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ABSTRACT: 

 

The current status as well as the potential absorption capability of the forest carbon sinks in terrestrial ecosystems are in urgent need 

of further studies. The ground observation-based methods are labor-intensive, and the resulting statistics from samples are difficult to 

evaluate, while inversion methods based on remote sensing data lack theoretical explanation and universality. This paper proposes a 

pixel-level, multi-scale, high-precision Explicit Forest carbon stock Model (EFM) that is universal and adaptive. First, four key 

variables were used in the construction of the EFM: remote sensing image resolution, forest canopy density, terrain slope, and forest 

height; Second, simulated forest scene were generated based on the growth characteristics of individual trees, and EFM parameters 

were solved and analyzed by these simulated pixels; Third, the EFM was tested at various scales and forest saturation levels to verify 

its accuracy, robustness, and applicability, the simulation and real-life experiments show that the correlation coefficient is greater 

than 0.98 and the relative error is about 20%. The EFM solves the problem that the existing methods are lack in theoretical 

interpretation and universal applicability, thus can be used to map forest carbon stocks at high resolution and large scale and even 

monitor forest carbon dynamics at global scale. 
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1. INTRODUCTION 

Close monitoring of carbon sinks is critical to researching 

global climate change, and the current status as well as the 

potential absorption capability of the carbon sinks in terrestrial 

ecosystems are in urgent need of further studies(Ding, 2021). 

Forests, grasslands, shrubs, crops, and soil are the main carbon 

pools in terrestrial ecosystems(Fang et al., 2007). The United 

Nations Food and Agriculture Organization (FAO) pointed out 

that globally, the carbon stocks of forests account for about 77% 

of the total carbon stocks in vegetation, making them the most 

important carbon pool in terrestrial ecosystems(FAO, 2021). 

However, there are significant differences in current estimations 

of forest carbon sinks based on inventory (Jiang et al., 2016; 

Fang et al.,2018; Piao et al., 2009), modeling (He et al., 2019; 

Tian et al.,2011; Friedlingstein et al.,2020), and atmospheric 

inversion methods (Chen et al., 2021; Zhang et al.,2014; Wang 

et al., 2020; Schuh et al., 2022). The issue of how to achieve 

reliable monitoring of global forest carbon sinks is of great 

urgency (Piao et al., 2022a; Piao et al.,2022b; Fang et al., 2021; 

Wang, Y. et al., 2022; Wang, J. et al., 2022). With the 

increasing refinement of satellite remote sensing images in 

space, time, and spectral domains (Frantz et al., 2020; Li et 

al.,2020; Potapov et al., 2021), the growing number of satellite 

laser data acquisition platforms (Bauer et al., 2021; Magruder et 

al., 2021; Narine et al., 2019; Neuenschwander et al., 2018), and 

the launching of numerous SAR sensors for forestry and 

ecological monitoring missions (Leonardo et al., 2020; Lu et al., 

2021; Pourshamsi et al., 2020; Tan et al., 2020), using spectral 

information from satellite remote sensing images and vertical 

forest structure information from airborne/spaceborne LiDAR 

(Xu et al., 2021; Bruggisser et al., 2020; Fu et al., 2021; Næsset, 

2002), in a combination of ground observation data to monitor 

the dynamics of global/regional forest carbon sinks has become 

a hot topic (Duncanson et al., 2021; Guerra-Hernández et al., 

2021; Lin et al., 2020; Silva et al., 2020).  

 

For ground observation-based methods, individual tree 

parameters such as diameter at breast height and tree height are 

mostly collected under the canopy, which can be used to build 

tree-level carbon stock model (Zhou et al., 2018; Fang et al., 

2022), obtain forest carbon stock at plot-level, and then estimate 

large scale forest carbon stock using statistical methods (Jiang 

et al., 2020; Kankare et al.,2013a; Kankare et al., 2013b). This 

type of method is affected by the number and spatial 

distribution of sample plots (there are about 200,000 permanent 

and temporary forest plots in China), the required labor is 

intensive and the estimation accuracy is difficult to evaluate. 

For remote sensing-based methods, the spectral and vertical 

structure information of forests can be collected above the 

canopy, which reflects the height and coverage of forests at 

pixel-level, allowing carbon stock mapping with continuous 

spatial distribution and strong timeliness(Li et al., 2020; Narine 

et al., 2019). The pixel-level carbon stock estimation is realized 

by establishing a regression relationship (random forests, deep 

learning) between the carbon stock of forest sample plots and 

the characteristics of multi-source remote sensing data. Such 

methods can overcome the defect of low efficiency of ground 

observations, their accuracy depends on the selection of 

independent variables (Potapov et al., 2021; Silva et al., 2021; 

Liu et al., 2019). However, forced regression models between 

different variables and forest carbon stock by machine/deep 

learning are lacking in interpretability and universal 

applicability. 

 

Current methods have achieved robust performance in the test 

areas, the models derived from these algorithms are usually 

difficult to interpret. The patterns or potential relationships 

between the remote sensing variables and AGB/carbon stock are 

still unclear. There is no stable and explicit relationship in these 

models and would lower confidence when these models are 

applied to other areas (Lu et al., 2016). How to use pixel-level 

surface and elevation information of forests to establish a multi-

scale, interpretable, and high-precision forest carbon stock 

model is a key scientific issue. This paper proposes an explicit 

forest carbon stock model (EFM) with solid theoretical 

explanation. The EFM is suitable for remote sensing images 

with different spatial resolutions and different forest saturation 

levels. The solution of the EFM requires a lot of plot data, 

manually measure variables of different tree species is time-

consuming and labor-intensive, simulated forest scenes were 

constructed based on the growth characteristics of individual 

trees, and the EFM parameters were solved theoretically. 

 

2. METHODS AND MATERIALS 

2.1 The formulation and advantages of EFM 

In order to build an interpretable and precision controllable 

forest carbon stock calculation method, the power function 

multiplication form of diameter at breast height (D) and tree 

height (H) adopted by the tree-level carbon stock model is 

referenced. It is written as C = c1 ∙ D
c2 ∙ Hc3 , with D and H 

representing the surface and elevation information of individual 

tree, respectively. The EFM is shown in Equation (1),which 

uses the resolution P, forest canopy density F, terrain slope θ, 

and forest height H of each pixel to express carbon stock C 

explicitly. 

 

                  𝐶 = 𝑎 ∙ (𝑃2𝐹/𝑐𝑜𝑠𝜃)𝑏 ∙ 𝐻𝑐                (1) 

 

It is theoretically intepretable to express C as the product of tree 

species density (a), forest area (S = P2F/cosθ), and elevation 

(H), therefore, carbon stock in different periods can be 

calculated simply and quickly, and high-resolution dynamic 

monitoring of large-scale forest carbon sinks can be realized. 

The EFM centers on H and F variables, and has the following 

advantages: 

① Theoretical interpretability. S and H represent the 

surface and elevation information of the forest, respectively, a is 

related to the tree species density, b and c are the correction 

coefficient of forest surface and elevation, respectively, and a, b, 

and c were calculated for different tree species; 

② Scale inclusiveness. The EFM takes into account the 

resolution of remote sensing images and is applicable to 

different spatial scales; 

③ Wide applicability. H can be measured by various 

advanced techniques such as airborne LiDAR, satellite stereo 

image pairs, InSAR, and GEDI/ICESat2; F can be directly 

calculated by airborne LiDAR or remote sensing images. 

 

2.2 The solution and error evaluation of EFM 

The EFM is in the form of power function multiplication, the 

variables can be separated by logarithmic transformation, as 

shown in Equation (2). 

 

ln 𝐶 = ln 𝑎 + 𝑏 ∙ ln 𝑆 + 𝑐 ∙ ln 𝐻                  (2) 

 

Let l=ln C，p=ln a，m=𝑙𝑛 S，n= 𝑙𝑛 H，then Equation (2) is 

converted into: 

 

l = p + 𝑏 ∙ m + 𝑐 ∙ n                          (3) 
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Thus, the least squares adjustment is performed, as shown in the 

following equation. 

 

X= (𝑩𝑻𝑩)− ∙ 𝑩𝑻𝑳                         (4) 

 

Where, 

𝑩 = [

1 𝑚1 𝑛1
1 𝑚2 𝑛2

⋯
1 𝑚𝑖 𝑛𝑖

]

𝑖×3

, 𝑳 = [

𝑙1
𝑙2
⋯
𝑙𝑖

]

𝑖×1

 , 𝑿 = [

𝑝
𝑏
𝑐
]

3×1

  . 

By sampling a small number of forest plots at various scales P 

with known C, F, H, and θ, the above solution method is used to 

calculate the EFM parameters (a, b, c) for different tree species. 

Then, remote sensing images, SRTM, forest height, and other 

data are used to estimate the forest carbon stock, thus the 

monitoring of forest carbon sinks dynamics is realized by 

utilizing data from multiple time periods. 

In order to analyze the influence of variable errors on forest 

carbon stock estimation in EFM, the differentials of F and H are 

shown in Equation (5). 

 

{

𝑑𝐶

𝑑𝐹
= 𝑎 ∙ (𝑃2/𝑐𝑜𝑠𝜃)𝑏 ∙ 𝑏 ∙ 𝐹𝑏−1 ∙ 𝐻𝑐 = 𝐶 ∙ 𝑏/𝐹

𝑑𝐶

𝑑𝐻
= 𝑎 ∙ 𝑆𝑏 ∙ 𝑐 ∙ 𝐻𝑐−1 = 𝐶 ∙ 𝑐/𝐻                          

  (5) 

 

In order to analyze the influence of parameter errors on forest 

carbon stock estimation in EFM, the differentials of a, b, and c 

are shown in Equation (6). 

 

               

{
 
 

 
 
𝑑𝐶

𝑑𝑎
= 𝑆𝑏 ∙ 𝐻𝑐 = 𝐶/𝑎                     

𝑑𝐶

𝑑𝑏
= 𝑎 ∙ 𝑆𝑏 ∙ 𝐻𝑐 ∙ 𝑙𝑛𝑆 = 𝐶 ∙ 𝑙𝑛 𝑆

𝑑𝐶

𝑑𝑐
= 𝑎 ∙ 𝑆𝑏 ∙ 𝐻𝑐 ∙ 𝑙𝑛𝐻 = 𝐶 ∙ 𝐼𝑛𝐻 

              (6) 

 

Therefore, the variable error (𝑑𝐹, 𝑑𝐻) equation of EFM can be 

expressed as: 

 

    𝑑𝐶/𝐶 = √(𝑏 ∙ 𝑑𝐹/𝐹)
2 + (𝑐 ∙ 𝑑𝐻/𝐻)

2            (7) 

  

And the parameter error (𝑑𝑎, 𝑑𝑏 , 𝑑𝑐) equation of EFM can be 

expressed as: 

 

   𝑑𝐶/𝐶 = √(𝑑𝑎/𝑎)
2 + (𝑑𝑏 ∙ 𝑙𝑛 𝑆)

2 + (𝑑𝑐 ∙ 𝑙𝑛𝐻)
2           (8) 

 

2.3 The materials and calculation of EFM 

Simulated forest were generated by the growth characteristics 

and carbon stock model of individual trees at various scales to 

solve for the EFM parameters. The growth characteristics of 

individual trees refer to the fixed functional relationship 

between diameter at breast height (D), tree height (H), and 

crown diameter (w) of the same tree species (Wang et al., 2022; 

Li et al.,2010). Table 1. and Figure 1. list the growth 

characteristics and tree-level carbon stock models of Chinese fir, 

pine, and eucalyptus. H = f(D) and  w = f(D) represent 

respectively the functional relationship between  H,  w, and  D ; 

C = f(D,H) = CF ∙ (WT +WR) represents the relationship 

between  D , H , and carbon stock of individual trees C , with 

C equal to the sum of aboveground biomass  WT and 

underground biomass WR of individual trees multiplied by the 

carbon coefficient CF. Figure 1. shows H and w of Chinese fir, 

pine, and eucalyptus under certain values of D. 

 

Figure 1. The H and w of different tree species under certain 

values of D 

 

 𝑯 = 𝒇(𝑫) 𝒘 = 𝒇(𝑫) 𝑪 = 𝒇(𝑫,𝑯) = 𝑪𝑭 ∙ (𝑾𝑻 +𝑾𝑹) 

C
h
in

es
e 

fi
r 

3.2945
+ 1.048 

𝑒(3.6199−
18.796
D+1.0

)
 

1.0974
+ 0.1094D
− 0.0007D2 {

 

 
𝑊𝑆 = 0.073429(𝐷

2𝐻)0.86262

𝑊𝑃 = 0.013755(𝐷
2𝐻)0.84463

𝑊𝐵 = 0.000482(𝐷
2𝐻)1.23314

𝑊𝐿 = 0.019638(𝐷
2𝐻)0.78969

 

𝑊𝑇 = 𝑊𝑆 +𝑊𝑃 +𝑊𝐵 +𝑊𝐿 

𝑊𝑅 = 0.073429(𝐷
2𝐻)0.86262 

P
in

e 1.3 + 24.344 
[1
− 𝑒−0.04𝐷]0.896 

0.5290𝐷0.6749 
𝑊𝑇 = 0.071556(𝐷

2𝐻)0.857209 
𝑊𝑅 = 𝑊𝑇 6.23⁄  

E
u

ca
ly

p
tu

s 

𝑒0.73+0.48𝑙𝑛𝐷 

0.08803
+ 0.27565D
− 0.00284D2 

{

𝑊𝑆 = 0.0902526𝐷
2.44815

𝑊𝐵 = 0.0049163𝐷
2.81779

𝑊𝐿 = 0.012694𝐷
2.26839   

 

𝑊𝑇 = 𝑊𝑆 +𝑊𝐵 +𝑊𝐿 

𝑊𝑅 = 𝑊𝑇 7.45⁄  

Table 1. The growth characteristics and carbon stock model of 

individual tree (D in cm; H in m; w in m; C in kg; WS is the 

trunk biomass; WP is the bark biomass; WB is the branch 

biomass; WL is the leaf biomass; WT is the aboveground 

biomass; WR is the underground biomass; CF is the carbon 

coefficient, a value used for converting biomass into carbon 

stock , and is generally 0.5). 

The EFM are applicable to different spatial resolutions and 

forest scenes with different saturation levels, the calculation of 

EFM was divided into the following steps based on the known 

growth characteristics and carbon stock models of different tree 

species. 

 

2.3.1 Generating forest pixels 

D and the number of trees were set to various values to generate 

grids with different spatial scales, and forest pixels with various 

saturation levels were obtained. Figure 2(a) shows a 

100m×100m area divided into 10m×10m grids, resulting in 100 

pixels in total; a single tree with  D ∈ [5cm  55cm] was 

randomly set in each grid,  H and  w were determined by the 

corresponding growth function. Figure 2(b) is the top view of 

the grids, illustrating the crown in each grid. Figure 2(c) shows 

the panoramic image of the simulated scene in the near ground 

view. Here, grids at 5 spatial scales were generated, with P = 

10m, 20m, 30m, 40m, and 50m, respectively, and each set 

includes 20×20 = 400 pixels, resulting in a total of 2000 pixels 

with all 5 scales. 
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(a)Simulated forest scene (b)The forest pixels 

 
(c)The panoramic image of simulated forest 

Figure 2. Generating forest pixels 

 

2.3.2 Calculating F, H, and C 

After generating forest pixels with different spatial scales and 

saturation levels, Equations (9)-(11) were used to calculate the F, 

H, and C of each forest pixel (θ was set to 0 for all pixels). 

 

                    𝐹 =
∑ 𝑆𝑖
𝑛
𝑖=1

𝑃2
                                      (9) 

 

                     𝐻 =
∑ ℎ𝑖𝑆𝑖
𝑛
𝑖=1

∑ 𝑆𝑖
𝑛
𝑖=1

                                  (10) 

 

                    𝐶 = ∑
𝐶𝑖𝑆𝑖

𝜋(𝑤𝑖/2)
𝟐

𝑛
𝑖=1                           (11) 

 

Where P is the resolution of pixel, n is the number of trees in 

the pixel, wi is the crown diameter of the ith tree, Si is the area 

of wi within the pixel, ℎi is the height of the ith tree, Ci is the 

carbon stock of the ith tree. 

 

F is the ratio of the forest canopy within the pixel to the pixel 

area; if the tree canopy is completely within the pixel, then Si =
π(wi/2)

2, otherwise, Si equals the area of tree canopy within 

the pixel. H is the average height of the forest within the pixel; 

the height of each tree was considered as hi wherever covered 

by its canopy, and the average height of the forest within the 

pixel was calculated. C is related to the canopy area within the 

pixel; Ci was evenly distributed in the canopy coverage 

area  π(wi/2)
2 , and multiplied by  Si to obtain the accurate 

carbon stock of the pixel.  

 

2.3.3 The calculation of EFM 

The F, H, and C of forest pixels at different spatial scales were 

brought into Equation (2)-(4) to solve EFM parameters a, b, and 

c. The 2000 pixels at 5 spatial scales were divided equally into 

two sets, one for training and the other for testing. Taking 

Chinese fir as an example, Figure 3. shows the solutions when 

F = 0.55, plant density is 500 plants/ha, and carbon stock 

density is 230.41 Mg/ha. 

 

 

Figure 3.  The calculation of EFM 

1000 forest pixels were used to calculate the EFM parameters in 

Figure 3, resulting in a = 38.25794 × 10−3, b = 1.00681, and 

c = 2.1367. The remaining forest pixels, 200 each for the 5 

spatial scales at 10m, 20m,..., and 50m were used to evaluate 

the model accuracy. In the figure, points with different colors 

represent the true values (horizontal axis, true) and calculated 

values (vertical axis, Fit) of forest pixels at different spatial 

scales. The correlation coefficient  R2 = 1.000 based on the 

1000 test pixels, Er1 and Er2 were used to quantitatively 

evaluate EFM errors, and the calculation method is shown in 

Equation (12). 

 

{
𝐸𝑟1 =

∑ |𝐶𝑖−𝐶𝑖
′|/(𝑃𝑖/100)

2𝑛
𝑖=1

𝑛

𝐸𝑟2 =
∑ |𝐶𝑖−𝐶𝑖

′|𝑛
𝑖=1

∑ 𝐶𝑖
𝑛
𝑖=1

∙ 100% 
, 𝐶𝑖

′ = 𝑎 ∙ (𝑃𝑖
2𝐹𝑖/𝑐𝑜𝑠𝜃)

𝑏 ∙ 𝐻𝑖
𝑐  (12) 

          

                   

Where,  Ci and  Ci
′ are the true and calculated values of pixel 

carbon stock and n is the number of pixels.  

𝐸𝑟1 is the absolute error of EFM, the model error |𝐶𝑖 − 𝐶𝑖
′| was 

divided by the corresponding pixel area (ha) to exclude the 

influence of spatial scales, thus the unit of  𝐸𝑟1calculated at 

various scales is Mg/ha. 𝐸𝑟2 is the percentage of |𝐶𝑖 − 𝐶𝑖
′| to 𝐶𝑖, 

representing the relative error of EFM. Figure 3 shows 

that 𝐸𝑟1 = 4.68 Mg/ℎ𝑎 and 𝐸𝑟2 = 2.03% when F=0.55, thus, 

when the carbon stock density is 230.41 Mg/ha, both Er1 and 

Er2 indicate that EFM has high accuracy. 

 

2.3.4 The parameters and parameter errors 

The parameters a, b, and c have slight changes under different 

forest scenarios, 100 groups of forest pixels with  F ∈
[0.1  5.6] were generated, and each group contained pixels at 

the 5 spatial scales. Thus, 100 groups of a, b, and c were solved, 

the median of each parameter is highly consistent with the 

average value, which is taken as the final parameters. Equation 

(8) is the parameter error equation of EFM, the influence of a, b, 

and c on carbon stock is da/a , db ∙ lnS , and dc ∙
lnH respectively, where, da , db , dc are mean square errors 

calculated by 100 groups of a, b, and c. The parameters and 

parameter errors of EFM for Chinese fir, pine, and eucalyptus 

are shown in Table 2. 
 

Tree 

species 

𝒂 

(10-3) 
𝒃 𝒄 

𝒅𝒂/𝒂 

(%) 

𝒅𝒃 

(%) 

𝒅𝒄 
(%) 

Chinese 

fir 

37.741 

 
1.0 2.155 9.770 0.067 2.950 

Pine 
59.076 

 
1.0 1.687 2.553 0.012 0.845 

Eucalyptus 
5.389 

 
1.0 3.278 12.485 0.099 4.949 
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Table 2. The parameters and parameter errors of EFM 

3. EXPERIMENTS 

The EFM is tested against simulation and real-life experiments 

to show that EFM has wide applicability both to pixels at 

various spatial resolutions and under different forest saturation 

levels. 

 

3.1 The simulation experiments 

3.1.1 The multi-scale experiment 

Parameters a, b, and c were obtained by 5 spatial scales and 100 

levels of saturation. In order to verify that the parameters are 

applicable at other spatial scales, forest scenes at 91 spatial 

scales with P=10m, 11m, 12m,..., 99m and 100m were 

generated, with each scene containing 30×30 pixels, and F=0.5 

in all the scenes. Then, the differences between the EFM values 

and the true values of all 900 pixels were analyzed, and 

evaluated with Er1, Er2, and R2. Figure 4. shows the results for 

Chinese fir, pine, and eucalyptus at P=60m and 90m 

respectively. 

 

C
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ese fir 

  

P
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E
u

caly
p

tu
s 

  
 (a) P=60m (b) P=90m 

Figure 4. The multi-scale simulation experiments 

The EFM values are very close to the true values of the three 

tree species at P = 60m and 90m, with the minimum R2 being 

0.99, the maximum  Er1 being 1.64 Mg/ha, and the 

maximum Er2 being 1.72%, indicating that EFM is applicable 

at other spatial scales. The experiment results from 91 scales 

between 10m to 100m show the EFM is suitable for high-

precision calculation of forest carbon stock at multi-spatial 

scales. 

 

3.1.2 The saturation experiment 

Parameters a, b, and c were obtained by averaging the 100 

forest scenes with different saturation levels, it is necessary to 

verify the applicability under other saturation levels. In the 

above multi-scale applicability analysis, F is uniformly set to 

0.5. Here, 600m×600m forest scenes were generated, and F was 

set to 0.01, 0.02,..., 0.99, and 1.00, then 5 spatial scales, 10m 

(60×60 pixels), 20m (30×30 pixels), 30m (20×20 pixels), 40m 

(15×15 pixels), and 50m (12×12 pixels) totaling 5269 pixels 

were used to analyze the applicability under different saturation 

levels. Figure 5. shows the experiment results of 3 tree species 

at F = 0.01 and 1.00 respectively. 
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 (a) F=0.01 (b) F=1.00 

Figure 5. The saturation simulation experiments 

The EFM values are highly consistent with the true values of 

carbon stocks for the three tree species at F=0.01 and F = 1.00, 

with the minimum  R2 being 0.995, the maximum  Er1 being 

10.18 Mg/ha, and the maximum Er2 being 11.57%, indicating 

that EFM is suitable for different saturation levels. The results 

from 100 different saturation levels, ranging from 0.01 to 1.00, 

show the EFM is suitable for high-precision calculation of 

forest carbon stock at any forest saturation level. 

  

3.2 The real-life experiments 

The EFM was tested using 2 Chinese fir forests located in 

Rongshui and Rong'an Counties, Guangxi, China, as shown in 

Figure 6, the whole regions are 1.04km×1.04km, about 108ha, 

these two blue validation areas are mountainous terrain, the 

Rongshui validation area is 4.1ha, including 2864 trees, the 

Rong'an validation area is 4.8ha, including 6029 trees. For each 

validation area, the D and H of all Chinese firs inside were 

measured manually, the carbon stock of each tree was 

calculated using tree-level model (shown in Tab. 1), and the 
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area total carbon stock was treated as the true value, with 

CTrue=394.9Mg and 434.2Mg for each county respectively.  
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Figure 6. The test area of Rongshui and Rong'an 

The airborne LiDAR points in Figure 7(a) covering the whole 

region were used to obtain the DSM and the DEM at 2m 

resolution, thus H in EFM equals DSM - DEM,  θ was 

calculated from the DEM, and F set to 1.0 because of the high 

resolution. Then the values of F, θ and H were plugged into the 

EFM of Chinese fir (Table 2.) for pixel-by-pixel 

calculation, CFit=357.5Mg and 306.5Mg respectively. Finally, 

the high-resolution mapping of forest carbon stock was carried 

out, and the results are shown in Figure 7(b); Table 3. lists 

some of the parameters in the experiments of the Rongshui and 

Rong'an areas. 

 

  

(a) LiDAR points of Rongshui and Rong'an 

  

(b) Carbon stock map of Rongshui and Rong'an 

Figure 7. Carbon stock maps (resolution: 2m×2m) 

 

 

Test 

area 

Area 

(ha) 
num 

𝑪𝐓𝐮𝐫𝐞
(Mg) 

𝑪𝐅𝐢𝐭 
(Mg) 

𝜹 

(%) 

C 

(Mg) 
P 

Rong

shui 
4.1 2864 394.9 306.5 22.3 2618 2m 

Rong'

an 
4.8 6029 434.2 357.5 17.6 4294 2m 

Table 3. Partial parameters in the experiments 

The EFM can rapidly map forest carbon stock with high 

resolution and accuracy. Figure 6. shows the saturation of 

forests is very high, the current regression method has the 

problem of oversaturation, EFM is not affected; Figure 7(a) 

shows the airborne LiDAR points, with airborne LiDAR being 

able to penetrate forest canopies, high-precision DEM and DSM 

were obtained by filtering the points, then F, θ, and H were 

calculated with high accuracy. Figure 7(b) shows a high 

precision mapping of forest carbon stock with 2m resolution, 

and the total carbon stocks are  C=2618.1Mg and 4294.9Mg 

respectively. Then, the accuracy of EFM was verified by 

manually measuring sample trees in the validation areas. Tab. 3 

shows δ = 22.3%  and 17.6% in Rongshui and Rong'an 

validation areas, and the theoretical error δ′ of Chinese fir can 

be calculated from Equation (8) and Table 2.   

 

4. CONCLUSION 

The current machine/depth learning-based forest carbon stock 

calculation methods cannot be explained theoretically, have low 

mapping resolution, and cannot be applied universally. This 

paper solved such problems by proposing a pixel-level, multi-

scale, high precision explicit forest carbon stock model (EFM), 

deriving forest carbon stocks from four variables: image 

resolution, forest canopy density, terrain slope, and forest height. 

The model parameters were solved theoretically from simulated 

forest scenes, and the results of the experiments showed that the 

EFM has high accuracy and wide applicability at multiple 

spatial scales and different forest saturation levels, allowing the 

monitoring of global forest carbon sinks dynamics. Finally, the 

EFM is based on the growth characteristics and carbon stock 

model of individual trees, with the different growth trends of the 

same tree species in different regions and phenological 

conditions, the tree-level carbon stock model is differed, 

constructing EFM according to the growth characteristics and 

the carbon stock model of individual trees under specific 

circumstances can improve the accuracy of forest carbon stock 

calculation.  
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