioclimatic and other factors, but do 

not imply that the vegetation cover is in reality from that 

species. More detailed maps using high resolution 

imagery might be provided in the future (Gazzea et al., 
2022). 

 

2.2 Training and testing 

For training and testing, we grouped the dependent variable 

values, i.e., the AGB values, in 10 classes each of size 50 Mg 

ha-1 to provide 10 strata that are then used for stratified 
sampling. The goal of this approach is to give a balanced 

representation of the total range of biomass values. The AGB 

values used for training and testing were taken from the 2018 

global datasets of forest above-ground biomass of the European 
Space Agency Biomass Climate Change Initiative (Santoro and 

Cartus, 2021; Santoro et al., 2022). A total of ∼200’000 

sampled locations are used for training and the same amount for 
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testing. The area was divided into 19 tiles, 13 of which covered 

the European Union and were ultimately used (see figure 1 

below). This was done to limit the variance of the different 

variables used and create specific models in a more constrained 
area. 

 

 
Figure 1.  Tiles covering also the European union area for 

specific model training 

 
The rationale of this method is that, in an ideal situation, 

training should be done with ground-measured data. But it is 

very seldom the case that there are a significant number of large 
forest plots (1 ha) available with biomass values at the year of 

interest and that they are numerically representative of the 

extremely varied biomass scenarios in Europe. Therefore, for 

training, we used biomass data that had been estimated from 
previous work. These data will have a larger error with respect 

to ground measures, but the very high number that we can use 

with this approach allows the machine learning ensemble to 
minimize the effect of the error. Except for the bioclimate maps 

and the DSM, all other features are from the year 2020. 

 
 

2.3 AI Algorithms  

Training, testing, and prediction were done using the H2O 
library implemented in the R-CRAN environment (Candel and 

LeDell, 2022; LeDell et al., 2022). The choice was driven by 

the intrinsic capability of the library to leverage multiple CPUs 

via parallelization and thus provide higher computing 
capabilities when used on multi-CPU high-performance 

computing (HPC) systems. In this study, a 16 CPU Linux 

machine with 256 MB of RAM was used. Version 3.38.0.3 of 
H2O was used. A total of 13 models were created with training 

data, one for each tile that overlaps the main European Union 

area. Models are available upon request in Model ObJect, 
Optimized (MOJO) format.  

 

The regression was carried out using staked ensembles of 

models. From H2O documentation, “stacked ensemble method 
is a supervised ensemble machine learning algorithm that finds 

the optimal combination of a collection of prediction algorithms 

using a process called stacking”. Ensembles have proven to 
represent an asymptotically optimal system for learning (Van 

Der Laan et al., 2007). This approach has also been used for 

forest monitoring by Healey et al., (2018) for the creation of the 
Landscape Change Monitoring System (LCMS) data suite with 

improved map accuracy across a range of ecosystems and 

change processes. 

 

 

3. RESULTS 

3.1 Accuracy of regression  

The test set of values was used to assess the results of running 
over the full set of features and removing the 16 features related 

to vegetation species to see the impact on the result. Figure 2 

below shows the root mean square error (RMSE) for each tile 
for the two combinations. 

 

 
Figure 2. Root mean square error per each tile using 33 

features, i.e., all features except vegetation types (black) and all 

49 features including vegetation types (grey). RMSE unit is 
AGB in Mg ha-1 

 

Overall results on validation data over Europe report a root 

mean square error (RMSE) of 32.4 Mg ha-1 and a mean absolute 
error (MAE) of 21.5 Mg ha-1; when considering single tiles, the 

largest RMSE was 54.7 Mg ha-1 in tile D2 (see Figure 1), which 

can be explained by the very high variance of biomass values as 
the tile enclosed the Alpine region and the western part of 

Eastern Europe. 

 

3.2 Data access and representation 

The models trained via the stacked ensemble method were used 

to predict AGB values across Europe and create an AGB raster 
and a raster with an estimated standard deviation of the 

estimated value. Two online web portals were created: (i) one 

for internal use for analysing the results and also for querying a 

single location to check the values of all 49 features at that 
location (Figures 3), and (ii) one for viewing data and 

downloading rasters of AGB for each country (Figure 4). A 

further collaborative web-app was developed for collecting 
ground truth via smartphones for further data validation 

(Kutchartt et al., in Print), similar to other work that uses 

collaborative web-tools to collect information (Pirotti et al., 
2011, 2022). 
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Figure 3. Interactive web-GIS portal for querying biomass values and descriptors at user-defined coordinate. 

 

 
Figure 4. Google Earth Engine App: users can view and download clipped country-specific maps for the total aboveground biomass 

(Mg  ha-  1) and their standard deviation (SD) in GeoTIFF format. 
 

 

Figure 3 shows the internal web portal with location 
information over the blue marker. This portal connects the data 

with the user through an interface that allows the user to click a 

location, and the server returns the values of the features that are 
available at that specific location. A result of this interaction is 

seen in Figure 3, where the data extracted at the location of the 

blue marker is visible on the right side. 

 
Figure 4 shows the other web portal that is available for public 

access. This was deployed via Google Earth Engine and consists 

of a viewer and a tool (right side) for downloading AGB maps 
for each country. 

 

3.3 Comparison with other AGB maps 

The Climate Change Initiative Biomass (Biomass_CCI) 

recently – after the first draft of this paper - produced a map of 

AGB for the year 2020. Therefore, we analysed the differences 

between our product and this one. As reported in their 
documentation, “The primary science objective of ESA’s 
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Climate Change Initiative Biomass project is to provide global 

maps of above-ground biomass (Mg ha-1) for multiple epochs 

(2005/07, 2010, 2015/16, and annually for 2017-2022), with 

these being capable of supporting quantification of biomass 
change. The mapping will be at 100 m grid spacing with a target 

relative error of less than 20 % where AGB exceeds 50 Mg ha-1. 

Although this resolution is finer than required for current 
climate modelling, it will allow more refined information to be 

inferred (e.g., forest age structure and the disturbance regime) 

that is relevant for climate and has the potential to be exploited 
by carbon cycle and climate models as they develop.” The 

standard deviation of the differences between our map and the 

ESA Climate Change Initiative map for 2020 is ~55 Mg ha-1 

with a bias of ~17 Mg ha-1. The bias points toward estimating 
larger values of biomass in our results with respect to ESA’s 

results. Figure 5 below represents the distribution of differences. 

 

 
Figure 5.  Map of differences between FIRE-RES AGB values 

and ESA Climate Change Initiative Biomass of 2020. 
 

 

4. DISCUSSION 

There are existing global and regional biomass maps. Authors in 

Avitabile and Camia (2018) compared four biomass maps 

between 2008 and 2014 at European scale with pixel resolutions 

of ⩾∼1 km. The coarse spatial resolutions in this case limit 

their applications to a more detailed analysis of expected fire 
behaviour.  To the authors’ knowledge and at the time of 

writing, the more recent and detailed maps with rigorous 

accuracy assessment have been estimated by the Climate 
Change Initiative Biomass (Biomass_CCI) project up to the 

year 2018, when the project started, with 100 m spatial 

resolution (Araza et al., 2023). From the same project, updated 

AGB maps for the year 2020 are now available; therefore, a 

comparison is possible and was carried out (see Figure 5). It can 

be noted from the comparison of results that areas in mountain 

regions have higher biomass values in our results with respect to 
Biomass_CCI. This should be noted as very likely to be an 

overestimation by our results due to under-represented samples 

in that specific scenario.  
 

Mapping vegetation is a key task in many applications, 

especially considering the more extreme events that are foreseen 
in the future (Laurin et al., 2021; Piragnolo et al., 2021). The 

biomass of mapped vegetation is a proxy for the carbon-fixing 

capabilities of the area and is also one key factor that concurs to 

estimating fire hazards. Many efforts on mapping biomass have 
been and are currently ongoing, at different scales and with 

different methods. Satellite remote sensing is the main source of 

data for mapping biomass at the regional scale, i.e., the 
continental scale. The numerous space programs nowadays 

allow for the acquisition of dense time series of optical and 

radar imagery that cover all forested land. Converting digital 
numbers to values of the biomass of its different components, 

along with an assessment of the expected uncertainty of the 

results, is challenging. 

 
It should be noted that a rigorous assessment of accuracy would 

require field samples. There are numerous field samples 

available from stakeholders and project partners, but they suffer 
from two main problems: almost all samples have a much 

smaller size than the 100 m x 100 m area that is the basic unit of 

our map, and they were sampled at different moments in time. 
This last problem can be mitigated by applying a general growth 

model to estimate an updated value of biomass, but this would 

add further uncertainty to measured values that propagates to 

the original measurement errors. The first problem might be 
solved by up-scaling the plot area by a scale factor. This is not 

an ideal solution, as the variance of the measured value around 

the plot is unknown. For example, as can be seen in Figure 6 
below, a ground sample plot of 10 m radius might “catch” a 

value of biomass that is not representative of the 100 m x 100 m 

raster cell, and thus upscaling will provide very wrong values. 
In Figure 6, the up-scaling would provide an overestimation as 

the circular plot is over an area with a higher vegetation density 

than the rest of the area. 

 

 
Figure 6.  100 m x 100 m area with a hypothetical 10 m radius 
plot. 
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5. CONCLUSIONS 

In this work, we report preliminary results on using an ensemble 

of machine learning/artificial intelligence algorithms to provide 
an updated map at ~100 x 100 m resolution of aboveground 

biomass. Aboveground biomass is defined as the mass, 

expressed as oven-dry weight of the woody parts (stem, bark, 
branches, and twigs) of all living trees, excluding stumps and 

roots. The mapped aboveground biomass information is to be 

used for the further definition of fire models across Europe. For 
this reason, it is important to have the values of AGB as much 

accurate as possible. Further work will see the extraction of the 

fraction of biomass from thinner components (branches, 

foliage), which is a critical variable in fire simulations, as well 
as the estimation of canopy bulk density and other factors 

required to support the definition of fuel types.     
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