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ABSTRACT: 

 

Monitoring agricultural grass fields is particularly important for meat and milk production in Northern Europe, where three harvests 

occur during a growing season to maximize yields. Reliable data on forage, including biomass and nitrogen concentration, are 

essential for making informed decisions regarding seed mixtures, fertilizer rates, and harvest timing. Miniaturized hyperspectral 

cameras mounted on unmanned aerial systems (UAS) have become increasingly accessible and efficient. These cameras, operating in 

the visible to near-infrared (VNIR) range, have shown potential in estimating grass sward quantity and feeding quality. Additional 

advancements in hyperspectral technology have emerged the short-wave infrared (SWIR) range for UAS applications, previously 

utilized mainly in laboratory and aircraft-based systems. This study aims to explore the potential of VNIR and SWIR hyperspectral 

UAS-based remote sensing in biomass and nitrogen estimation during primary and re-growth stages. Grass fresh yield and nitrogen 

concentration prediction models were built after selecting the most significant features from the cameras to cope with the high 

dimensionality of the data. Using best features and machine learning, both fresh yield and nitrogen concentration were estimated 

with normalized root mean square error better than 10%. This work contributes to the development of accurate remote sensing 

techniques, supporting sustainable agricultural practices and climate change studies. 

 

 

1. INTRODUCTION 

Closely monitoring agricultural grassland fields plays a critical 

role in fostering sustainable planning and effective resource 

management, key components of climate change studies. The 

implementation of efficient and sustainable practices is vital to 

prevent substantial environmental losses and mitigate 

biodiversity degradation resulting from agricultural expansion 

(Himanen et al., 2016). Accurate data on forage, encompassing 

biomass levels and nitrogen concentration, are of greatest 

importance when making decisions about seed mixtures, 

fertilizer application rates, and the optimal timing for 

harvesting. Grass silage is essential for ruminant meat and milk 

production in Northern Europe, where the grass is usually 

harvested three times in a growing season to maximise the 

yield. 

 

The advent of miniaturized hyperspectral cameras that can be 

mounted on unoccupied aerial systems (UAS) has become more 

efficient and accessible. RGB imaging has been the most 

common UAS-based method to estimate above-ground biomass 

(Bazzo et al. 2023). However, the multispectral cameras have 

been adopted to estimate grass properties as well (e.g. Askari et 

al. 2019; Lussem et al. 2022; Viljanen et al. 2018). The 

potential of UAV-based hyperspectral cameras operated in 

visible to near-infrared (VNIR) to estimate quantity and feeding 

quality of grass swards has been investigated in several studies 

(Wijesinghha et al. 2020, Oliveira et al. 2020, and Karila et al., 

2022).  

 

While most UAS remote sensing cameras currently operate 

within the VNIR spectral range (400-900 nm), recent 

advancements have made hyperspectral short-wave infrared 

(SWIR) range viable for UAS applications. Traditionally, SWIR 

range was mainly used for laboratory-based analysis using 

techniques such as near-infrared spectroscopy (NIRS) or field 

spectroscopy (Togeiro de Alckmin et al., 2020, Fernández-

Habas et al 2022, and Pullanagari et al., 2021), as well as using 

aircraft-based systems. 

 

Investigating the potential of both the VNIR and SWIR ranges 

is particularly important as it can provide valuable information 

on the spectral characteristics of grass for silage. Understanding 

these characteristics can enable the development of more 

targeted and accurate remote sensing techniques, allowing for 

precise estimation of yield and nitrogen levels. Furthermore, 

advancements in hyperspectral technology and ongoing research 

efforts are expected to contribute to the increased accessibility 

of these sensors in the future, provide insights for the 

development of new sensors and improved algorithms, opening 

new opportunities for their widespread adoption in precision 

agriculture applications.  

 

Jenal et al. (2020) has investigated an in-house multispectral 

VNIR/SWIR camera with four bands for grass biomass 

estimation. They verify that the camera had potential in the 

application, but more studies are needed considering a wider 

spectral range, other parameters, and more growth periods. 

Recently, Oliveira et al. (2023) investigated for the first time the 

potential of drone-based hyperspectral SWIR sensor in various 

grass parameters estimation task and compared its performance 

to hyperspectral VNIR, multispectral and RGB UAS remote 

sensing. They concluded that generally hyperspectral datasets 

and combination of them provided the best results, whereas the 
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worst accuracies were obtained using the RGB data. However, 

in Oliveira et al. (2023), only one dataset from re-growth (third 

cut) was used and as grass properties can be different for 

primary growth (first cut), it is important to study if similar 

conclusions can be drawn also in other growing conditions.  

 

The main aim of this work is to investigate the potential of 

hyperspectral UAS-based Remote Sensing sensors in biomass 

and nitrogen estimation of grass sward during primary and re-

growth, by identifying and analysing specific spectral ranges of 

each hyperspectral cameras. Two novel hyperspectral cameras 

operating in the VNIR and SWIR ranges were employed to 

collect data over grass swards for two different grows of 

consecutive years. A machine learning framework was utilized 

to estimate the grass parameters, and both cameras were 

employed independently as well as through data fusion. 

 

 

2. MATERIALS AND METHODS 

2.1 Experimental design and field data 

The experimental trial was established by the Natural Resources 

Institute Finland (Luke) in Maaninka, Finland. The experiment 

was designed with a total of 60 grass plots, including four 

replicates, three main plots and five subplots (total nitrogen 0, 

150, 250, 350 or 450 kg N ha-1 year-1). The plot dimensions 

were 1.5 m x 8 m and each plot was separated by a similar sized 

cover plot. The plant material was pure timothy (Phleum 

pratense L). The agronomic details of experiment can be found 

from Termonen et al. (2022)  

 

The trial was maintained in similar conditions in 2021 (See 

more details in Oliveira et al. 2023) and 2022. In this study, two 

cuts of grass data were used, which were collected in the third 

harvest of 2021 and the first harvest of 2022. The field sampling 

data measurements of the plots analysed in this study were fresh 

yield (FY) and nitrogen concentration (Ncont). Table 1 shows 

mean and standard deviation, minimum and maximum values of 

field measurements for each parameter. FY and Ncont range 

were highest in the first cut of 2022. 

 

Data Mean Std Min Max 

Third cut 2021 FY (kg ha-1) 8424 3825 375 13858 

First cut 2022 FY (kg ha-1) 21947 4749 6750 28417 

Third cut 2021 Ncont (%) 2.7 0.4 2.1 3.5 

First cut 2022 Ncont (%) 2.5 0.5 1.6 3.2 

Table 1: Third cut of 2021 and first cut of 2022 timothy data 

mean, standard deviation (Std), minimum (Min), and maximum 

(Max). FY: fresh yield; Ncont: nitrogen concentration. 

 

2.2 Hyperspectral UAS imagery data 

The hyperspectral UAS data collection was carried out in 

August 2021, in the third harvesting, and in June 2022 using 

two pushbroom hyperspectral cameras by Specim. AFX10 

camera operates in 400–1000 nm (VNIR) and has 2.1 kg and 

had a spectral resolution of 5.5 nm, a spectral sampling of 2.68 

nm, spectral binning of 2, 224 bands, 1024 spatial pixels and 

focal length 15 mm. The AFX17 camera operates in 900–1700 

nm (SWIR) range (2.4 kg, no spectral binning) had a spectral 

resolution of 8 nm, a spectral sampling of 3.5 nm, 224 bands, 

640 spatial pixels, and a focal length of 18 mm (Specim, 2023). 

The flights were conducted from approximately 100 m above 

ground level, with same trajectory using one camera at a time, 

each mounted on a DJI Matrice 600. In 2021, the flights were 

carried out 26 August 2021 and, in 2022, the flights with 

AFX17 (SWIR) and AFX10 (VNIR) were done on 13 June and 

15 June, respectively. 

 

The raw image pixel values of AFX datasets were transformed 

to the units of radiance using the Specim CaliGeoPRO v2.3.12 

software. The AFX10 datasets from both years were collected 

under uniform conditions, whereas the AFX17 datasets was 

collected under in varying conditions. The datasets of 2022 had 

slight worse orthorectification quality due to technical issues on 

the cameras GNSS/IMU and gimbal. The reflectance 

transformation was performed using empirical line method with 

four reflectance reference panels of 1 m × 1 m size and nominal 

reflectance equal to 50%, 25%, 10%, and 5%, for 2021 datasets, 

and two panels (50% and 5%) for 2022 datasets. Figure 1 shows 

the orthomosaic of AFX10 camera for each dataset. 

 

 

Figure 1. VNIR (AFX10) orthomosaics for third cut of 2021 

and first cut of 2022. 

 

2.3 Correlation analysis and grass parameter estimation 

The estimation process involved three main steps: feature 

extraction, feature selection, and supervised learning. Several 

spectral features were extracted from each camera reflectance 

orthomosaic for each grass plot (8 m x 1 m). Spectral related 

statistics features were 1,880 features, for VNIR, 1750 features, 

for SWIR (see Nevalainen et al. 2017). Besides, simple band 

ratio (SBR) of the reflectance spectra (Chappelle et al., 1992) 

and two-band normalised difference (NBR) (Thenkabail et al., 

2013) were computed to for all band combinations. This 

resulted in 17578 combinations for VNIR and 15225 

combinations for SWIR. After feature extraction, relationship 

between individual features and grass parameters were analysed 

and Pearson correlation coefficient (PCC) was used as a metric. 

 

To refine the feature set, a recursive feature selection cross-

validation (RFECV) method was used, implemented in Scikit-

learn, with 10-fold cross-validation based on the random forest 

(RF) estimator's importance. Random Forest is a supervised 

machine learning algorithm. During the RFECV process, the 

feature importance starting with all features, and then iteratively 

dropping one or a few features until the minimum number of 

features (limited to 40) was reached. The final set of selected 

features was chosen based on the mean results from the 

different splits, and the best scored iteration was selected. The 

selected features were used to create RF FY and Ncont 

prediction models. The accuracy of the models was assessed 

through leave one out cross validation (LOOCV).  
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The performance of the hyperspectral data was tested by 

building models VNIR dataset and SWIR dataset and by 

combining both features dataset (VNIR-SWIR). Besides, each 

cut was predicted independently and combined. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Fresh yield 

The PCC values between FY and several spectral bands were 

higher for the third cut 2021 than for first cut 2022. The best 

PCCs where found in range 745 nm – 1300 nm for both FY 

(Figure 2). Interestingly, the PCCs between FY and bands from 

green area (550 nm) were relatively high (0.86) in re-growth 

(third cut) dataset in comparison to first cut dataset from 2022 

(0.2). Furthermore, in area in range 1500 – 1700 nm the PCC 

varied more in third cut dataset (0.28-0.88) than in first cut 

dataset (0.65-0.75) 

 

 

Figure 2. The Pearson correlation coefficients (PCC) for 

individual bands of VNIR and SWIR cameras and fresh yield 

(FY), in third cut of 2021 and third cut of 2022. 

 

Normalized band ratio indices among each camera band also 

presented high correlations for both VNIR and SWIR cameras, 

with PCCs of -0.98 (Figure 3). Band ratio indices draw 

relatively similar figure for VNIR sensor in both datasets but 

SWIR sensor some changes were visible. For instance, the band 

ratios created from bands from 1500-1700 nm showed positive 

PCC for third cut data but for the first cut the PCC were small 

and mainly negative. The relationship is in line with earlier 

experiments using ground spectrometers (for example Psomas 

et al. 2011) 

 

 

Figure 3. Pearson correlation coefficients (PCC) for 

Normalized band ratio indices of VNIR and SWIR cameras and 

fresh yield (FY), in third cut of 2021 and first cut of 2022. 

 

Table 2 presents the RMSE and NRMSE and R2 resulting from 

the LOOCV for FY estimation, organised by sensor and 

sensors, and it shows results for each cut separately as well as 

for both cuts combined in the estimation dataset.  

 

Considering the estimation for the third cut of 2021, the features 

from VNIR-SWIR achieved the best performance (NRMSE 

8.42%), while the results from using only VNIR and SWIR 

were comparable (VNIR: NRMSE 9.59% and SWIR: NRMSE 

9.29%). This reflects the high correlation levels noticed in both 

VNIR and SWIR (Figure 2). 

 

For first cut of 2022, the fusion of VNIR-SWIR (NRMSE 

6.15%) and VNIR (NRMSE 6.64%) had similar performance 

and better results than the estimation using only SWIR features 

(NRMSE 8.28%). 

 

Comparing both cuts’ results, the third cut obtained best 

absolute accuracies as the RMSEs were smaller than for the first 

cut, but worse relative accuracy (higher NMSEs). This is likely 

related to the lower variation and range of the third cut training 

dataset (see Table 1). 

 

The combination of the different cuts presented best NRMSE of 

10.33% and RMSE 1563 kg ha-1, obtained by VNIR-SWIR. 

Although, the model had not improved the accuracy when using 

two cuts, the datasets present a relatively good degree of fit 

(Figure 4). 
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Fresh Yield 

Data Feature group 
RMSE (kg 

DM ha-1) 

NRMSE 

(%) 
R2 

3rd cut 2021 

VNIR 808 9.59 0.96 

SWIR 779 9.25 0.96 

VNIR-SWIR 709 8.42 0.97 

1st cut 2022 

VNIR 1457 6.64 0.90 

SWIR 1816 8.28 0.85 

VNIR-SWIR 1350 6.15 0.92 

3rd cut 2021 and 

1st cut 2022 

VNIR 1630 10.77 0.96 

SWIR 1666 11.01 0.96 

VNIR-SWIR 1563 10.33 0.96 

Table 2: Fresh yield leave-one out cross validation using third 

cut of 2021 and first cut of 2022. RMSE: root mean square 

error, NRMSE: normalized RMSE and R2: coefficient of 

determination. 

 

 

Figure 4. The relationship between the predicted and observed 

values for the fresh yield (FY) (LOOCV – Leave-one-out cross 

validation) using VNIR and SWIR features combined, in third 

cut of 2021 and first cut of 2022. 

 

3.2 Nitrogen concentration 

PCC values for Ncont were higher for first cut 2022, mainly in 

the wavelengths between 400 and 500 nm and 700 and 800 nm, 

which are recognized for their sensitivity to nitrogen (Figure 5). 

Overall, PCCs were lower for Ncont than for FY, with values 

slightly over 0.65 for in spectral ranges 770 nm – 1335nm and 

1670 nm – 1695 nm (Figure 5). Similarly, to FY (Figure 2) the 

correlation between in bands from green area and Ncont was 

higher in the third cut data than in first cut dataset. The 

normalized band ratios of the VNIR camera presented higher 

PCCs values (maximum PCC 0.76) than the SWIR normalized 

ratios (maximum PCC 0.64) (Figure 6).  

 

 

Figure 5. The Pearson correlation coefficients (PCC) for 

individual bands of VNIR and SWIR cameras and nitrogen 

concentration (Ncont), in third cut of 2021 and third cut of 

2022. 

 

 

Figure 6. Pearson correlation coefficients (PCC) for 

Normalized band ratio indices of VNIR and SWIR cameras and 

nitrogen concentration in third cut of 2021 and first cut of 2022. 

 

Overall, the results for Ncont estimation (Table 3) of the third 

cut of 2021 were similar. At the best NRMSE 8.04% and RMSE 

0.22% using only VNIR features. VNIR_SWIR dataset 

presented slightly higher NRMSE 8.62% and RMSE 0.23% and 

SWIR alone obtained NRMSE 9.01% and RMSE 0.24%.  

 

The first cut of 2022 estimation outperformed the results of the 

third cut 2021. As expected, based on the higher PCCs of VNIR 

range with Ncont than the SWIR range (Figure 5), the VNIR 

dataset (NRMSE 5.4% and RMSE 0.13%) had clearly better 

accuracy than the SWIR (NRMSE 9.2% and RMSE 0.23%). 

Thus, the combination of VNIR and SWIR features did not 

improve the results obtained using only VNIR. 

 

The results of the using third and first cuts combined slightly 

improved the third cut results but not the first cut. Combined 

model showed slightly overestimated values for low and 
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underestimated values for samples with high nitrogen 

concentration (Figure 7). 

 

Nitrogen concentration 

Data 
Feature 

group 
RMSE  

NRMSE 

(%) 
R2 

3rd cut 2021 

VNIR 0.22 8.04 0.65 

SWIR 0.24 9.01 0.56 

VNIR_SWIR 0.23 8.62 0.60 

1st cut 2022 

VNIR 0.13 5.40 0.92 

SWIR 0.23 9.20 0.76 

VNIR_SWIR 0.14 5.55 0.91 

3rd cut 2021 

and 1st cut 

2022 

VNIR 0.20 7.60 0.79 

SWIR 0.23 8.94 0.72 

VNIR_SWIR 0.20 7.54 0.80 

Table 3: Nitrogen concentration leave-one out cross validation 

using third cut of 2021 and first cut of 2022. RMSE: root mean 

square error, NRMSE: normalized RMSE and R2: coefficient of 

determination. 

 

 

Figure 7. The relationship between the predicted and observed 

values for the nitrogen concentration (LOOCV – Leave-one-out 

cross validation) using VNIR and SWIR features combined, in 

third cut of 2021 and first cut of 2022. 

 

 

4. CONCLUSIONS 

This study investigated the potential of two new hyperspectral 

UAS-based Remote Sensing sensors operating in VNIR and 

SWIR spectral ranges in biomass and nitrogen estimation of 

grass sward during primary and re-growth, by identifying and 

analysing specific spectral ranges of each hyperspectral 

cameras. This study showed that ultra-high resolution 

hyperspectral sensors provide accurate data for biomass (fresh 

yield) and nitrogen concentration estimation in two different 

growing conditions. The VNIR outperformed SWIR camera for 

the first cut for both FY and Ncont, and slightly for the third 

cut. However, more studies are needed to build robust 

estimation models able to handle more challenging conditions, 

such as different growing conditions and mixed grass species.  
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