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ABSTRACT: 

 
Apiculture is one of the main branches of agriculture and crucial to rural development since it provides farmers with unique products 
like honey, wax, pollen, royal jelly, propolis and bee venom. Due to pollination services provided by honeybees, environmental 
sustainability and diversity are also increased, as well as crop production. In Greece, approximately 2.000.000 bee colonies (second 

in the E.U.) are reported with a relatively high density per km2. There are more than 20.000 beekeeping operators that produce about 
20.000 tons of honey every year, while more than 65% of Greek honey is produced from honey dew. To this end, this study aims to 
identify and map major honeybee flora in the Greek mainland and the Greek islands (Fir forests, Pine forests and Oak forests) for the 
year 2019, in order to examine best regions to deploy honeybee colonies. In particular, a classification framework for mapping the 
main honeybee flora is introduced that is exploiting annual moderate-resolution satellite multi-temporal data. Additionally, a 
methodology is presented to generate a coarser training dataset by utilizing a high-spatial resolution, detailed land cover map. This 
process specifically focuses on the integration of honeybee flora classes that are not present in the land cover map but are of 
significant great importance for honey flora mapping. The goal was to enable large-scale classification without the computational 

resource constraints typically associated with such national scale frameworks. Experimental results are quite promising with the 
quantitative validation indicating overall accuracy of more than 85%. 
 
 

1. INTRODUCTION 

 
Apiculture, as a subsector of agriculture, is an integral part of 
primary production in Greece. Honeybees (Apis mellifera L.), 

apart from honey products, (honey, pollen, wax, propolis, royal 
jelly and bee venom) constitute the most efficient pollinators of 
wild flora and crops in the world (Maheshwari, 2003), 
maintaining biodiversity. Honeybees fly in a range of 6 
kilometers (Beekman and Ratnieks, 2000) away from the 
beehive, depending on the topography of the ground. It is worth 
mentioning that bee flora mapping has been necessary to 
beekeepers for a long time for yielding better honey quality and 

production. In Greece, forests (pine, fir, oak) cover a big 
amount of land, providing forage for insect pollinators, 
including honeybees (Hanula et al, 2016). The number of 
apiaries in a certain area is a phenomenon that needs to be 
examined. As Xydias (1965) states, beekeeping productivity of 
an area is not solely indicated by the number of bee colonies but 
also by the average number of bee colonies per area. Therefore, 
knowing the types, places, and flowering/budding season of 
melliferous plants facilitates beekeepers to place their honeybee 

colonies. To this end, mapping the beekeeping flora serves as a 
tool for the beekeepers to better place their bee colonies in 
regions according to blooming periods. 
 
More specifically, in the varied Greek honeybee flora, pine trees 
(Pinus spp.) are considered to be the most important honey-
producting trees. Almost 60% of the annual Greek honey 
production is from pine trees. Marchalina hellenica 

(Gennadius) (Hemiptera: Margarodidae) as an endemic sap-
sucking insect which feeds mainly on pine trees, contributes to 
the production of high-quality honeydew honey. Honeybees 
collect these secretions mainly from mid-August till the 
following spring, although the best collecting period is from 

August to October. Blooming period of pine trees is very 
beneficial for beekeepers and honeybees, since there is a stable 
flow regarding the quantity of honeydew produced every year. 
What is more, the long period of secretions, as well as the 

number of honeybees that can feed on pine trees in a region 
with pine forests in Greece, are also beneficial to honeydew 
honey production (Harizanis, 2015). 
 
Equally useful to apiculture are scale insects that feed on fir 
forests which cover a large area in Greece (Samaras et al., 
2015). The well-known fir honeydew honey is nearly 5% of the 
honey produced annually. More specifically, scale insects such 

as aphids and Physokermes hellenicus (Kozár & Gounari) 
(Hemiptera: Coccidae) feed on trunks of Greek fir trees (Abies 
cephallonica) producing large amounts of honeydew (from May 
to June thanks to high temperatures) which is collected by 
honeybees (Santas, 1983; 1991). 
 
Oak forest honey has also received increased interest following 
studies over the past few years that have shed light on the 
antioxidant properties of dark-colored honey (Can et al., 2015), 

but limited research has been carried out so far, so there is no 
adequate data regarding oak tree honey production. 
 
Hence, for all the reasons aforementioned, the systematic 
mapping of beekeeping flora and, specifically, of main forest 
tree species in Greece is crucial. Remote sensing classification 
mapping can contribute towards this direction. Many recent 
studies have been addressed with the use of satellite imagery 

combined with machine learning frameworks for crop mapping 
(Karakizi, 2022; Defourny et al., 2019), while studies for the 
specific detection of beekeeping flora are limited with only a 
few applications (Papachristoforou et al. 2023). 
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In this direction, in the current study a classification framework 

for the mapping of the main honeybee flora in Greece is 
presented. The proposed pipeline aims to enable large-scale 
classification, without the computational resource constraints 
typically associated with such frameworks, by utilizing annual 
moderate-resolution satellite multi-temporal data. Additionally, 
a pipeline for the generation of a coarser training dataset by 
utilizing an existing higher spatial resolution classification map 
is presented. 

 
 

2. MATERIAL AND METHODS 

 
2.1 Multispectral data and digital elevation model 

 
The study area of the research paper is the entire Greek territory 
consisting of 130,800 km2 of land. The acquired multispectral 
data correspond to a temporal range of 12 months, between 

11/2018 and 10/2019. Taking into consideration that land use 
classification with satellite data is a demanding task in terms of 
available computational resources, it was chosen to utilize 
multispectral medium spatial resolution data from the Terra 
MODIS satellite of the American Aeronautics and Space 
Administration (NASA). 
 
In particular, MODIS Terra MOD09A1 Version 6 product 

provides an estimate of the surface spectral reflectance, 
corrected for atmospheric conditions and scattering, with a 
spatial resolution of 500 meters. This product consists of seven 
spectral bands (R, G, B, NIR, and SWIR) and is an 8-day 
composite since MODIS has a revisit frequency of 1-2 days. 
Each pixel value was selected from all the acquisitions within 
the 8-day composite period, depending on several criteria, like 
cloud presence. 
 
Additional auxiliary data used is the digital elevation model 
Shuttle Radar Topography Mission (SRTM) provided by the 

United States Geological Survey (USGS), with a spatial 
resolution of 3 arc-seconds (~90 meters). 
 
2.2 Reference data 

 
The produced reference data consist of 12 classes: Artificial 
surfaces (AFS), Grass/Wood land (GWL), Bare land (BRL), 
Water bodies (WBD), Agricultural land (AGR), Mixed forest 
(MIX), Dense fir (FIR1), Sparse fir (FIR2), Sparse pine (PNE1), 

Dense pine (PNE2), Dense oak (OAK1) and Sparse oak 
(OAK2) (Figure 2). In order to produce the reference data, two 
layers of information are used. The first layer consists of 
manually annotated data using photo interpretation and prior 
knowledge about forest regions where pine trees, fir trees, and 
oak trees are grown. For splitting forest regions into detailed 

honeybee flora classes, namely FIR1, FIR2, PNE1, PNE2, 

OAK1, OAK2, and MIX, a second layer of information is used. 
This layer is a map product made by Karakizi (2022) and is a 
land cover classification map of 10 meters spatial resolution. 
The classified map (hereafter referred to as LCM) depicts 42 
land cover and crop categories (Figure 2). The LCM has a user 
accuracy (UA) of 82%, and the corresponding accuracy for 
natural vegetation categories exceeds 95%. The high spatial 
resolution of the LCM allowed the quantification of the classes 

contained in each MODIS pixel.  
 

 
Figure 1. An indicative region of the study area with two 
annotated polygons for class FIR (green) and OAK (pink).  

Certain MODIS pixels (red grid) categorized as FIR1, FIR2, 
OAK1, OAK2 or MIX are also presented. 
 
In order to assign one of the 5 classes (AFS, GWL, BRL, WBD, 
and AGR) to a MODIS pixel, the higher resolution pixels of the 
LCM are examined. For instance, for a MODIS pixel to be 
categorized as WBD it should contain 99%-100% of LCM 
pixels characterized as wetlands, water courses/bodies, or 

coastal water. The same principle was applied to the other 4 
classes, but with varying LCM pixel ratios. The reason for 
applying different pixel ratios was the challenge of identifying 
MODIS pixels that solely consisted of the aforementioned LCM 
classes and the production of a balanced training dataset.  
 
More specifically, the criteria for the 5 classes, were: 
 

• AFS (Artificial surfaces): 93-100% of LCM classes; 
dense/sparce urban fabric, industrial/commercial 
units, asphalt, photovoltaic units and greenhouses 

• GWL (Grass/Wood land): 99-100% of LCM classes; 
natural grasslands, sparse/dense sclerophyllous 
vegetation 
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• BRL (Bare land): 99-100% of LCM classes; bare 
soils, sparse vegetation, rocky/sandy areas 

• WBD (Water bodies): 99-100% of LCM classes; 
water bodies, rivers, lakes, wetlands, coastal waters 

• AGR (Agricultural land): 99-100% of LCM 22 crop 
type classes 

 
A different approach is followed for the forest region classes 
FIR1, FIR2, PNE1, PNE2, OAK1, OAK2, and MIX. To further 
classify the Forest (FST) category into the specific classes 
related to fir, pine, and oak, the annotations were utilized. For 
instance, for a MODIS pixel to be categorized as FIR1, it should 
contain 90%-100% of LCM pixels characterized as coniferous 

and should also be annotated as fir. Similarly, for a MODIS 
pixel to be categorized as FIR2, it should contain 60%-75% of 
LCM pixels characterized as coniferous and should also be 
annotated as fir. For the MIX class, only the LCM was utilized, 
and for a MODIS pixel to be categorized as MIX, it should 
contain 40%-60% of LCM pixels characterized as broadleaves 
and 40%-60% coniferous vegetation, without annotation 
needed. Figure 1 depicts an indicative, relative small, region of 

the study area, with an example of two annotated polygons for 
class FIR and OAK. Certain MODIS pixels categorized as 
FIR1, FIR2, OAK1, OAK2 or MIX are also presented. 
 
More specifically, the criteria for the 7 classes, were: 

• FIR1 (Dense fir): 90-100% of LCM coniferous and fir 
annotation 

• FIR2 (Sparse fir): 60-75% of LCM coniferous and fir 
annotation 

• PNE1 (Dense pine): 90-100% of LCM coniferous and pine 
annotation 

• PNE2 (Sparse pine): 60-75% of LCM coniferous and pine 
annotation 

• OAK1 (Dense oak): 90-100% of LCM broadleaves and 
oak annotation 

• OAK2 (Sparse oak): 60-75% of LCM broadleaves and oak 
annotation 

• MIX (Mixed forest): 40-60% of LCM coniferous and 40-
60% of LCM broadleaves 

 

In this manner, MODIS reference pixels are generated to 
emphasize forest honeybee flora classes. This is achieved by 
utilizing a high-resolution classification map where these 
specific classes are absent, as the map solely provides 
information regarding coniferous and broadleaved forests. 
 

ID Class MODIS pixels 

1 FIR1 1439 

2 FIR2 854 

3 PNE1 280 

4 PNE2 700 

5 OAK1 1217 

6 OAK2 524 

7 MIX 1000 

8 GWL 1000 

9 AFS 1000 

10 AGR 1000 

11 WBD 1000 

12 BRL 1000 

  Total: 11014 

Table 1. The total amount of MODIS pixels per-class that were 
used as reference data. 
 
Table 1 illustrates the amount of MODIS reference pixels for 
each class. The total amount of pixels sums up to 11014. The 
amount of reference pixels for fir, pine and oak classes reveals 
the representation of these classes in the annotated regions, 

based on LCM map. For example, class PNE1 is low 
represented comparing to class FIR1, since areas of 500x500 
meters, annotated as pine and consisting of 90-100% coniferous 
LCM pixels are rare. 
 

 
Figure 2. A detailed presentation of the reference data nomenclature. Land cover map (LCM) 42 classes are in the red box, 
aggregated in 6 classes named as AFS, FST, GWL, BRL, WBD, and AGR. In the green box, the rules based on how the final 12 
MODIS pixels classes were extracted, are presented.  
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2.3 Satellite data pre-processing 

 
Prior to the classification stage, satellite data preparation is 
required since the entire Greek territory is depicted partially in 3 
different MODIS acquisitions (Figure 3). In these terms, a 
satellite image mosaic is created for each 8-day composite and 
then is delineated at the border of the country. Also, the single 
digital elevation layer is resampled from 90 to 500 meters 
spatial resolution using the MODIS images geometric 

transformation. 
 

 
Figure 3. The corresponding 3 MODIS tiles (h 19, v 04; h 19, 
v05; h 20, v05) that cover the study area.  
 
Additionally, in order to enhance the model's ability to 

distinguish between the 12 defined classes, five spectral indices 
are calculated alongside the MODIS bands. Three of these 
indices, namely the Normalized Difference Vegetation Index 
(NDVI), Modified Soil-adjusted Vegetation Index (MSAVI), 
and Enhanced Vegetation Index (EVI), are computed 
specifically for the vegetation classes. Additionally, the 
Normalized Difference Built-up Index (NDBI) is calculated as 
an extra feature for artificial surfaces, while the Normalized 

Difference Water Index (NDWI) is calculated for water bodies. 
These indices are commonly used and well-documented as 

highly useful for this type of studies (Pelletier et al., 2016; 

Defourny et al., 2019; Hermosilla et al., 2022). 
 
Finally, to input the data into the model, a spectralcube is 
generated by stacking the 12 spectral layers for each date along 
with one layer for the digital elevation model. This process 
yields a spectralcube with a size of 3.9 GB, encompassing 37 
selected dates spanning from 11/2018 to 10/2019. The 
spectralcube, in conjunction with the reference data, offers the 

classifier both the annual spectral variation and the elevation 
information of the pixels. 
 
2.4 Classification 

 
The Random Forest classifier was employed as the machine 
learning algorithm for the classification process.  The algorithm 
is parameterized using default values that have been 
recommended in relevant literature to achieve a balanced   

trade-off between accuracy and computation cost (Liaw and 
Wiener, 2002; Rodriguez-Galiano et al., 2012; Pelletier et al., 
2016, Karakizi, 2022). In particular, as far as the Random Forest 
classifier is concerned, the number of estimators is set to 200, 
and the number of features randomly selected at each node is 
equal to the square root of the total number of features. Default 
values are chosen for the maximal depth of each tree (set to 
None) and the minimal number of samples per node (set to 1). 

Finally, the reference data are divided into 67% as train data and 
33% as test data randomly. 
 
 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 
This section provides a comprehensive analysis, both 
quantitative and qualitative, which is conducted by applying the 

classification framework and examining the resulting outcomes. 
 
3.1 Quantitative analysis and accuracy metrics 

 
The confusion matrix (Table 2) is generated by comparing the 
test dataset with the model's predictions. A total of 3892 
MODIS pixels were used to validate the model. 
 

Among the 5 aggregated classes, namely GWL, AFS, AGR, 
WBD, and BRL, which are created solely by using the LCM 
and are unrelated to forest regions, the highest F1 scores range 
from 92.7 to 98.3. The class with the highest F1 score of 98.3 is 

truth\pred. FIR1 FIR2 PNE1 PNE2 OAK1 OAK2 MIX GWL AFS AGR WBD BRL All PA f1

FIR1 381 84 0 0 0 0 0 2 0 0 0 0 467 81.58 77.67

FIR2 124 252 0 5 0 0 10 11 0 0 0 3 405 62.22 65.71

PNE1 1 2 24 60 0 0 0 0 0 0 0 0 87 27.59 37.8

PNE2 1 3 16 260 0 0 4 11 0 0 2 0 297 87.54 81.76

OAK1 0 0 0 0 350 46 6 0 0 1 0 0 403 86.85 85.79

OAK2 0 0 0 0 46 167 20 2 0 7 0 0 242 69.01 71.52

MIX 7 14 0 4 16 10 291 2 0 1 0 1 346 84.1 85.84

GWL 0 7 0 5 0 1 0 324 1 5 0 0 343 94.46 92.7

AFS 0 0 0 0 0 0 0 0 320 15 2 0 337 94.96 96.39

AGR 0 0 0 1 0 1 0 2 2 311 0 0 317 98.11 93.96

WBD 0 0 0 4 1 0 1 0 1 3 311 0 321 96.88 97.8

BRL 0 0 0 0 0 0 0 2 3 2 0 320 327 97.86 98.31

All 514 362 40 339 413 225 332 356 327 345 315 324 3892 81.76

UA 74.12 69.61 60 76.7 84.75 74.22 87.65 91.01 97.86 90.14 98.73 98.77 83.63 OA 85.07 Avg f1 82.68  
Table 2. Confusion matrix for the RF experiment. Diagonal values (pink colour) represent true positive values for each class.
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the Bare land (BRL), which is easily distinguishable from other 
categories. The second highest F1 score of 97.8 is the Water 

bodies (WBD) class, as water has distinctive spectral properties 
that allow for clear identification. The third highest F1 score of 
96.4 is the Artificial surfaces (AFS) class, which also has a 
unique spectral signature and remains consistent over time. The 
fourth highest F1 score of 94.0 is the Agricultural land (AGR) 
class. However, this category presents challenges, particularly 
when different crop types are grouped together. Interestingly, 
the User Accuracy (UA) for the AGR class is the lowest among 

these 5 classes, indicating that some MODIS pixels classified as 
AGR in the final map are false positives. 
 
The 7 classes that are of particular interest in this study, namely 
FIR1, FIR2, PNE1, PNE2, OAK1, OAK2, MIX, exhibit 
consistently lower F1 scores compared to the previously 
mentioned 5 classes. The highest F1 score of 85.85 is achieved 
by the Mixed Forest class, for which reference data are 

generated solely using the LCM without annotated regions. The 
second highest F1 score of 85.79 belongs to the Dense Oak 
Trees (OAK1) class which is easy to annotate and identify due 
to the loss of canopy during winter months. The third highest F1 
score of 81.76 is obtained by the Sparse Pine Trees (PNE2) 
class, which is a prominent category within the study area. The 
fourth highest F1 score of 77.67 is associated with the Dense Fir 
Trees (FIR1) class, identifiable and annotated based on texture 

and commonly found at high elevations. The fifth highest F1 
score of 71.52 is achieved by the Sparse Oak (OAK2) class, 
followed by the Sparse Fir (FIR2) class with an F1 score of 
65.71. Notably, the class with the significantly lower F1 score 
of 37.80 is Dense Pine (PNE1), which has a low representation 

in terms of reference MODIS pixels and poses challenges in 
identifying areas consisting solely of densely grown pine trees 

within a 500x500-meter region. 
 
The omission and commission errors are more pronounced for 
the 7 Forest (FST) classes compared to the 5 aggregated classes, 
particularly between the sparse and dense tree classes, and 
especially within the sparse-dense classes of the same tree type. 
This outcome is expected despite making efforts to define 
dense-sparse classes with a 15% gap in terms of the ratio of 

LCM pixels (as shown in Figure 2) and avoiding the use of 
MODIS pixels consisting of 75-90% coniferous or broadleaved 
LCM pixels as reference data. Additionally, smaller omission 
and commission errors are observed between the sparse tree 
classes and the Mixed forest (MIX) class. This result is also 
anticipated as the definition of the MIX class (40-60% 
coniferous and 40-60% broadleaved) closely aligns with the 
definition of the sparse classes (60-75% coniferous or 

broadleaved and annotation). The definition of Forest (FST) 
categories strikes a balance between the available MODIS 
pixels and the spectral signature of each class. 
 
By examining the confusion matrix, it is useful to extract a 
summary regarding the commission and omission errors of each 
class, specifically focusing on the two most confusing classes. 
In terms of commission errors, FIR2 and MIX are false 

positively classified as FIR1, FIR1 and MIX as FIR2, PNE2 as 
PNE1, PNE1, FIR2, and GWL as PNE2, OAK2 and MIX as 
OAK1, OAK1 and MIX as OAK2, OAK2 and FIR2 as MIX, 
FIR2 and PNE2 as GWL, BRL and AGR as AFS, AFS and 
GWL as AGR, PNE2 and AFS as WBD, and finally FIR2 and 

 
Figure 4. The classified map of the study area with the derived 12 categories of this study. In subfigures a), b), c) indicative sub-
regions in Evia, northern Greece and central Peloponnese are presented, respectively. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

a) 

b) 

c) 
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MIX as BRL. The corresponding User Accuracy (UA) for each 

class can be found in Table 2. 
 
Regarding omission errors, the FIR1 class is false negatively 
classified as FIR2 or GWL, FIR2 as FIR1 or GWL, PNE1 as 
PNE2 or FIR2, PNE2 as PNE1 or GWL, OAK1 as OAK2 or 
MIX, OAK2 as OAK1 or MIX, MIX as OAK1 or FIR2, GWL 
as FIR2, PNE1, or AGR, AFS as AGR or WBD, AGR as GWL 
or AFS, WBD as PNE2 or AGR, and finally BRL as AFS, 

GWL, or AGR. The corresponding Producer Accuracy (PA) can 
be found in Table 2. 
 
Noteworthy observations regarding commission errors involve 
MODIS pixels that are classified as Agricultural land (AGR) 
instead of Artificial surfaces (AFS). Noteworthy omission errors 
include pixels from the Water bodies (WBD) class being 
misclassified as Agricultural land (AGR). The confusion 
between AGR and AFS is well-known due to temporary 

coverage of agricultural crops with man-made materials. The 
confusion between WBD and AGR could be attributed to the 
presence of rice crops in the study area. 
 
3.2 Map Validation and discussion 

 
The last step of the proposed methodology is the production of 
the map by applying the Random Forest (RF) classifier. In order 

to extract the map product, the spectralcube was utilized. 
 
In figure 4, the map with the 12 categories is presented in the 
study area. Also, 3 cases of the beekeeping targeted vegetation 
are highlighted. Figure 4.a showcases a vast pine forest located 
in Evia, part of the region of Central Greece. This particular 
forest is renowned for its pine honey production in the region. 
The RF classifier successfully identified and captured the 

presence of the dominant PNE1 (Dense pine) and PNE2 (Sparse 
pine) categories, while also smaller regions with FIR2 (Sparse 
pir), as depicted in the figure. In figure 4.b, a well-known 
beekeeping oak forest that produces large quantities of oak tree 
honey in northern Greece is presented. As presented in the map, 
the RF classifier managed to capture the oak forest. The 
selected region is dominated by OAK1 (Dense oak) and OAK2 
(Sparse oak) categories while, also, by some Agricultural land 

(AGR), Grass/Wood lands (GWL) and Mixed forest (MIX). 
Finally, in figure 4.c, a fir forest on Mt. Mainalon in central 
Peloponnese is presented, known for the production of the first 
PDO Vanilla-fir honey. Similarly, the RF classifier successfully 
classified the forest with FIR1 and FIR2 being the dominant 
categories within the region. Additionally, substantial areas of 
mixed forest and bare lands are observed, as depicted in the 
figure. 
 

In Figure 5, a map produced by the classified map with the total 
coverage area of the major forest beekeeping plants per Greek 
prefecture is presented. Important honey production regions in 
Greece present differences regarding the area coverage of forest 
beekeeping plants.  
 
As it can be concluded from the map coverage, the leading areas 
with beekeeping forests in Greece are northern mainland and 

Peloponnese. More specifically, the prefectures in northern 
mainland consist of higher percentage of mixed and oak forests 
compared to Peloponnese, where fir and pine forests outweigh 
oak and mixed forests.  
 
Some other interesting findings that were obtained in the 
present study are that the prefectures in central Greece with the 
highest percentage of fir forest coverage are Evritania and 

Fokida, with a coverage of 30.7% and 20.4%, respectively. 

Additionally, the prefecture of Samos (the islands of Samos, 
Ikaria, Fourni) has the highest percentage of pine forest 
coverage (20.15%). The prefecture of Evia follows with a 
percentage of 17.73% coverage of pine trees. Both the 
prefectures of Samos and Evia produce the well-known Greek 
pine honey.  
 
Finally, the prefectures with the highest percentage of oak tree 

forests coverage are Xanthi and Drama (40%) while findings 
yielded a 27% of oak tree coverage in Pella, Grevena and 

Kastoria. 
 

 
Figure 5. The computed national-scale map with the coverage 
of forest beekeeping plants in each Greek prefecture. 
 

 
4. CONLUSIONS 

 
This study aimed to develop a classification framework for 
mapping the main honeybee flora across the entire Greek 
territory. The framework utilized moderate-resolution satellite 
data to address the high computational resources required for 
large-scale classification. Additionally, reference data are 
generated by utilizing existing higher-resolution classification 

maps. With the developed pipeline, a method for producing 
reference data that focuses on detailed categories which are not 
present in the utilized map is presented. This was achieved 
through annotations associated with these classes and fractional 
rules used to define these specific categories. The definition of 
the fractional rules considering the available amount of 
reference MODIS that could describe with clarity the spectral 
behaviour of a class, is challenging and could lead to omission 

or commission errors, especially for quite similarly defined 
classes, like sparse, dense and mixed. 
 
The developed dataset is used for the training and the validation 
of the Random Forest classifier. Quantitative evaluation 
demonstrated the efficiency of the proposed methodology by 
achieving results of high overall accuracy of over 85% and 
average f1 score over 82%.  

 
Furthermore, through the qualitative analysis of the classified 
map, the proposed methodology managed to capture major and 
important forests of honey production in Greece as presented in 
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the previous section. In that direction, extra detailed mapping of 

the honeybee flora could serve as planning consultant for 
beekeepers and play a crucial role to rural development. 
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