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ABSTRACT: 
 

Backpack LiDAR systems are gaining popularity due to their rapid data acquisition, portability, and cost-effectiveness. However, using 

backpack LiDAR in forest poses challenges, such as GNSS signal attenuation under the canopy, leading to inaccurate trajectory 

estimates and misregistered point clouds. This paper aims at presenting a novel method that addresses this challenge by leveraging the 

integrated scans (IS) concept to enhance point cloud quality for automated forest inventory. The proposed method for forest inventory 

using ISs consists of four key steps: (i) Integrated scans (IS) generation, (ii) feature extraction, matching, and tracking, (iii) trajectory 

enhancement, and (iv) tree biometric extraction. Firstly, IS point clouds are generated based on the initial GNSS/INS trajectory. 

Secondly, reliable forest features such as tree trunks and ground patches are extracted, matched, and tracked across ISs. These features 

are then utilized in the trajectory enhancement step, where a non-linear Least Squares Adjustment (LSA) technique is used to minimize 

discrepancies among the features to enhance the trajectory. The resulting point clouds, based on the improved trajectory, are used to 

extract tree biometric information. The proposed method was evaluated using two distinct datasets collected with different systems. 

The evaluation results, both qualitatively and quantitatively, validate the effectiveness of the proposed method, showcasing its potential 

for fine-scale forest inventory applications. 

 

 

1. INTRODUCTION 

1.1 Significance and Motivation 

Forests play a pivotal role as a vital natural resource, offering a 

wide range of ecological, economic, and social benefits. The 

forest industry significantly contributes to the economy of many 

countries, generating employment opportunities, income, and 

valuable products like timber and paper (Baldrian et al., 2023). 

Forest inventory holds immense importance in achieving these 

objectives, as it enables forest managers and policymakers to 

acquire precise and comprehensive information about forest 

resources. This includes vital aspects such as the volume and 

density of trees, as well as ecological parameters like biodiversity 

and carbon storage (Maitreya et al., 2023). Accurate estimation 

of tree volume and biomass is particularly crucial, as inaccuracies 

can lead to adverse consequences such as overharvesting or 

underutilization of forest resources. These scenarios result in 

economic losses and environmental damage (Shu et al., 2023). 

 

Traditionally, forest inventory has relied on manual methods, 

which are both time-consuming and labor-intensive. As a more 

efficient alternative, remote sensing technologies like LiDAR 

have emerged as valuable tools for conducting forest inventory 

(Beland et al., 2019). Among these technologies, airborne 

LiDAR has been widely utilized to gather crucial information on 

forest structure and biomass estimation (Kelly and Di Tommaso, 

2015). However, its resolution may not be sufficient to extract 

detailed biometric information such as Diameter at Breast Height 

(DBH) and height. Studies conducted by Novotny et al. (2021) 

have pointed out the limitations of airborne LiDAR in accurately 

deriving DBH measurements. To overcome these limitations and 

acquire fine-scale biometric information, researchers have 

shifted their focus to Uncrewed Aerial Vehicle (UAV) LiDAR 

systems. UAV LiDAR offers higher resolution and enhanced 

flexibility in capturing detailed forest information, as 

demonstrated by Corte et al. (2020). However, even with 

improved resolution, UAV LiDAR may still have limitations 

when it comes to fine-scale forest inventory. To tackle this 

challenge, alternative technologies like portable (either handheld 

or backpack) LiDAR systems have emerged. These systems are 

cost-effective and capable of providing high-resolution point 

clouds within a forest (Su et al., 2020). Among the portable 

LiDAR systems, the backpack LiDAR is particularly popular and 

represents a viable alternative for forest inventory applications, 

enabling more accurate and efficient data collection compared to 

traditional manual methods.  

 

1.2 Problem Statement and Research Objectives 

A backpack LiDAR usually is composed of a laser scanner to 

collect 3D points, a camera(s) for image acquisition, and a Global 

Navigation Satellite System (GNSS) aided by Inertial Navigation 

System (INS) to provide the positional and orientational 

parameters of the system. In a such a system, the mathematical 

model for determining the 3D coordinates of an object point in 

the mapping frame 𝑟𝑜
𝑚 is expressed by Equation (1) (Zhou et al., 

2023): 

 

𝑟𝑜
𝑚(𝑡) = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑙𝑢

𝑏 + 𝑅𝑏(𝑡)
𝑚 𝑅𝑙𝑢

𝑏 𝑟𝑜
𝑙𝑢(𝑡)

 (1) 

 

where, variables are defined as follows: 

• 𝑟𝑏(𝑡)
𝑚  and 𝑅𝑏(𝑡)

𝑚 represent the position and orientation 

information of the GNSS/INS body frame coordinate 

system relative to the mapping frame at the time of 

scanning (t). 
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• 𝑟𝑙𝑢
𝑏  and 𝑅𝑙𝑢

𝑏 denote the lever arm and boresight rotation 

matrix that establish the relationship between the laser 

unit system and GNSS/INS body frame. 

• 𝑟𝑜
𝑙𝑢(𝑡)

 is derived from raw LiDAR measurements at the 

time of firing and represents the position of the laser 

beam footprint relative to the laser unit frame. 

 

Under ideal conditions with no noise, where all parameters in the 

right-hand side of the Equation (1) are accurately known, the 

coordinates of objects in the mapping frame can be calculated 

with high precision, ensuring no misalignment between points. 

Consequently, an object point observed at different times would 

maintain the same coordinates in the mapping frame. However, 

in environments with a weak GNSS signal, such as densely 

forested areas, the accuracy of point cloud generation is 

compromised, leading to misalignments. This is particularly 

pronounced as the position and orientation of the GNSS/INS 

body frame (𝑟𝑏(𝑡)
𝑚  and 𝑅𝑏(𝑡)

𝑚 ) rely on GNSS and INS 

measurements. This paper proposes a novel solution for this 

problem aimed at enhancing trajectory accuracy and generating 

high-quality point clouds with minimized misalignments. The 

resulting point clouds will be utilized in forest inventory. 
 

1.3 Review of Existing Literature 

To address the aforementioned problem, researchers have 

explored various approaches, particularly focusing on 

Simultaneous Localization and Mapping (SLAM) aided 

positioning solutions. For instance, Tang et al. (2015) utilized 

point clouds from a small-footprint LiDAR to estimate the 

orientation parameters of the system trajectory. Their SLAM/INS 

trajectories yielded superior 2D tree stem positions compared to 

GNSS/INS trajectories. However, their approach only estimated 

orientational parameters, neglecting positional trajectory 

estimation. Additionally, while the achieved accuracy was 

suitable for tree stem localization, it fell short in accurately 

estimating tree biometric information such as DBH. Qian et al. 

(2016) enhanced the positional accuracy of their LiDAR-based 

SLAM by incorporating heading angles and velocities from 

GNSS/INS. Their method showed promising results in feature-

rich forests but might not perform well in open forests with sparse 

trees. Kukko et al. (2017) proposed a trajectory enhancement 

strategy that involved generating point clouds from a short time 

period using the initial GNSS/INS trajectory, and correcting the 

trajectory based on centroids of the tree trunk slice at 3–3.5 m 

height from ground. Relying solely on tree trunk centroids in 

their method, may result in weak vertical control for trajectory 

enhancement. Chiella et al. (2019) employed Attitude and 

Heading Reference Systems (AHRS) and 2D LiDAR odometry 

in conjunction with GNSS information. They derived the 

platform's motion through a scan matching algorithm based on 

tree trunks. However, their method was designed for 2D LiDAR 

and cannot handle 3D LiDAR data.  

 

Su et al. (2020) developed a GNSS-free BP LiDAR system with 

two LiDAR units. They implemented a LiDAR-based SLAM 

approach to estimate the trajectory's position and orientation 

parameters and extract tree biometric information in forest. The 

reported accuracy for estimated height and DBH were 2.24 m and 

0.03 m, respectively. However, their LiDAR-SLAM strategy 

required manual corrections in complex natural forests. 

Similarly, Ramezani et al. (2022) proposed the Wildcat strategy 

for trajectory estimation, which relied solely on the Inertial 

Measurement Unit (IMU) information of a robot equipped with a 

LiDAR system. Their method consisted of two key modules: 

Wildcat odometry and pose-graph optimization (PGO). The 

Wildcat odometry module integrated asynchronous IMU and 

LiDAR measurements to address map distortion caused by 

sensor motion. The PGO module optimized the robot trajectory 

and environment map globally. While the GNSS-free methods 

provided reasonable accuracy, the resulting point clouds were not 

georeferenced, making multi-temporal data acquisition and forest 

monitoring challenging. Zhou et al. (2023) proposed a state-of-

the-art method that extracted tree trunks and ground patches from 

LiDAR scans and enhanced the trajectory by minimizing 

discrepancies between corresponding features. Although they 

reported promising results, their method was tested primarily on 

plantation forests and may not be feasible for natural forests with 

dense canopy. Additionally, their feature extraction relied on 

single LiDAR scans, which poses challenges such as sparsity of 

the point clouds. 
 

1.4 Contribution 

Based on the findings from previous studies, it is evident that 

there is still potential for improving the accuracy and efficiency 

of using backpack LiDAR for forest inventory in challenging 

environments with weak GNSS signals.  

 

It should be noted that while the absolute accuracy of the 

GNSS/INS trajectory may be unreliable in such environments, its 

relative accuracy over a short period remains reasonable. 

Therefore, in this paper, we propose a novel strategy that utilizes 

IS point clouds to extract features for trajectory enhancement. An 

IS point cloud refers to the combination of multiple LiDAR scans 

acquired within a short time period. In this context, each LiDAR 

scan refers to the points from a full revolution of the laser beams. 

The utilization of IS offers several advantages, primarily 

enabling the extraction of more reliable features compared to 

using a single LiDAR scan. This addresses the challenge of 

feature extraction from LiDAR point clouds in complex 

environments. Additionally, our methodology introduces an 

automated tree trunk extraction process from LiDAR point 

clouds. Furthermore, we investigate the automated extraction of 

tree biometric information such as DBH and height for fine-scale 

forest inventory in natural forest settings.  

 

2. METHOD 

The flowchart presented in Figure 1 depicts the proposed strategy 

for fine-scale forest inventory using backpack LiDAR. It 

showcases the input components of individual LiDAR scans, 

GNSS/INS trajectory, and system calibration parameters, while 

the output of this strategy is the tree biometric information in the 

forest.  
 
 

 

Figure 1. Flowchart of the proposed method for fine-scale 

forest inventory from Backpack LiDAR point clouds  
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To accomplish this, the first step involves generating integrated 

scans by utilizing the initial GNSS/INS trajectory. Subsequently, 

reliable forest features are extracted, matched, and tracked across 

different integrated scans, constituting the second step. These 

extracted features are then fed into the third step, trajectory 

enhancement, where a Least Squares Adjustment (LSA) 

technique is employed to minimize discrepancies among features 

captured at different timestamps while considering the absolute 

and relative positional/rotational information provided by the 

GNSS/INS trajectory. The output of the third step is an enhanced 

trajectory that is utilized to generate the improved point clouds. 

The resulting point clouds are then used to extract tree biometric 

information.  

 

2.1 IS Generation 

The generation of IS point clouds involves combining multiple 

LiDAR scans within a defined time period. The IS length, or the 

number of scans, is a crucial parameter. Shorter IS lengths result 

in point clouds with reduced misalignment due to scans acquired 

closely in time. However, feature extraction may be less accurate 

due to limited coverage and low-density point clouds. Longer IS 

lengths improve feature extraction reliability with more 

comprehensive coverage but may increase misalignment and 

pose challenges for extraction. 

 

Through a trial-and-error process, it has been determined that 

using 100 scans as the IS length make the feature extraction and 

minimized misalignment. Considering that our LiDAR scanning 

rate is 10 scans per second, collecting 100 scans corresponds to a 

data acquisition duration of 10 seconds. Within this duration, the 

object points are assumed to have a reasonable alignment. Figure 

2 provides a visual representation of the resulting point clouds 

obtained from different IS length. By selecting an appropriate IS 

length, in this case, 100 scans, we aim to strike a balance between 

reducing misalignment and ensuring accurate feature extraction. 

Figure 2 visually demonstrates the resulting IS point clouds 

considering different IS lengths. The analysis of Figure 2 reveals 

that in the point cloud generated from a single LiDAR scan 

(Figure 2-a), forest features appear unclear and challenging to 

extract. Moreover, when using 7500 LiDAR scans (Figure 2-d), 

different versions of objects are observed, making object 

extraction a difficult task. However, when a limited number of 

scans are employed to generate point clouds (as depicted in 

Figure 2-b and 2-c), forest features such as tree trunks become 

more discernible. 

 

    
(a) (b) (c) (d) 

 

Figure 2. Generated point clouds of a Backpack LiDAR using 

different IS Length in a forest; (a) One scan, (b) 100 scans, (c) 

500 scans, (d)7,500 scans. 

 

2.2 Feature Extraction, Matching, and Tracking: 

The second step of the process focuses on the extraction, 

matching, and tracking of reliable features, specifically tree 

trunks and ground patches, across different ISs. Tree trunks are 

modeled as cylindrical features to provide horizontal control and 

ground patches are used as plane features to provide vertical 

control. To extract these features, initially, the modified Cloth 

Simulation Filter (mCSF) (Shin et al., 2023) is employed to 

derive a Digital Terrain Model (DTM) for each IS. Considering 

a 0.2m for bare-earth threshold, the points are then divided into 

above-ground and bare-earth points, which are utilized for tree 

trunk and ground patch extraction, respectively. 

 

2.2.1 Tree Trunk Extraction: The extraction of tree trunks 

from the above-ground point cloud relies on the fact that tree 

trunks exhibit a higher local density compared to their 

surroundings. Therefore, to extract tree trunks, a density image 

of the above-ground points is generated, considering a pixel size 

of 0.5m. Importantly, the density image generation process 

involves the utilization of points within the height range of 0.5m 

to 5m. Once the above-ground points have been normalized using 

the DTM obtained from the mCSF, these points are extracted. 

The peak points on this image indicate the potential locations of 

tree trunks. This study suggests employing the Otsu's 

thresholding method (Otsu, 1979). However, tree trunks within 

an IS may exhibit different densities. Hence, an iterative 

technique is utilized to identify all peak points on the density 

image. In each iteration, a threshold is determined using the 

Otsu's thresholding technique to detect high-density points, 

which correspond to the peak points. For each peak location, a 

3D line is fitted to the points to determine the orientation of the 

tree. Then, all points within a predefined threshold distance (e.g., 

0.5m) from the fitted line are selected as tree trunk points. It is 

important to note that false positive tree trunks are identified by 

examining the continuity of the points along the height direction. 

Continuity is assessed by slicing the points in the Z direction and 

calculating the Coefficient of Variation (CV) index, as shown by 

Equation 2: 
 

CV =  
𝑆𝑡𝑑SP

𝑀𝑒𝑎𝑛SP
   (2) 

 

Here, Stdsp and Meansp represent the standard deviation and mean 

of the number of points in the slices, respectively. A lower CV 

value indicates similar numbers of points in the slices, confirming 

the true tree trunk. Conversely, a higher CV value suggests 

discontinuity, indicating a false positive tree trunk. In this 

research, a slice interval of 0.25m is considered. Additionally, 

unwanted points, such as branch points, are eliminated by fitting 

a circle to all extracted tree trunk points and employing an outlier 

removal technique. The Interquartile Ranges (IQR) method is 

utilized during the outlier removal step (Vinutha et al., 2018). 

Figure 3-a illustrates the extracted tree trunk feature from a 

sample of integrated scans. Moreover, to address the issue of 

over-segmentation during tree extraction, a merging operation is 

applied to close trees with a distance of less than 0.5m. The 

selection of this value can be based on the minimum distance 

observed between trees in the specific area.    

 

2.2.2 Tree trunks matching and tracking: Once all tree 

trunks are extracted from the ISs, they are then matched in 

successive ISs based on their spatial and orientation proximity. 

In other words, if the distance between tree locations in 

successive ISs is less than the proximity threshold, and the angle 

between their fitted line is less than an orientation threshold, they 

are considered as matched trees. Here, a 0.7m and a 10o values 

were used as the spatial and orientation thresholds, respectively. 

The parameters were carefully chosen through a trial-and-error 

process. It is noteworthy to mention that the orientation 

thresholds contribute to ensuring that each section of the v-

shaped tree trunk is extracted as an individual feature. Detecting 

matched trees between consecutive ISs, the relative 2D 
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transformation parameters are obtained. This is an iterative 

process where matched tree trunks are used to refine the relative 

transformation parameters, which in turn are used for the next 

iteration of the tree trunk matching. Eventually, tree trunks can 

be tracked in all ISs.   

 

2.2.3 Ground Patch Extraction: A ground patch is defined 

as a small cluster of neighboring points within a given search 

radius (e.g., 1 m) at a known location on the ground surface. The 

points of a ground patch are used as plane feature. The ground 

patches are extracted from the bare-earth point clouds generated 

by the mCSF. To determine the locations of the ground patches 

in different ISs, a grid of seed points is initially generated across 

the area, with a specified interval grid size (e.g., 3 m). The initial 

seed points' locations are used to extract ground patches from the 

first IS. However, to establish the corresponding ground patch 

locations in the subsequent ISs, the transformation parameters 

between consecutive ISs, which are obtained during the “tree 

matching and tracking” step, are utilized. This enables the 

transfer of seed point locations from one IS to the next, and this 

process continues until the seed point locations in the last IS are 

determined. With the seed point locations available for all ISs, 

ground patches are then extracted from the bare-earth point 

clouds. Figure 3-b showcases an example of the extracted ground 

patches from a sample IS. 

 
 

 
(a) 

 
(b) 

Figure 3. Extracted features from a sample IS. (a) the sample IS 

colored by height; (b) extracted tree trunk and ground patches 

colored by feature ID. 

 

It is important to mention that in order to eliminate noisy points 

from the ground features, a plane is fitted to each ground patch, 

and points with a distance larger than 0.1m from the fitted plane 

are removed. Furthermore, a threshold for the number of points 

within each ground patch is considered to discard small ground 

patches. The ground patches close to the trajectory usually 

include so many redundant points. Threfore, a downsampling 

procedure for such ground patch is helpful to improve the 

efficiency.  

 
 

2.3 Trajectory Enhancement  

After extracting all tree trunks and ground patches, eventually, 

they are fed into a trajectory enhancement procedure to improve 

the quality of the GNSS/INS trajectory and point cloud 

alignment. This enhancement method leverages LSA to 

determine optimal values for positional and orientational 

parameters of the sensor at each timestamp. The optimization 

process involves minimizing the normal distance between 

LiDAR points and corresponding parametric models for 

cylindrical and planar features. It is important to note that this 

paper does not delve into the detailed description of the 

optimization framework. However, a general description of this 

step is described in this subsection. Interested readers are 

encouraged to refer to (Zhou et al., 2023) for more 

comprehensive insights into the LSA-based trajectory 

enhancement using cylindrical and planar features.  

 

Equation (1), which represented the fundamental point 

positioning equation, is used as the basis for this LSA-based 

optimization framework. By considering the estimated 

corrections to positional and orientation parameters as 𝛿𝑟𝑏(𝑡)
𝑚   and 

𝛿𝑅𝑏(𝑡)
𝑚 , Equation (3) defines the corrected point position: 

 

𝑟𝑜
𝑚(𝑡)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓(𝑟𝑏(𝑡)

𝑚 , 𝛿𝑟𝑏(𝑡)
𝑚 , 𝑅𝑏(𝑡)

𝑚 , 𝛿𝑅𝑏(𝑡)
𝑚 , 𝑟𝑙𝑢

𝑏 , 𝑅𝑙𝑢
𝑏 , 𝑟𝑜

𝑙𝑢(𝑡)
),  (3) 

 

The optimization framework simultaneously determines optimal 

values for trajectory position and orientation parameters, as well 

as parameters describing the feature models. Cylindrical models 

in 3D space are defined by three direction parameters 

(𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧), three location parameters representing a point on the 

axis (𝑥0, 𝑦0, 𝑧0), and a radius (r) while planes are defined by four 

parameters: three normal vector parameters (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) and the 

distance to the origin (d). Additionally, since the obtained 

trajectory is relatively smooth, it undergoes downsampling based 

on a predefined time interval. The down-sampled trajectory 

points, referred to as reference points, are then used to interpolate 

other trajectory points. For this research, a time interval of 1 

second and a 2nd order polynomial interpolation method using 

three neighboring reference points are applied for downsampling 

and interpolation, respectively. Once the enhanced trajectory is 

obtained, new point clouds generated from the area are utilized 

for extracting tree biometric information. 

 

2.4 Tree Biometric Information Estimation 

In this research, DBH and tree height are extracted as two 

significant biometric information, in addition to tree location. 

This step initiates with a statistical noise removal procedure 

aimed at mitigating the impact of noisy points on the estimation. 

Subsequently, the method described in Section 2.2.1 is employed 

on the enhanced point clouds to extract the tree trunks. Then, 

points within the height range of 1.3 to 1.5 m are selected from 

each tree trunk to estimate the DBH. This estimation is 

accomplished by fitting a circle to these points using the LSA 

method. It should be noted that the outliers are removed during 

the circle fitting. The center of the fitted circle serves as the tree's 

location, while twice the fitted radius is considered the estimated 

DBH. Once all tree locations have been determined, a Voronoi 

tessellation is employed to extract tree boundaries for height 

estimation (Safaie et al., 2021). In this case, the difference 

between the maximum and minimum Z coordinate of the points 

within the boundary of each tree is taken as the tree's height.  

 

3. EXPERIMENTS AND RESULTS 

3.1 Study Area and Sensor Specifications 

In this study, we conducted a comprehensive evaluation of the 

proposed forest inventory strategy using data acquired from 

Martell Forest Plot 4D, located in West Lafayette, Indiana, USA. 

The study area consists of a diverse range of tree species, 

including black oak (Quercus velutina), white oak (Q. alba), 

yellow poplar (Liriodendron tulipifera), ash (Fraxinus spp.), 

basswood (Tilia americana), and sugar maple (Acer saccharum). 

The forest comprises a mixture of large, mature trees, as well as 

young and vigorous small saplings resulting from a previous 
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regeneration event. The understory vegetation encompasses both 

native and invasive shrubs, covering a substantial portion of the 

study area. The average DBH for adult trees is approximately 300 

mm. For our study, we collected two datasets on October 19th, 

2022 (OCT22 dataset), and March 2nd, 2023 (MAR23 dataset) 

with 29- and 13-minutes collection time, respectively. Figures 4-

a and 4-c provide an overview of the selected test area and depicts 

the corresponding trajectories for each dataset. Furthermore, 

Figure 4-b offers a visual representation of the study area's 

interior during the collection of the first dataset, showcasing the 

presence of shrubs, young trees, and mature trees. 
 

 

Figure 4. Overview of the selected study area. (a) location of 

the plot4d of the Martell Forest in West Lafayette, IN; (b) study 

area’s interior during OCT22 dataset collection; (c) overview of 

the trajectories in OCT22 and MAR23 datasets. 
 

The datasets were collected using two in-house developed 

backpack LiDAR in our research group called CPT_VLP16HR 

and E2_HDL32E. Utilizing these systems, totally 440 and 423 

million points were collected for OCT22 and MAR23 datasets, 

respectively. The specifications of these systems are summarized 

by Table (1).  

 

3.2 Results 

Total number of scans in OCT22 and MAR23 datasets were 

17,400 and 7500, respectively. Therefore, considering 100 scans 

for the integrated scans length, 174 and 75 ISs were generated for 

processing these datasets. From each datasets the tree trunks and 

ground patches were extracted, matched, and tracked. The 

extracted features were fed into the trajectory enhancement step. 

Figure 5 shows part of the extracted cylindrical (tree trunks) and 

planer (ground patches) features before and after the optimization 

for the MAR23 dataset. As can be seen from this figure, the 

misalignment between the feature points are successfully 

removed. Table 2 presents a summary of the trajectory 

enhancement in both datasets.  

 

After implementing the trajectory enhancement, DBH and height 

of the trees in both datasets was estimated. Figure 6 presents a 

3D visualization of the extracted trees, with each tree depicted in 

a random color. The black color represents the 20cm section 

points used for circle fitting, while the fitted circles are 

highlighted in red.  

 

CPT_VLP16HR 

(OCT22 dataset) 

E2_HDL32E 

(MAR23 dataset) 
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Camera Model Sony α7R II Sony α6000 

Camera Type RGB Frame Camera RGB Frame Camera 

Focal Length 28 mm 16 mm 

Image Dimensions 7952 x 5304 pixels 6000×4000 pixels 

Pixel Size 4.50 μm 3.88 μm 

Wavelength Range 400-700 nm 400-700 nm 
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LiDAR Model Velodyne VLP-16 HR Velodyne HDL 32E 

#Channels 16 32 

Field of View 
Horizontal: 360° 

Vertical: -10° to +10° 

Horizontal: 360° 

Vertical: -30.67° to +10.67° 

Range 100 m 100 m 

Ranging Accuracy ±3 cm ±2 cm (avg.) 

#Points/sec 300,000 695,000 
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GNSS/INS Model SPAN-CPT PwrPak7-E2 
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n
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 6
0

s 
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Positional 

Horizontal  
1cm, 2cm, 23cm 1cm, 2cm, 17cm 

Positional 

Vertical 
2cm, 2cm, 11cm 2cm, 2cm, 6cm 

Rotational 

Roll/Pitch 
0.008°, 0.008°, 0.013° 0.005°, 0.005°, 0.005° 

Rotational 

Heading 
0.035°, 0.035°, 0.038° 0.01°, 0.01°, 0.012° 

Table 1. Technical specifications of the backpack LiDAR 

systems in OCT22 and MAR23 datasets. 

 
 

  
(a) (b) 

  
(c) (d) 

Figure 5. Part of the extracted tree trunk and ground patches 

used in the trajectory enhancement of the MAR23 dataset; Red 

line is the initial GNSS/INS trajectory, green line is the 

enhanced trajectory; Points are colored by feature ID. (a) and 

(c) before the trajectory enhancement; (b) and (d) after the 

trajectory enhancement. 
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Dataset OCT22 MAR23 

# ref. points 2,828 1,483 

# plane features 1568 903 

# cylinder features 1803 906 

# points 20,325,100 10,095,952 

factor variance ratio 1.017 0.7643 

C
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Statistics Mean Std Mean Std 

𝑿(m) -0.0087 0.6378 0.0337 0.5064 

𝒀(m) -0.0299 0.6891 -0.0056 0.2651 

𝒁(m) -0.0464 1.4298 -0.0571 0.5808 

𝝎(deg) 0.0009 0.0921 -0.0008 0.0119 

𝝋(deg) 0.0019 0.0847 0.0013 0.0118 

𝜿(deg) 0.0030 0.4018 0.0238 0.1099 

Table 2. Summary of the LSA-based trajectory enhancement in 

OCT22 and MAR23 datasets. 
 

 
Figure 6. Tree extraction and DBH estimation results using 

LSA-based circle fitting. Extracted trees are displayed in 

random colors, selected points for circle fitting are shown in 

black, and the fitted circles are highlighted in red.  
 

Figure 7 showcases the LSA-based fitted circles for three sample 

trees, displaying the inlier and outlier points in red and blue, 

respectively. This visualization demonstrates the successful 

removal of outliers from the data points, resulting in reasonable 

fitted circles. Furthermore, DBH and height heat maps are useful 

representation of a forest inventory data. Figure 8 shows the 

resulting heat map of the DBH and height of a small area of our 

study site using the MAR23 dataset.  
 

ID 29 115 86 

Top-view 

  
 

3D-view 

   

Side-view 
   

DBH (mm) 574 642 583 
 

Figure 7. LSA-based circle fitting results for three sample trees 

in the MAR23 dataset. Fitted circles is depicted in black, inlier 

points are marked in red and outlier points are indicated in blue. 
 

3.3 Accuracy Assessment  

To assess the performance of the proposed strategy for fine-scale 

forest inventory using backpack LiDAR, both qualitative and 

quantitative evaluations were conducted. In the qualitative 

evaluation, the enhanced point clouds obtained after trajectory 

enhancement were compared to the point clouds generated using 

the GNSS/INS trajectory. In addition, the generated point clouds 

from a commercial backpack LiDAR system (Hovermap, 

https://emesent.com), which collected data through the same 

trajectory as the MAR23 dataset, were used in the evaluation. 

Figure 9-a displays a side-view of the generated point clouds for 

a small profile of the study area and the top-view of a 20cm 

section of points based on the initial GNSS/INS of the MAR23 

dataset. The misalignment between points is clearly seen in this 

Figure. Also, the improved point clouds for both datasets and the 

commercial backpack LiDAR are shown in Figure 9-b, 9-c, and 

9-d. These figures clearly demonstrate the successful removal of 

misalignment between tree trunk points, resulting in reasonable 

tree trunk shapes. 
  

 
 

 
(a) 

 
 

 
(b) 

 

Figure 8. Individual tree locations colored by DBH and height: 

(a) estimated DBH; (b) estimated height. 
 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

 

Figure 9. Qualitative evaluation of the improved point clouds; 

Left: side-view of a small area colored by height. Right: top-

view of a 20cm section points in the same area. (a) generated 

point clouds using the initial GNSS/INS trajectory; (b) 

improved point clouds in OCT22 dataset; (c) improved point 

clouds in MAR23 dataset; (d) generated point clouds by a 

commercial backpack LiDAR used in the same trajectory of the 

MAR23 dataset. 
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To assess the quantitative performance of the point clouds, the 

estimated DBH derived from the improved point cloud data was 

compared against manually measured ground truth values in the 

reference area, represented by a black square in Figure 4. In this 

area, the DBH of 63 trees was measured manually using a tape 

measure, while their heights were estimated from UAV LiDAR 

point clouds collected in the same day of the OCT22 dataset. By 

comparing the estimated DBH and height with the reference data 

values, we calculated the mean, standard deviation, and Root 

Mean Square Error (RMSE) of the differences for each dataset, 

as summarized in Table 3. 
 

 
DBH (mm) Height (m) 

Mean Std RMSE Mean Std RMSE 

OCT22 -26.7 23.2 35.3 -0.5 0.6 0.8 

MAR23 4.8 27.0 27.4 -1.0 0.5 1.1 

Commercial 

Sensor 
-3.1 17.7 18.0 -0.5 0.3 0.5 

Table 3. Accuracy assessment of the estimated DBH and 

heights using the enhanced point clouds. 

 

As can be seen from Table 3, the MAR23 dataset produced more 

accurate results compared to the OCT22 dataset. This superiority 

can be attributed to three main reasons. Firstly, when examining 

Figure 4, it becomes apparent that the trajectory of the MAR23 

dataset had four loops, which potentially facilitated better 

adjustment and control compared to the trajectory of the OCT22 

dataset. Secondly, the MAR23 dataset is a leaf-off dataset, 

meaning that the GNSS signal is stronger compared to the 

OCT22 dataset. As a result, the initial GNSS/INS trajectory 

quality in the MAR23 dataset is higher than that of the OCT22 

dataset. This higher quality trajectory serves as a foundation for 

more accurate data processing and analysis. Additionally, the 

density of the points collected by the E2_HDL32 backpack 

system used in the MAR23 dataset is double that of the 

CPT_VLP16 system used in the OCT22 dataset. Therefore, in 

addition to the greater number of observations during the 

trajectory enhancement using the LSA method, the higher point 

density in the MAR23 dataset contributes to more accurate 

estimation of the DBH. On the other hand, the height information 

used as a reference in this study was obtained from UAV data 

collected on the same day as the OCT22 dataset, during the leaf-

on season. The time disparity between the MAR23 and the 

reference datasets might explain the higher values of RMSE and 

Std of the height estimation errors of this dataset in Table 3. 

 

4. DISCUSSION 

4.1 Processing Time 

The proposed forest inventory strategy was implemented in C++ 

and Python environments. The feature extraction, matching, and 

tracking steps, as well as tree biometric information extraction, 

were implemented in Python while the IS generation and 

trajectory enhancement steps were developed in C++. The code 

was executed on a computer with an Intel(R) Xeon(R) W-2133 

3.60GHz CPU and 64GB of RAM. The processing time for the 

OCT22 and MAR23 datasets was approximately 5.5 and 4.5 

hours, respectively. It is important to note that the LiDAR 

scanner of the E2_HDL32E sensor used for collecting the 

MAR23 dataset is the Velodyne HDL32E, which is a 32-channel 

LiDAR. On the other hand, the OCT22 dataset was collected 

using a 16-channel sensor. As a result, the number of points 

collected by the MAR23 dataset's sensor would be twice that of 

the OCT22 dataset's sensor for the same period. This explains 

why the processing time for both datasets is close, even though 

OCT22 dataset having a longer data duration. It is worth 

mentioning that the most time-consuming part of our 

implementation is the trajectory enhancement, where millions of 

observations are used to optimize unknown parameters using a 

non-linear LSA method. The processing time of this step was 4 

and 3 hours for OCT22 and MAR23 datasets, respectively. 

 

4.2 Parameter Setting 

Several parameters were carefully selected and used in this 

strategy for fine-scale forest inventory. For instance, the 

integrated scan length was set to 100 scans, which represents 

approximately 10 seconds of data. Increasing this parameter 

would lead to fewer ISs being generated and reduce processing 

time. However, it would also result in increased misalignment 

between object points. Consequently, the location and orientation 

of the extracted tree trunks over ISs may undergo significant 

changes, potentially causing the algorithm to fail in matching 

trees between consecutive ISs. Furthermore, the proximity and 

orientational thresholds were predefined as 0.7m and 10o, 

respectively. Modifying these thresholds to larger values may 

lead to incorrect matches between closely located trees and under 

segmentation of tree-trunk features. Conversely, smaller values 

may cause failing in matching corresponding trees in successive 

scans and lead to an over-segmentation issue, where the tree 

trunks are labelled several times excessively. Figure 10 

demonstrates two sample matching and tracking results. In 

Figure 10-b, it is observed that a tree trunk is extracted as two 

distinct features. Nevertheless, due to the relatively lower number 

of these features compared to the successful matching and 

tracking results, the final enhanced point clouds show promising. 
 

Sample 1 Sample 2 

Initial Enhance Initial Enhanced 

   
 

(a) (b) 

Figure 10. Sample tree trunk matching and tracking results. (a) 

Successful matching results. (b) Over-segmentation issue 

sample 

 

During the tree trunk extraction process, a pixel size of 0.5 m was 

used to generate the density image. This value was determined 

based on the minimum distance between trees in the area under 

consideration. While a smaller value may exacerbate the over-

segmentation problem, the subsequent merging step 

implemented after tree trunk extraction effectively addresses this 

issue.However, it is worth noting that a smaller value would 

increase computational costs. Conversely, a larger value may 

cause an under-segmentation problem, where tree trunks are not 

adequately separated. Besides, merging close trees with a 

distance of less than 0.5m to tackle the over-segmentation 

problem may not work well in younger stands. However, the 

results obtained from tree trunk extraction across multiple ISs 

during the feature extraction and tree biometric extraction steps 

demonstrated the reliability of this selected value for tree 

extraction from backpack LiDAR point clouds in natural forest 

areas. 

 

4.3 Challenges and Future Works 

One of the primary challenges encountered in the trajectory 

enhancement step is the relatively slow processing speed related 

to the data collection time. While the method shows promise 

when compared to manual forest inventory, there is still room for 
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improving its efficiency. Downsampling the features of the initial 

integrated scans can be explored to enhance speed, albeit at the 

cost of potentially reducing the number of observation points. 

 

The mCSF algorithm plays a crucial role in distinguishing 

between bare-earth and above-ground points. Any error in this 

algorithm can result in incorrect normalization, leading to the 

extraction of different sections of tree trunks from different 

integrated scans. Furthermore, in cases where no ground points 

are present, the lower portion of the measured tree trunk might 

be erroneously identified as bare-earth points. Therefore, in our 

implementation, we disregard ground patches located on a tree 

trunk. 

 

Another challenge of the proposed algorithm is the occurrence of 

under-segmentation and over-segmentation errors during tree 

trunk extraction, matching, and tracking. Although these errors 

comprise less than 0.5% of the extracted features and can be 

disregarded, they can still be detected and eliminated from the 

features to improve accuracy. 

 

5. CONCLUSIONS 

This paper presents a novel strategy for fine-scale forest 

inventory utilizing backpack LiDAR point clouds. The proposed 

method incorporates tree trunks and ground patches extraction, 

matching, and tracking techniques across integrated scans. The 

effectiveness of the approach was evaluated using two datasets 

collected by different sensors and through distinct trajectories 

within a natural forest area. The evaluation, both qualitatively 

and quantitatively, demonstrated notable advancements in terms 

of trajectory and point cloud quality, as well as the accuracy of 

estimated tree biometrics. 

 

One significant contribution of this paper is the utilization of IS, 

which enables reliable extraction of forest features from 

backpack point clouds. However, it is acknowledged that there is 

room for improvement in terms of processing efficiency. Future 

work will focus on enhancing the quality of extracted features 

between integrated scans to further refine the results. 

Additionally, exploration of extracting additional features such 

as tree branches will be undertaken to expand the capabilities of 

the proposed method. 
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