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ABSTRACT 

Accurately classifying foliage and non-leaf components in point clouds is essential for remote sensing forest applications. Existing 
methods rely on radiometric attributes or local geometric features, often requiring time-consuming manual labelling. In this paper, we 
propose a statistical approach using flexible thresholds determined based on tree-level geometric features. Selected features (local 
anisotropy, curvature, linearity, first principal component, verticality, and sphericity) have shown robustness in earlier studies. 
Threshold values are identified as points of inflection in the fitted distributions for each tree. Our method requires only two parameters 
and was tested with manually labelled Terrestrial Laser Scanning (TLS) data and non-labeled data from an oblique and above canopy 
setup (Permanent LiDAR scanner setup). We tested two boreal tree species, Scots Pine, and silver birch, with 28 trees in total (14 trees 
for each species) using two data sources. Compared to two alternative methods (namely, fixed thresholding and CANUPO), our 
approach consistently outperforms in terms of recall. We achieved an average overall accuracy of 85%, recall of 88.5%, precision of 
83%, and f1 score of 85%. Visually assessing oblique and above canopy results, our algorithm effectively captures tree structures. Our 
statistical approach provides an effective solution for foliage and non-leaf separation, with processing times of less than five minutes 
for individual tree point clouds containing up to 2 million points and no need for extensive manual labelling or parameter adjustments.  

1. INTRODUCTION

Tree architecture, specifically the arrangement and shape of 
branches and the spatial distribution of leaves, plays a significant 
role in tree photosynthesis, evapotranspiration, and the storage of 
carbon and water in forest ecosystems (Lau et al., 2018). 
Understanding the relationship between tree architecture and the 
physiological function of trees requires quantifying the variation 
in tree architecture across different species (Disney, 2018). 
However, manual measurements for accurate quantification of 
tree architecture are challenging and time-consuming. 

Recent advancements in laser scanner technology have enabled 
the capture of highly detailed three-dimensional (3D) point 
clouds that provide a comprehensive representation of tree 
structures. This is especially the case for Terrestrial Laser 
Scanning (TLS) tree point cloud acquisitions, as these point 
clouds offer opportunities for quantitative analysis of specific 
tree architecture features, such as branching structures and stem 
curves. However, before reconstructing quantitative tree models 
and estimating canopy gap fraction and leaf area index from laser 
scanning data, it is essential to classify the point clouds by foliage 
from non-leaf components. This separation step is also critical for 
various forest ecology applications, including characterizing tree 
growth and estimating ecological parameters related to gas 
exchange and net primary production (Côté et al., 2009). Despite 
the increasing importance of foliage and leaf separation from 
LiDAR data, achieving accurate, efficient, and generalizable 
results remains a challenging task (Moorthy et al., 2019; Sun et 
al., 2021). 

In recent years, extensive research has been dedicated to 
addressing the challenge of separating foliage and leaves from 
LiDAR data, leading to the development of various approaches 
(Hui et al., 2021, Wan et al., 2021, Xi et al., 2020). Typically, 
foliage and leaf separation is performed on a point or segment 

level using radiometric, geometric features, or a combination of 
both (see, for example, Wan et al., 2021).  

Radiometric features primarily rely on the hardware used, which 
depends on wavelength and reflectance response of the specific 
LiDAR scanner, which is influenced by the sensor-target 
geometry. The fundamental concept is that the optical properties 
of different objects or components exhibit significant variations 
based on the operating wavelength of the LiDAR system. While 
employing multi- or dual-wavelength equipment may seem 
promising, the spectral properties of objects, such as stems, 
branches, and leaves, can vary considerably (Danson et al., 
2018), introducing uncertainty. Furthermore, it is important to 
note that radiometric features are specific to the sensor and the 
environment in which the data is collected 
. 
Many existing approaches utilize local geometric features to 
distinguish foliage from non-leaf components, as they provide 
valuable complementary information to the radiometric attributes 
measured by the scanner (Xu et al., 2007; Liang et al., 2012; 
Raumonen et al., 2013; Sun et al., 2021). More specifically, local 
geometric attributes exhibit distinct properties for foliage and 
non-leaf components of tree point clouds, such as linear branch 
structures, low curvatures for the stem, anisotropic (continuous 
surface patch) local neighbourhoods for stem and branch points, 
and relatively scattered local neighbourhoods for the canopy 
(Weinmann et al., 2014). Logically, these patterns can be used to 
efficiently classify the individual trees point cloud by foliage and 
non-leaf components.  

For instance, Wang et al. (2017) achieved an overall 
classification accuracy of over 96% for two tree species 
(Erytrophleum fordii and Betula pendula) by employing three 
supervised classification methods (Support Vector Machine, 
Random Forest, and Gaussian Mixture Model) that incorporated 
both geometric and radiometric features. Zhu et al. (2018) 
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reported accuracies of 83%, 84%, and 85.5% for conifer, 
broadleaf, and mixed plots, respectively, using Random Forest 
for wood and leaf separation in 10 multi-scan TLS plots. They 
computed both radiometric and geometric features at multiple 
scales selected through adaptive neighbourhood radius search.  
 
However, these are supervised approaches that require manual 
labelling of LiDAR point clouds for training which is time-
consuming and laborious. Additionally, these classification 
models struggle to extrapolate accurately to test data with 
different feature distributions than the training data.  
 
Unsupervised methods eliminate the need for manual labelling 
but often involve adjusting multiple parameters based on tree 
species and acquisition conditions. For example, Sun et al. (2021) 
employed a three-step filtering strategy with initial separation by 
intensity threshold, segmentation refinement using the kNN 
method based on geometric properties of the neighbourhood, and 
voxelization to improve segmentation through information on 
local connectivity and point density. They achieved an averaged 
Overall Accuracy, Kappa coefficient, and Matthews correlation 
coefficient of 95.5%, 0.8547, and 0.8627, respectively, using 
their method on 24 manually labelled willow trees (Salix 
babylonica Linn and Salix matsudana Koidz) obtained from three 
single-scan scene point clouds captured with a RIEGL VZ-400 
TLS scanner. Another recently published unsupervised method 
LeWoS combined graph-based segmentation with the utilization 
of effective geometric features, specifically verticality and 
linearity, which consistently demonstrate their reliability for the 
wooden components across various spatial scales (Wang et al., 
2020), yielding on average 91% classification accuracy on 61 
tropical trees.  It is worth noting that the majority of published 
supervised and unsupervised algorithms were tested only for TLS 
platforms. 
 
In the present study, an unsupervised method is proposed that 
was validated using Terrestrial Laser Scanning (TLS) data 
collected from silver birch and Scots Pine trees in a Finnish 
forest, with 10 trees of each species tested using manual point-
wise labelling. Furthermore, we compared our algorithm’s 
performance to two methods: 1) separation using fixed thresholds 
on selected geometric features across all trees; and 2) CANUPO 
method (Brodu and Lague, 2012). In addition to validation using 
TLS data, our algorithm has been tested by visual inspection on 
data collected using the permanent laser scanning setup (or PLS, 
as described by Campos et al. (2021)). The PLS was installed at 
30-m in an observation tower with 60-degree inclination, 
providing an oblique and above canopy perspective. The PLS 
was named as LiDAR Phenological Station (LiPhe). 
 
Our algorithm employs six salient geometric features that have 
been reported as robust for the application in the earlier studies 
(Di Wang, 2020; Sun et al., 2021). In our approach, we leverage 
Gaussian Mixture Model (GMM) fitting and curve fitting 
techniques to analyze the distribution of each geometric attribute 
for individual trees. The threshold values used for classification 
are identified as the infliction points of the fitted distributions, 
which are in relation to the centroids of the fitted Gaussian 
clusters. It is noteworthy that our algorithm is designed with only 
two parameters to adjust. For the trees tested in our study, we 
utilized the default parameter values, ensuring consistency across 
the experiments.  
 
It is noteworthy, that the proposed unsupervised approach also 
aims for cross-tree species data in addition to cross-data source 
applications. 
 

 
2. MATERIALS AND METHODS 

2.1. Manually labelled TLS data from Evo  
 
The TLS-scanned data was collected at an acquisition site 
situated in Evo (61.19°N, 25.11°E), Finland, which encompasses 
a forested area predominantly populated by three dominant 
boreal tree species: silver birch (Betula pendula), Scots Pine 
(Pinus sylvestris), and Norway Spruce (Picea abies). The sample 
plots were scanned in April/May 2014 using a terrestrial laser 
scanner, specifically the Leica HDS6100 model (Leica 
Geosystems AG, Heerbrugg, Switzerland). Other than placing 
the instruments, no other intervention was performed in the plots, 
such as clearing undergrowth vegetation.  
 
The data acquisition process involved utilizing a typical multi-
scan approach with five scanning. A full-field-of-view scan 
spanning 360° horizontally and 310° vertically was taken at each 
scanning position in a plot.  
 
The laser wavelength was 650-690 nm, and at a distance of 25 m 
from the scanner, the scanner was set to a point spacing of 15.7 
mm, and the angular increment was set to 0.036° in both the 
horizontal and vertical directions. Aside from the time spent 
setting up the equipment, a single scan took about 3 minutes.   
 
To ensure accurate data registration, artificial spheres (ATS Scan 
Reference System; ATS Ab, Gothenburg, Sweden) were placed 
inside and outside the plot, with approximately six spheres per 
plot. These spheres had a fixed radius of 198 mm and served as 
reference targets. 
 
The distribution of the spheres was carefully planned to ensure 
visibility from the centre scan, with all six spheres visible to the 
centre scan and at least three spheres visible to each of the other 
scans. To establish the precise locations of the spheres in a global 
coordinate system (EUREF-FIN), a Trimble R8 GNSS receiver 
with real-time kinematic correction and a Trimble 5602 DR200+ 
total station were employed. 
 
The GNSS receiver was utilized to define at least two reliable 
reference points, either inside or outside each plot, such as on a 
road or other open areas with optimal satellite visibility. A survey 
point was then established near the centre of the plot by 
measuring the distances and angles from the survey point to the 
reference points. Using the total station, the locations of the 
spheres were measured from the survey point. The average 
registration accuracy for all sample plots was determined to be 
2.1 mm, (Liang et al., 2018). The TLS trees were subjected to 
preliminary processing to remove the ground component and 
undergrowth vegetation. 
 
To establish the ground truth point-wise classification, human 
experts manually labelled individual trees selected for testing 
foliage and non-leaf separation methods, as depicted in Figure 1. 
In the present study, the proposed algorithm was specifically 
tested on silver birch and Scots Pine trees. This selection was 
made because Norway Spruce trees have a more complex 
branching architecture, posing a greater challenge for the 
separation of foliage from non-leaf components. From this point 
forward, the multi-scan TLS data will be referred to as TLS data. 
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Figure 1. TLS-scanned (A) silver birch and (B) Scots Pine trees 
from Evo manually labelled into foliage (yellow) and non-leaf 
(brown) components used for testing flexible threshold 
classification method 
 
2.2. LiPhe dataset 
 
The FGI Lidar Phenology station (LiPhe) station is located within 
the Hyytiälä forest research station in southern Finland (latitude 
61°51’N, longitude 24°17’E). The station is mounted at the top 
of a 35-meter-high tower at 30m height, housed within a standard 
cargo container (Campos et al., 2021). This location allows the 
scanner to monitor an area approximately measuring 263 m × 169 
m. The scanned forest area predominantly consisting of 
coniferous trees commonly found in the boreal forests of Finland. 
The primary tree species in the test area include Scots pine (Pinus 
sylvestris) and Norway spruce (Picea abies), along with 
deciduous silver birch (Betula pendula), which are the three 
dominant tree species in Finnish forests. 
 

 
Figure 2. Monitored forest area by LiPhe within 100 m from the 
laser scanner system (transparent green) at the Hyytiälä research 
area 
 
Liphe is equipped with a RIEGL VZ-2000i laser scanner (Class 
1A) from RIEGL GmbH, Horn, Austria. The scanner is housed 
in a weather-protected hood, enabling continuous outdoor 
measurements even during harsh Finnish winters. The hood is 
tilted 60 degrees downwards using a custom-built frame to 
optimize the field of view (FOV) towards the forest, minimizing 
canopy occlusions. However, naturally, tree features that are not 
facing the scanner, such as certain parts of tree stems, may be 
occluded. The installation of the scanner above the canopy and 
the oblique scanning perspective, results in LiPhe station data 

having an intermediate acquisition geometry that lies between 
ground-based and aerial perspectives. 
 
To accurately capture daily and seasonal dynamics of trees, the 
scanner’s specifications were set to meet certain requirements. 
Firstly, it needed to spatially resolve neighboring points with a 
minimum spacing of 0.01 m at a range of 100 m. Secondly, the 
scanner was designed to scan the entire FOV with the necessary 
point resolution at least once per hour.  
 
The acquired LiDAR data acquired by LiPhe contains the point 
return number (ranging from 1 to 15), the number of returns (also 
ranging from 1 to 15), the intensity (expressed in dB), the scan 
angles (theta and phi measured in degrees), the reflectance (dB), 
the return pulse deviation (which measures pulse shape 
distortion), and the range (expressed in meters) (Campos et al., 
2021). For the purposes of this study, a single acquisition was 
considered, which was acquired in April 2020. All the trees 
selected for testing were located less than 50 m from the scanner. 
We randomly selected 4 silver birch and 4 Scots Pine trees for 
testing our algorithm with subsequent visual assessment. Norway 
Spruce has been excluded, because this tree species has a more 
challenging canopy architecture than silver birches and Scots 
Pines.  
 
2.3 Foliage and non-leaf classification 

In the present study, we propose an unsupervised foliage and 
non-leaf point cloud classification algorithm which contains only 
two parameters and is based on six saliant geometric features that 
have been identified as effective in previous research studies 
(e.g., Weinman et al., 2014; Di Wang, 2020; Sun et al., 
2021).Specifically, we perform 5 steps based on 3D individual 
tree point cloud input: 1) geometric feature extraction; 2) fitting 
Gaussian Mixture Model (GMM) with two components 
corresponding to foliage and non-leaf parts for some of the 
features; 3) detecting infliction points of the curve-fitted 
distributions of geometric attributes, specifically in the selected 
directions related to the GMM clusters identified in the previous 
step; 4) separating point cloud based on threshold values given 
by infliction points of geometric attributes; 5) final post-
processing with Density-based spatial clustering of applications 
with noise (DBSCAN) and removing clustered and isolated 
noise. The workflow of the algorithm is summarized in Figure 3. 
 

 
Figure 3. Workflow applied in this study for foliage and non-
leaf part classification from LiDAR-measured tree point clouds. 
GMM stands for Gaussian Mixture Model. 
 
The method contains two parameters associated with spatial 
scales: the number of nearest neighbours and radius of the 
neighbourhood, which is explained next. 
 
2.3.5 Feature extraction: Considering a point cloud 
consisting of N 3D points, we will assume a given value of 𝑘 ∈
ℝଷ. Each individual point in the point cloud is denoted as 𝑿 =
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 (X, Y, Z)୘ ∈  ℝଷ, and its local 3D structure is defined by the k 
nearest neighbors. To describe the local 3D structure around 
point 𝑿, we derive the 3D covariance matrix, also known as the 
3D structure tensor 𝑺 ∈ ℝଷ×ଷ which is a symmetric positive 
definite matrix. Consequently, the 3D structure tensor has three 
eigenvalues that are non-negative and correspond to an 
orthogonal system of eigenvectors. Without loss of generality, we 
further assume that the eigenvalues are ordered as follows: 𝜆ଵ ≥
 𝜆ଶ ≫  𝜆ଷ   
To calculate the geometric attributes, we normalize the 
eigenvalues 𝜆ଵ, 𝜆ଶ, 𝜆ଷ of the 3D structure tensor, denoting them 
as 𝑒ଵ, 𝑒ଶ, 𝑒ଷ  . These normalized and non-normalized eigenvalues 
are further utilized in the calculations of the geometric attributes 
as follows: 
 
Change of curvature: 𝐶𝜆 =  

𝑒

𝑒1+𝑒2+𝑒3

 ,   (1)  

Linearity:   𝐿𝜆 =  
𝑒1−𝑒2

𝑒1

 ,  (2)  

Anisotropy:  𝐴𝜆 =  
𝑒1−𝑒3

𝑒1

,  (3)  

Sphericity:   𝑆𝜆 =  
𝜆3

𝜆1

   (4). 

 
The remaining two features are based on a radial neighborhood 
of given size and the eigenvalues and eigenvectors associated 
with it. Verticality V is defined as the absolute value of the 
normal vector’s z component. To calculate the first principal 
component (PCA1), the 3D point neighbourhood is first 
transformed into a 2D coordinate system that corresponds to the 
directions of the most pronounced spatial variation in 2D, known 
as the principal component space. Finally, the PCA1 is defined 
as the magnitude of data variation in the main direction.  
We chose kNN=100 for TLS data and a range of scales (kNN 
ranging from 100 to 800 with a step of 50) for LiPhe data to be 
applied simultaneously for flexible thresholding. The 
neighborhood radius for verticality and PCA1 was set to 0.35 m. 
The spatial scales were chosen based on visual assessment as the 
foliage and non-leaf components were visibly separated by the 
selected features, but the scales remained relatively small to 
allow for fast processing. To compute kNN and radius-based 
geometric features, the Pyntcloud and jakteristics packages 
were used, respectively. 
 
Through visual inspection, we can observe the characteristic 
properties associated with each selected attribute and determine 
the range of values in the probability distribution that should 
correspond to foliage or non-leaf components, as depicted in 
Figure 4. 

 
Figure 4. Scots Pine with six salient geometric features selected 
for flexible thresholding separation of foliage and leaf component 
(kNN =100): 1) curvature; 2) linearity; 3) anisotropy; 4) 
verticality (radius = 0.35 m); 5) first principal component (PCA1, 
radius = 0.35 m); 6) sphericity. 
 

From Figure 4, we observe that the non-leaf part is characterized 
by relatively low curvature change and high anisotropy, 
indicating a resemblance to a continuous surface patch. 
Additionally, the branches have a high linearity, whereas the 
stem has a verticality close to 1, indicating a normal vector 
perpendicular to the z-axis. The principal component of the 
bottom part of the tree is also close to 1, suggesting that most of 
the data variation occurs in one direction. Furthermore, the 
canopy part, which consists of foliage clusters, displays relatively 
high sphericity, implying a spherical shape of the small clusters. 
 
2.3.2. Fitting GMM: Except for sphericity and linearity, all the 
features exhibit multi-modal distributions, as depicted in Figure 
4. Therefore, for linearity and sphericity, we omit the step of 
fitting a Gaussian Mixture Model (GMM). Regarding curvature 
change, we assume that the cluster with relatively low curvature 
primarily consists of non-leaf components, while the cluster with 
high curvature represents foliage. Similarly, for anisotropy, we 
assume that the cluster with low anisotropy corresponds to 
foliage, while the cluster with high anisotropy corresponds to 
non-leaf components. 
For verticality, we identify two clusters situated near opposite 
ends of the distribution range. We interpret the cluster with low 
verticality as representing foliage and the cluster with high 
verticality as representing non-leaf components. Consequently, 
we fit a GMM with two components in 1D for each selected 
feature to determine the centroids of the clusters. The centroids 
of the fitted clusters were used to constrain the ranges of 
threshold values identified in the following step. 
 
2.3.3. Curve fitting and Infliction point detection 
 
To estimate the probability density function of the feature 
distributions and obtain smoothed curves, we employ Kernel 
Density Estimation (Rosenblatt, 1956) using the seaborn library, 
see Figure 6D. 
 
The infliction points, which represent the transition from concave 
to convex behavior in the curve, are identified as the points where 
the second derivative of the fitted distribution curve changes its 
sign. These infliction points have been observed to yield effective 
separation in our manual testing with CloudCompare across 
different trees. 
 
For linearity and sphericity, we detect the infliction values 
bounded by the maximum of the distribution curve. However, for 
the remaining features, we utilize the centroids of the Gaussian 
clusters detected in the previous step to narrow down the range 
of values for identifying the infliction points. For instance, in the 
case of curvature change, we search for the infliction point within 
the range bounded by the centroid of the cluster with low 
curvature. Similarly, for verticality, we set the lower bound of the 
infliction point using the mean distance between centroids, while 
the upper bound is determined by the centroid of the cluster with 
high verticality. 
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Figure 5. Illustration of the infliction point separation (A) 
wooden component separated by infliction point threshold 
detected for normalized distribution of the geometric feature, (B) 
the point cloud remaining after separation, (C) manually labelled 
tree, (D) example of normalized fitted distribution of geometric 
attribute with infliction point detected. 
 
2.3.4. Flexible thresholds separation: Next, we separate the 
foliage from leaves based on thresholds identified at the previous 
step, with higher than threshold sphericity and lower than 
threshold curvature used for separating foliage, and the rest of 
thresholds used to separate the non-leaf parts. Figure 5 illustrates 
separation based on one of the chosen geometric features. 
 
2.3.5. DBSCAN postprocessing and denoising: Subsequently, 
we employ the DBSCAN algorithm (Ester et al., 1996) with a 
neighborhood threshold (ε) of 0.15 and a minimum number of 
samples of 20. This step ensures the connectivity of the separated 
non-leaf component. To further refine the results, we eliminate 
isolated and clustered noise based on the following criteria: a 
point should not be located farther than a threshold distance from 
its 20 nearest neighbors. The threshold distance is calculated as 
the mean distance from 20 nearest neighbors for all points, plus 
the standard deviation of the distance from 20 nearest neighbors 
multiplied by a factor of 1.7.  
 
2.5.6. Classification based on hard thresholds: Additionally, 
for comparison purposes, we perform a classification based on 
hard thresholds. In this approach, the same six geometric features 
used in the proposed flexible thresholding algorithm are utilized, 
but the threshold values are randomly selected from the 
distributions obtained using the flexible thresholding method and 
used for all the tested trees. The selected threshold values and 
their corresponding applications are summarized in Table 1. 
 
 
 
 

Geometric 
Feature 

Threshold value Application 

Linearity >0.75 Separating 
non-leaf part 

Anisotropy > 0.95 Separating 
non-leaf part 

Sphericity >0.05 Separating 
foliage part 

Curvature change <0.05 Separating 
non-leaf part 

Curvature change >0.13 Separating 
foliage part 

Verticality >0.99 Separating 
non-leaf part 

PCA1 >0.65 Separating 
non-leaf part 

Table 1. Threshold values for geometric features employed for 
classification based on hard thresholds. The symbols '<' and '>' 
indicate the separation approach, with '<' representing the 
selection of points with feature values lower than the threshold, 
and '>' representing the selection of points with feature values 
higher than the threshold. 
 
2.4 Validation process 

The classification procedure was validated using manually 
labelled TLS point clouds of 20 trees. Performance metrics such 
as Overall Accuracy (OA), F1 score, precision, and recall were 
employed. OA represents the percentage of correctly classified 
points, while the other metrics assess the number of correctly 
classified points in the foliage or non-leaf class (Number of 
Matches, NM) in relation to the total number of points identified 
as foliage or non-leaf (Defined Points, DP), relative to the total 
number of points in the non-leaf or foliage part in the manually 
labelled point cloud (Reference Points, RP): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒) =
ேெ

ோ௉
,     (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒) =  
ேெ

஽௉
,     (6) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
ଶ ∗ ௉௥௘∗ ோ௘

௉௥௘ା ோ௘
.    (7) 

 
These performance measures are computed as weighted averages 
for the foliage and non-leaf classes, considering the relative 
number of points in each class. A higher recall indicates that a 
greater proportion of the wooden part has been detected, while a 
higher precision suggests that there is less noise in the detected 
wooden part. 

3. RESULTS 

The results obtained using three methods: 1) hard thresholds on 
six geometric features for all the trees, 2) CANUPO, and 3) 
flexible thresholds identified for each individual tree, are 
reported below. 
 
3.1 Foliage and non-leaf classification for TLS data 

Subsequently, we conducted a comparative analysis of three 
classification algorithms to evaluate the performance of the 
proposed flexible thresholding algorithm on 20 TLS trees. The 
results, including Overall Accuracy (OA) and f1 scores, are 
summarized in Table 2, while recall (Re) and precision (Pre) 
values for 20 silver birches and Scots pines are presented in Table 
3. Since processing some of the trees with the CANUPO plugin 
failed, there are empty cells in Tables 2 and 3, respectively. 
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Tree OA (%) F1 score (%) Tree species 
H F C H F C 

1 49 74 63 44 80 68 Silver birch 
2  53 68 52 33 74 31 Silver birch 
3  62 86 76 70 92 84 Silver birch 
4 36 86 69 33 84 77 Silver birch 
5 61 84 78 68 90 85 Silver birch 
6. 62 87 75 66 86 82 Silver birch 
7 37 81 69 38 88 77 Silver birch 
8 75 94 85 84 97 91 Silver birch 
9 63 92 75 66 95 81 Silver birch 
10 62 91  68 94  Silver birch 
11 84 91 86 65 85 77 Scots Pine 
12  79 92 87 59 88 82 Scots Pine 
13  85 91 91 52 87 78 Scots Pine 
14 61 77 85 46 64 86 Scots Pine 
15 71 90 86 42 91 83 Scots Pine 
16 53 82 84 41 80 85 Scots Pine 
17 69 91 88 46 93 75 Scots Pine 
18 61 83  43 82  Scots Pine 
19 61 89  42 90  Scots Pine 
20 81 70  45 61  Scots Pine 

 
Table 2. Overall Accuracy (OA) and f1 score for each TLS-
scanned trees’ foliage and non-leaf classification performance: 
for hard (H), flexible (F) threshold separation, and CANUPO 
classification (C). Highlights denote classification results with 
the highest OA. 
 

Tree Pre (%) Re (%) Tree species 
H F C H F C 

1 89 83 85 29 78 56 Silver birch 
2  86 68 86 20 81 19 Silver birch 
3  95 88 93 55 96 76 Silver birch 
4 96 86 94 20 83 65 Silver birch 
5 99 91 97 52 90 76 Silver birch 
6. 99 86 92 50 86 73 Silver birch 
7 98 90 98 24 87 64 Silver birch 
8 99 96 98 72 97 85 Silver birch 
9 99 93 98 52 96 69 Silver birch 
10 99 93  52 95  Silver birch 
11 99 85 79 48 85 75 Scots Pine 
12  99 91 83 42 86 81 Scots Pine 
13  99 90 89 35 84 69 Scots Pine 
14 99 50 90 30 86 81 Scots Pine 
15 98 92 87 26 89 80 Scots Pine 
16 99 76 87 26 85 83 Scots Pine 
17 99 96 78 30 90 72 Scots Pine 
18 99 76  27 90  Scots Pine 
19 99 87  27 93  Scots Pine 
20 99 46  28 93  Scots Pine 

 
Table 3. Precision (Pre) and recall (Re) for each TLS-scanned 
tree classified with hard (H), flexible (F) threshold separation and 
CANUPO classification (C). 
 
The classification performances are further visualized in Figure 
6 to observe the patterns of performance. It is evident that the 
proposed flexible thresholding method consistently achieves 
higher recall compared to both the hard threshold separation and 
CANUPO methods. However, our method exhibits lower 
precision, indicating the presence of some noise in the separated 

non-leaf component. In contrast, CANUPO and the hard 
threshold separation demonstrate higher precision but at the 
expense of lower recall. Overall, the proposed classification 
algorithm consistently yields higher overall accuracies and f1 
scores compared to hard thresholding and CANUPO 
classification. 
 

 
Figure 6. Summary of foliage and non-leaf classification 
performance for 20 tested trees, comparison of three 
classification methods: 1) CANUPO, separation based on 2) 
fixed and 3) flexible thresholds on saliant geometric feature. Dots 
stand for performance measures for individual tested trees, boxes 
stand for 95% confidence interval of the yielded performance 
measures. 
 
Classified point clouds obtained from all the three algorithms are 
visualized for one of the Scots pines in Figure 7, and for one of 
silver birches in Figure 8, against the reference manual 
classification. Visualizations demonstrated that proposed method 
of flexible thresholding detected more non-leaf component 
compared to CANUPO and hard thresholding methods. 
 

 

Figure 7.  Scots pine tree classified into foliage (yellow) and 
non-leaf (brown) component: 1) manual labels; 2) fixed 
thresholds; 3) CANUPO and 4) flexible thresholds, from left to 
right, respectively 

 

Figure 8.  Silver birch classified into foliage (yellow) and non-
leaf (brown) component: 1) manual labels; 2) fixed thresholds; 
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3) CANUPO and 4) flexible thresholds, from left to right, 
respectively 

3.2 Foliage and non-leaf classification for LiPhe data 

Finally, we applied the flexible thresholding algorithm to 
separate the foliage from the non-leaf components for eight non-
labelled tree point clouds scanned with LiPhe (4 silver birches 
and 4 Scots Pines), as shown in Figure 9.  
 

 
Figure 9. Non-leaf (top) and foliage (bottom) parts separated by 
flexible thresholding for LiPhe trees. Note tree species 
information: four left-most trees are silver birch, four right-most 
trees belong to Scots Pine. 
 
The algorithm demonstrated efficient performance for silver 
birches, accurately capturing the branching structure in the 
separated non-leaf component. However, some points in the stem 
parts were not properly separated and were falsely identified as 
foliage. The separation of Scots Pines exhibited lower 
performance compared to silver birches, with some branches 
incorrectly classified as foliage and some foliage clusters 
mistakenly included in the non-leaf component. This most likely 
is attributed to low geometric accuracy of LiPhe point cloud, see 
Figure 10, which shows LiPhe-scanned Scots Pine featuring stem 
discontinuities. 
 

 
Figure 10. LiPhe-scanned Scots Pine: (A) full point cloud; 
(B) zoomed stem part; (C) crown part; (D) zoomed crown 
fragment. 
 

4. DISCUSSION 

In this study, we proposed an algorithm for classifying individual 
tree point clouds into foliage and non-leaf components based on 
six robust geometric features. These features were selected based 
on previous research studies that demonstrated their effectiveness 
in separating foliage from non-leaf components. The algorithm 
utilizes flexible thresholding to determine the threshold values 
for each geometric feature by fitting distributions and identifying 
the infliction points. 

 
Comparing our proposed method to two baseline approaches, 
CANUPO and separation by hard thresholding, we consistently 
observed higher performance using our algorithm on 20 tested 
silver birch and Scots Pine trees. However, there are certain 
limitations to our method. Some parts of branches and branches 
not connected to the stem are often omitted or misclassified as 
foliage. Additionally, low-density regions of the non-leaf 
component, particularly in the upper canopy, are frequently 
misclassified as foliage. These limitations are more pronounced 
in the semi-areal data from the LiPhe station, especially for Scots 
Pines with their dense canopy. For more complex tree species 
like Norway Spruce, additional salient features in combination 
with radiometric attributes are needed to capture their branching 
structure. 
 
Few modifications could aid to substantially improve the 
performance of the proposed algorithm, as well as to overcome 
the existing limitations. Firstly, it could be beneficial enhance the 
method by incorporating scanner-measured backscattering 
intensity alongside the geometric features. Additionally, the other 
radiometric attributes can provide complementary information 
and enhance the robustness of the classification. Furthermore, the 
proposed approach can be extended to semi-supervised 
classification by using initially separated foliage and non-leaf 
components as training data for deep learning algorithms such as 
RandLA-Net (Hu et al., 2020) or PointNet ++ (Qi et al., 2017). 
These architectures can handle misclassified instances and 
improve classification accuracy. Finally, more informative 
selection of appropriate spatial scales for calculating geometric 
features will be crucial to ensure more accurate classification. We 
also plan to extend the algorithm for stand-level processing. 
Overall, these advancements will further enhance the accuracy 
and applicability of the foliage and non-leaf classification method 
(Vicari et al., 2019). 
 
In the future, the algorithm will be tested on more trees acquired 
using different platforms such as UAV and ALS, as well as 
under-canopy UAV.  

5. CONCLUSION 

In summary, we have proposed a classification method for 
separating the foliage component from the non-leaf part in 
individual tree point clouds. Our method consistently 
outperformed the CANUPO classifier when tested on 20 silver 
birches and Scots Pines. Furthermore, visual assessment of the 
eight trees acquired through semi-areal scanning demonstrated 
the method's ability to accurately capture the tree architecture, 
particularly for silver birches. The proposed unsupervised 
approach not only targets cross-data source applications but also 
extends to encompass cross-tree species data. As a result, the 
method can be reliably utilized in future research for assessing 
above-ground biomass and wooden volume, as well as detecting 
tree growth through time series analysis of scanner-measured 
point clouds from TLS. Moreover, the method can be applied to 
various ecological applications that require accurate 
identification of non-leaf or foliage components in trees. In the 
future, a GPU-accelerated version of the method will allow 
processing of the tree point clouds at the stem lever for foliage 
and non-leaf separation.  
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