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ABSTRACT:  

 

Traditional bridge inspections present considerable challenges in terms of efficiency and accuracy. However, recent advancements in 

Unmanned Aerial Systems (UASs) and deep learning for object detection have opened up new avenues for automatic bridge damage 

detection. We present a comprehensive framework leveraging these technologies for automated damage detection in UAS imagery, 

followed by accurate mapping of the damage predictions on photogrammetric models. In this work, we propose a photogrammetric 

procedure to retrieve geolocated bridge models solely based on Real-Time Kinematics (RTK) information. Within the damage 

detection step, we conduct extensive testing and optimization of model hyperparameters using YOLOv8 and Slicing Aided Hyper 

Interference (SAHI). Next, we map the predictions onto the 3D model using ray casting, allowing to group and filter the predictions 

by their area and position. Finally, a Graphical User Interface (GUI) allows bridge inspectors to identify false positive predictions, 

generate new training data, and directly measure damage dimensions in the images. Validation on a concrete box girder bridge resulted 

in a photogrammetric model with a mean error of 1.3 cm, negating the need for ground control points. Our model training process 

revealed substantial performance variations between training and test datasets, underscoring the importance of evaluating optimal 

hyperparameters on UAS inspection images rather than relying on the validation metrics. Lastly, we successfully map the detected 

damage and create new training data from the UAS inspection images. This framework significantly enhances bridge inspection 

accuracy and efficiency, providing a strong foundation for future developments in automated bridge inspections. 

 

 

1. INTRODUCTION 

Bridges, key elements of infrastructure, link cities, enable trade, 

and ensure public safety. With traffic loads often surpassing 

original expectations and environmental factors exerting constant 

pressure, many of these crucial structures are approaching their 

intended lifespan's limit. To ensure the continued health and 

functionality of these structures, it is vital to perform thorough 

inspections and detect potential damages at the earliest possible 

stage. Traditional bridge inspections struggle with cost-

effectiveness, safety, and accuracy.  Conventional techniques 

like under-bridge vehicles or rappelling disrupt traffic and are 

time-consuming, making timely inspections a challenge for 

authorities. 

 

Amidst the ongoing technological evolution, the application of 

UASs in bridge inspections emerges as a notable advancement. 

These systems present an alternative that not only improves cost-

efficiency and safety but also substantially mitigates traffic 

disruptions, and facilitates access to previously unreachable 

sections of bridge structures. The integration of machine 

learning, specifically deep learning algorithms, has further 

propelled this technological shift, enhancing the proficiency of 

UAS-based inspections. However, several challenges remain to 

enable accurate automated UAS-based bridge inspections. 

 

To further maximize the effectiveness of the UAS inspection 

procedure, it is imperative that the photogrammetric model is 

highly precise. Minimizing field work is a critical factor; hence, 

the reliance on ground control points should be minimized, and 

the focus should shift towards leveraging the RTK data from the 

UAS for photogrammetric reconstruction. 

 
*  Corresponding author 

 

In regards to the automatic detection of bridge damages, one key 

limitation is the discrepancy of training images obtained from 

decades of conventional bridge inspections and the UAS image 

quality obtained from inspection flights. The optimal 

combination of these hyperparameters is not a one-size-fits-all 

scenario, but rather, it should be fine-tuned based on the UAS 

inspection images. In the pursuit of exhaustive damage detection, 

even predictions with low confidence should be factored into 

consideration. While this approach may lead to an increased 

number of false positives, it significantly reduces the risk of 

overlooking potential damage. However, further advancements 

in filtering the false positive predictions are necessary to assure 

efficient and reliable inspections. In this research, we emphasise 

on identifying bridge damages, particularly exposed rebars, by 

adopting a three-staged strategy: (1) the development of a 

photogrammetric model based exclusively on the RTK data from 

UASs, (2) the analysis of performance changes while fine-tuning 

the hyperparameters of a state-of-the-art object detection model, 

and (3) the localization and filtration of potential damage 

instances. 

 

The structure of this paper is as follows: Chapter 2 offers an 

overview of existing literature in this field. Chapter 3 presents 

our methodology, shedding light on the process of creating a 

UAS-based photogrammetric model of the bridge, training the 

damage detection model, and implementing post-prediction steps 

to locate and filter potential damages. We validate our proposed 

method through a case study of a complex multiple concrete box 

girder bridge in Chapter 4. The subsequent chapters, 5 and 6, 

deliver our findings and subsequent discussions, ultimately 

evaluating the efficacy of our proposed methodology. 
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2. RELATED WORK 

In this section, we provide an overview of studies related to 

automated routine bridge inspections. We focus on (1) the role of 

UASs in creating accurate 3D models of bridges, and (2) the 

challenges often encountered in object detection using machine 

learning, particularly when applied to UAS bridge inspections. 

 

2.1 UAS based photogrammetric bridge models 

Advancements in photogrammetry have presented promising 

alternatives for surveying and digitizing existing bridges. 

Particularly, UASs have emerged as a potent tool, offering 

numerous advantages over traditional terrestrial laser scanning 

(TLS) for creating 3D models of bridges. Chen et al. (2019) 

highlighted that UAS photogrammetry is not only cost-effective 

but also reduces labour on-site. Furthermore, they reported a 

more equal distribution of point density than the TLS as well as 

an increased coverage of the reconstruction for extensive flight 

routes. The reported geometric accuracy of the resulting 

3D reconstructions ranges from 5 mm (Hallermann and 

Morgenthal 2016) to 32.2 mm (Chen et al. 2019) compared to 

check points and TLS. However, reported challenges of using 

UAS photogrammetry for bridge digitization include sensitivity 

to weather conditions, and difficulties in capturing slender 

objects like railings or surfaces with minimal features (Otero and 

Gagliardo 2015). Another challenge in UAS photogrammetry is 

the geo-localisation of the reconstruction and a frequently 

occurring convex deformation of the models, the so-called dome 

effect (James and Robson 2014). It has been found that the use of 

Ground Control Points (GCPs) can reduce the deformations by 

introducing local constrictions (Tscharf 2020), but presents a 

time consuming effort (Rock et al. 2011). Using the UAS-RTK 

information has the potential of minimizing the need for 

deploying the GCPs, while achieving comparable geometric 

accuracy of the resulting models. In a land survey, Štroner et al. 

(2021) achieve a accuracy of the resulting model of up to 3 cm, 

proving the potential of this approach. However, the process and 

the achievable accuracy of solely based on RTK-UAS imagery 

has still to be investigated for the use of bridge inspections. 

 

2.2 Damage detection in UAS images 

In the past years, various machine learning architectures have 

been developed to detect various damages in steel, concrete and 

masonry structures. Recent research, underscores the remarkable 

capabilities of contemporary object detection models, illustrating 

their success in accurately identifying cracks as narrow as 

0.2 mm (Ding et al. 2023). An extensive overview of available 

detection models for bridge inspections is given in 

Toriumi et al. (2021).  

 

However, applying object detection to bridge damage detection 

poses several challenges. Large training datasets for this purpose 

exist, sourced from a lengthy history of conventional bridge 

inspection documentation. These datasets typically comprise 

images from a diverse range of camera types, such as high-

resolution cameras, smartphones, and tablets. Consequently, the 

camera quality, perspective angle, and ground sampling 

resolution significantly differ from the imagery produced by 

UAS inspections. This discrepancy is known in machine learning 

as the so-called domain shift and creates a substantial challenge 

(Bukhsh et al. 2021). Therefore, these models frequently 

underperform in the context of UAS bridge damage detection due 

to a lack of specialized training data.  Another challenge is related 

to the small object size of the damages within the images (Mittal 

et al. 2020). A sliding window approach has been proposed to 

tackle this challenge. This method has demonstrated a 

performance increase of up to 14.5% on several benchmark 

datasets and is compatible across a wide range of commonly used 

object detection architectures (Akyon et al. 2022). However, 

these challenges have not yet been specifically investigated in the 

context of UAS bridge damage detection. 

 

In various studies, bridge damage detection was successfully 

applied. Liang et al. (2023) achieved an Average Precision (AP) 

of 0.67 to automatically detect exposed bars in UAS images. 

Lastly, ray casting has been proposed to map the damage 

detection onto 3D models (Lin et al. 2021). This allows to group 

the predictions, leading to an improvement of up to 3.5% in AP. 

However, the impact of further spatial filtering techniques on the 

overall damage detection performance has yet to be investigated.  

 

This research builds upon the project initiated by 

Bartczak et al. (2023) and focuses on the advancement of a 

comprehensive bridge inspection procedure. The envisioned 

framework, as detailed in Fig. 1, advocates for recurring UAS 

inspection flights, automated damage detection, damage 

mapping, and includes an expert-in-the-loop review stage in data 

management. This paper showcases our advancements in 

stages 2 (RTK-based photogrammetric reconstruction), 3 (model 

training), 4 (spatial filtering), and 6 (Reporting to experts).  

 

Fig. 1. Overall framework for comprehensive UAS-based bridge inspections. All images are part of the case study of this work. 

  2. Photogrammetric Reconstruction 1. Flight Planning  3. Damage Detection 

5. Damage Characterisation 4. Mapping and spatial Filtering 6. Reporting to Experts 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1873-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1874



 

 

3. METHODOLOGY 

This chapter details our refined methodology for UAS-based 

bridge inspection. It primarily focuses on the facilitation of 

photogrammetric processing using RTK data (3.1), the 

exploration of ideal hyperparameters and datasets for training 

damage detection models (3.2) and a spatial filtering technique 

designed to enhance detection performance (3.3). 

 

3.1 UAS-RTK based photogrammetric reconstruction 

In this phase of our framework, we integrate the image 

acquisition stage the with photogrammetric processing, 

proposing an RTK-based method to scale and geolocate the 

3D models, thereby reducing onsite effort. 

 

Given the inconsistent reliability of RTK information for camera 

positions under the deck, we adopt a purely feature-based 

alignment. Therefore, we first remove all GPS data from the 

cameras to ensure dependable image registration. This approach 

capitalizes on the rich feature set of typical bridge imagery and 

employs sequential image pairing to avoid misalignments and 

inaccuracies potentially introduced by additional constrictions of 

the RTK information. In a subsequent photogrammetric stage, we 

align only the top-view images of the bridge (Fig. 2), this time 

incorporating the RTK information. To safeguard traffic, this 

flight path is maintained at a substantial distance from the bridge, 

consequently providing a more reliable GPS signal. The 

photogrammetric reconstructions from both stages are 

subsequently aligned based on the identical cameras. Finally, we 

segment the geolocated 3D bridge model into the structural 

components, such as ground pillars, underdeck, pier cap, and 

others. 

 

To assess the efficacy of this proposed method, we design a case 

study to generate multiple photogrammetric models using the 

same images but including varying levels of RTK information. 

The fundamental assumption of our research is that this process 

will yield more accurate 3D models. To verify this, we compare 

the accuracy of the resulting dense point clouds against a TLS 

using a Cloud-to-Cloud (C2C) comparison. This TLS is 

georeferenced using six Leica targets surveyed with an Emlid 

Reach RS2+. In order to evaluate absolute accuracy, no further 

alignment between point clouds is performed. 

 

3.2 Object detection model training for damage detection  

One key challenge in deploying object detection models for 

UAS-based bridge inspections is mitigating the domain shift 

between inspection documentation images, used for training, and 

the UAS-acquired images used in model deployment. The 

optimal combination of various model parameters is crucial to 

superior model performance. We conduct a systematic study to 

understand the impact of different hyperparameter settings, 

iteratively adjusting the variables as outlined in Fig. 3. Our goal 

is to identify the optimal parameter combination to maximize our 

damage detection models' performance. 

 

In the initial data processing stage, a quality control filter is 

applied to the raw images, ensuring they meet a basic threshold 

of quality and consistency. Roboflow (2023) is used for damage 

annotation, with stricter filtering conditions applied to establish 

two baseline datasets; (A0) featuring original annotations, and 

(B0) comprising only the largest and most visible damages. To 

address the issue of object size disparity between the training data 

and UAS inspection imagery, we analyse images from an 

inspection flight along the pier caps. We adjust the training 

 

 

 

 

Fig. 2. RTK-based point cloud with camera positions: green 

and blue cones represent cameras with optimal GPS signal, 

while red cones indicate impaired GPS signal. 

Fig. 3. Discrepancy between the training dataset and the inspection images. The histogram shows the distribution object sizes in 

the different datasets used for training and evaluation. The model training stage concludes the investigated settings in this work. 

• Prediction image sizes:  

600 - 5280 
• w/ and w/0 SAHI 

• Sliding window sizes: 

 400 – 1200 pixels 

• Confidence Threshold 

• Model sizes: Nano, Small, 
Medium pretrained on COCO  

• Image size: 400 – 1200 pixel  

Object detection model 

Prediction 

Dataset selection 

• Filter raw dataset 

• Augmentation: 90° Tilt 

• Dataset adjustments: A1, A2, B1, B2 

Raw training images 

UAS inspection images 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1873-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1875



 

datasets, including (A/B1) only the intersection of object sizes 

and (A/B2) only the largest 50 % of the objects. Additionally, 

data augmentation, is employed separately via a 90° rotation of 

the images. In the training phase, multiple object detection 

models are trained, with hyperparameters such as image size and 

model size iterated. In the prediction phase, SAHI is used 

additionally to handle the small object problem, iterating between 

various window sizes and confidence thresholds.  

 

The model performance evaluation involves assessing recall and 

precision metrics. Since we opt on minimizing missed damages, 

we primarily focus on the F2-score over the AP. All models are 

evaluated first on the validation images in the training dataset and 

second on the inspection images (E1). Since the inspection data 

includes very minute damages, we created a third dataset only 

including the largest objects (E2). The best performing models 

are subsequently deployed in the last step of our proposed 

framework.  

 

 

3.3 Damage mapping and spatial analysis 

The raw predictions of the damage detection model, may include 

large numbers of false positive predictions. To improve the 

performance metrics, we map the predictions in the images onto 

the 3D model derived from the photogrammetric process. 

Concretely, we utilize the Geomapi library (2023) to cast rays 

originating from the camera positions, targeted at the centre point 

of each prediction bounding box, and determine the intersection 

point on the 3D model. This process serves multiple purposes: it 

eliminates false positive predictions that don't intersect with the 

bridge model, groups potential damages based on their location, 

allows for spatial filtering over the damage candidate area, and 

extracts semantic information, such as the specific bridge 

component impacted. 

 

In practice, our framework adopts an Resource Description 

Framework (RDF) architecture comprised of several nodes, as 

illustrated in Fig. 4. In our spatial filter approach, we first group 

potential damage sites based on the distance d1, between the ray-

casted prediction centre points. We then approximate the damage 

area by dividing the convex hull of all 3D points, including the 

corner points, into triangles and summing their areas, a method 

based on Heron's formula. The centroid of the damage area is also 

computed as the mean position of all the centre points. Finally, 

we apply a threshold filter to the surface area to filter out 

irrelevant or unrealistically large damages. We process both the 

ground truth annotations and predictions through this pipeline, 

compare the results using a distance tolerance d2, and then 

calculate the final F2-score for evaluation and visualization 

 

For visualization and further inspection, a user interface is 

utilized. This GUI presents all images associated with a specific 

damage prediction simultaneously, allowing inspectors to gauge 

the likelihood and severity of potential damage more effectively. 

Furthermore, inspectors can refine the labels of an image, thereby 

creating more accurate training data for future object detection 

processes. The GUI is also equipped with functionality to 

perform ray casting based on specific points selected within the 

image. This feature enables the calculation of 3D distances 

directly from inspection images, providing inspectors with the 

tools necessary to accurately assess the dimensions of identified 

damage within the image. Furthermore, it allows to swiftly 

annotate new training images, improving the damage dection 

process.   

 

4. CASE STUDY 

To validate the proposed framework, we conduct a case study, 

inspecting a 30x30 m section of a concrete highway bridge in 

Ghent, Belgium. This site is chosen for the real-world challenge 

it presents, featuring a complex four box-girder cross section, 

high traffic conditions and visible damages, including exposed 

bars along the pier caps. The inspection is carried out using a DJI 

Mavic 3 Enterprise. 

 

4.1 Photogrammetric processing 

To evaluate our proposed processing strategy, we conduct a 

photogrammetric flight gathering 1523 images in 1.5 hours. We 

then conducted a series of iterative reconstructions of the bridge, 

each time modifying only the amount of RTK data. As a baseline, 

we processed all images with their associated RTK data. In the 

subsequent iteration, this was reduced to 267 positions, captured 

 

 

Fig. 4. Visualization of ontology. The Euclidean distances d1 and d2 as well as the meanArea are used to group and filter the 

predictions, reducing the number of instances and false positive predictions. 
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from above or adjacent to the bridge (Fig. 2). This number was 

further decreased to 54 in the following iteration, utilizing images 

from a single side of the structure. As proposed in this work, for 

the following iterations we exclude all RTK information during 

the photogrammetric process. Instead, we perform a separate 

alignment using the 267 images with RTK data, resulting in a 

distinct reconstruction and registered camera positions. The 

initial relative alignment, is then scaled using the camera 

positions from this separate alignment. Across these iterations, 

all models were processed under identical photogrammetric 

settings. The results are presented in Table 1.  

 

In the course of the experiment, we observe significant 

misalignments and disrupted geometries. This is especially 

apparent in the third iteration where we use 267 images taken 

from above the bridge for camera alignment. In this case, the 

dense point cloud of the bridge deck is reconstructed separately 

and disoriented from the rest of the model. The second iteration, 

which utilized 54 georeferenced images results in a consistent 

point cloud reconstruction, but fails to register all cameras 

successfully. Ultimately, our proposed procedure achieved the 

best geometric accuracy with a mean distance of 1.3 cm, and 

successfully aligned all images. 

 

Our investigation into photogrammetric processing outlines a 

strategy for generating highly accurate 3D bridge models. We 

conclude that our approach leads to slightly better geometric 

accuracy of the resulting point cloud while assuring that all 

cameras are registered successfully. To further analyse the 

results, we examine two cross-sections, as depicted in Fig. 5. The 

largest discrepancy is observed in challenging areas with 

insufficient camera coverage, such as between the box girders at 

the abutment, showing a maximum local variation of 5.1 cm. 

Notably, these regions also present difficulties for the TLS 

method, which exhibits reduced coverage and locally missing 

segments. In fact, conducting a TLS survey for the top part of the 

bridge is not feasible due to high traffic. In fact, conducting a 

TLS survey for the top part of the bridge is not feasible due to 

high traffic. This highlights the practical advantages of the UAS 

RTK surveying method in situations where traditional methods 

are not applicable. 

  

4.2 Model Optimization for Damage Detection 

In our case study, we conduct an experiment aimed at 

automatically detecting bridge damages. Specifically, the chosen 

site provides a total 26 exposed bars of sizes ranging 

approximately from 1.5 to 30 cm. We train and evaluate several 

YOLOv8 models, following the procedure outlined in 

Section 3.2. Fig. 6 provides the F2-score of ten trained models 

across varying image sizes and training datasets.  

 

Baseline Datasets: 

The labelling process results in a second baseline dataset B0 

containing only the most visible objects. Although the trained 

models show performance increase in detecting the larger objects 

of up to 30% using a training image size of 800 pixels, the 

F2-score on all objects is significantly lower.  

 

Data Augmentation: 

We find that a 90° image tilt enhances the performance of models 

trained on dataset B, resulting in an average F2-score increase of 

7%. Conversely, models trained on dataset A show an average 

F2-score decrease of about 11% under the same conditions. This 

discrepancy may be due to the greater impact of augmentation on 

smaller datasets. 

 

Dataset Adjustment: 

The adjustments to the training datasets have a modest impact on 

performance for models trained on dataset B. In some instances, 

the F2-score increases up to 7% for the detection of larger 

evaluation objects (E2). However, these adjustments do not 

significantly alter the overall performance consistently. 

 

Model parameter size: 

We iterate the model sizes using the nano, small and medium 

sized models provided by Ultralytics (Jocher et al. 2023), which 

are pretrained on the COCO dataset. For smaller image sizes, the 

model size does not significantly affect performance. The highest 

F2-score is achieved by a medium model at 800 pixels, which is 

the largest model and image size combination feasible on our 

GPU. Here, the performance is increased by 2.1% compared to 

the smaller model size. Comparing the effect on the Datasets A0 

and B0, we observe a decrease in performance for dataset A0 

when evaluating on the UAS dataset, while the performance of 

dataset B models increases (Fig. 7). 

 

Training image size: 

Analysis of our experiments suggests that larger training image 

size generally leads to improved model performance of up to 

9.1 %. However, models with a training image size of 1000 pixels  

significantly underperform, presumably due to outliers. The 

maximum processable image size on our Geforce RTX 2080 TI 

GPU Server was 1200 pixels. 

 

 

 

Table 1. Geometric accuracy of photogrammetric dense 

point clouds compared to TLS 

Geolocation procedure 

Number of  

RTK 

Images 

Mean 

Distance  

[cm] 

Standard 

Deviation 

[cm] 

Including RTK data 1523 26.1 22.5 

Including RTK data 54 1.5 2.0 

Including RTK data 267 109.1 108.2 

Post alignment 54 1.9 2.0 

Post alignment 267 1.3 1.8 

 

Fig. 5. Cross-sections of final dense point cloud at the 

abutment (top) and the columns (bottom) the colour range is 

set between 0 (blue) to 6 cm (red). 
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Prediction with SAHI: 

Considering the small size of the damages in the images, we 

incorporate SAHI on a selection of the higher-performing 

models. We compare performance metrics with and without 

SAHI integration in the prediction stage. Notably, we find that 

SAHI generally enhances recall, although this is offset by 

significantly lower precision metrics. However, we do not see a 

consistently higher F2-score compared to predictions without 

SAHI. The best performance occurs when the sliding window 

size matches the training image size of the models 

 

Our comprehensive analysis of object detection models reveals a 

complex relationship between model performance and various 

factors such as training dataset choice, object size distribution, 

and hyperparameter tuning. Notably, aligning the object sizes 

within the training dataset with those in the inspection images 

does not improve model performance consistently. Instead, we 

observe better performance from models trained on larger 

datasets featuring varied object sizes. Furthermore, while 

increasing image size during training generally improves results, 

we found an optimal image size of 800 pixels for our UAS image 

evaluation. The prediction stage emphasizes the importance of 

selecting appropriate parameters for image size, as the sliding 

window approach leads to both a higher true positive and false 

positive prediction rate. Given these findings, we select the 

model shown in Table 2 for further processing. 

 

4.3 Spatial analysis 

After deploying the selected damage detection model on the 

inspection flight data, we use our method as explained in 3.2 to 

map the damages onto the mesh as shown in Fig. 8. Concretely, 

we use the chosen model to predict damages on 121 images from 

an inspection flight of approx. 5 m distance to the pier cap, 

resulting in 474 predictions. The proposed spatial filtering 

procedure successfully filters out 17 damages with a smaller area 

than 1.6 cm² and 6 false predictions with an area larger than 

1.5 m². Filtering out the false positive predictions and 

insignificant annotations, results in an increased F2-score of 0.60, 

with a successful recall of 0.93. This result underscores the 

significance of spatial filtering techniques in automated damage 

detection procedures. Finally, we analyse the missed detections 

utilizing the damage area predicate of the RDF.  

 

To visualize the final detection results, we use our GUI as shown 

in Fig. 9. With a manual effort of approx. 15 minutes for the 

remaining 57 instances, the last false positive predictions are 

filtered, and the annotations corrected, allowing to use the 

inspection images as training data to improve the detection 

model. Additionally, we were able to approximately measure the 

size of the detected damages. Lastly, we include the final results 

in a report, detailing damage dimensions, location and damaged 

bridge component. 

  

Figure 6: Model performance comparison based on F2-

score across varying image sizes (400, 600, 800, 1000, and 

1200 pixels) for baseline datasets A and B. Each model is 

evaluated on the validation dataset, all objects (E1) and 

large objects (E2) in the UAS inspection datasets. 

 

 

Table 2. Parameters of selected model. 

Parameter  Setting 

Training Dataset B0 

Training image size 800 

Model size Small 

Augmentation yes 

Dataset adjustment Not applied 

Recall 0.48 

Precision  0.40 

F2-Score 0.41 

Epochs  137 

Batch 16 

Confidence 0.4 

SAHI window size 800x600 

 

Figure 7: Model performance comparison based on F2-

-score across varying model sizes (Nano, Small and 

Medium) for baseline datasets A0 and B0, trained on an 

image size of 600 pixels.  

Table 3. Results of spatial analysis. 

Parameter Number of 

predictions 

Ground 

Truth 

Total predictions 474 26 

Not intersecting mesh 12 0 

Remaining after grouping 80 26 

Remaining after spatial filter 57 15 
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5. DISCUSSION 

In the following section we discuss the results of our experiments 

in the larger context of the overall framework and reflect. 

 

The initial phase of our project involves photogrammetric 

processing to create highly accurate and geolocated dense point 

clouds. Impressively, these precise models were achieved 

without the reliance on GCPs, which traditionally constitute a 

significant portion of photogrammetry efforts. We observed no 

systematic deformations due to errors in camera orientation, 

countering previous studies' findings, such as those reported by 

Štroner et al. (2020). However, the resulting mesh models were 

less accurate than the evaluated dense point clouds, owing to the 

use of low photogrammetric settings for numerous model 

reconstructions. This discrepancy can potentially be rectified by 

increasing the computed point count. Importantly, the high-

quality model texture allows for visual verification of the 

detection and mapping results from the automated pipeline, 

affirming the accuracy of our methodology (Fig 8). Furthermore, 

the procedure of aligning new images e.g., from new inspection 

epochs, to the existing project, allows to retrieve highly accurate 

camera positions even in GPS restricted environments. The 

ability to accurately register new inspection flights is crucial in 

the context of our overall framework of recurring UAS bridge 

inspections, reinforcing the robustness of our methodology. All 

in all, RTK-UAS photogrammetry shows great potential in 

surveying and digitalizing bridges, especially for sites where TLS 

is difficult due to spatial constrictions, such as very high altitudes, 

inaccessible sites or high traffic on site. 

 

In evaluating our trained damage detection models, we note a 

substantial performance discrepancy between the validation 

dataset and the UAS-derived evaluation dataset. At the same 

time, utilizing large amounts of the available training data from 

conventional bridge inspections improves the models’ 

generalization ability. This discrepancy can potentially be 

reduced by incorporating annotated UAS inspection data into the 

validation set and iteratively retraining the model. Our GUI plays 

a pivotal role in this iterative refinement process. It enables 

bridge inspectors to effortlessly annotate UAS inspection data 

with each conducted inspection, contributing to a progressively 

enriched training dataset that bolsters model performance. 

Furthermore, the addition of unannotated 'negative' examples, 

such as joints misinterpreted as exposed bars, can aid in fine-

tuning the model's predictive accuracy. Collectively, these 

findings underscore the crucial role of meticulously curated, 

annotated UAS inspection data, and our GUI's utility in 

improving the precision of bridge damage detection. 

 

Our case study highlights the immense potential of damage 

mapping and spatial filtering for more effective UAS bridge 

inspections. By grouping filtering the predictions onto the 3D 

model we can significantly decrease the amount of false positive 

predictions, reducing the final manual effort of the inspectors. 

The ray casting method for the mapping process is only based on 

a simply pinhole camera model, but still delivers mostly accurate 

mapping results. However, especially for damages close to edges, 

the mapping accuracy could benefit from more complex 

projection procedures, such as including a lens distortion. Lasty, 

it is important to note that the case study encompasses only a 

small amount of ground truth damages, and therefore larger 

studies need to be conducted to verify the results. 

 

 

6. CONCLUSIONS 

This study presents a robust framework to facilitate semi-

automated, recurrent UAS-based bridge inspections. Concretely, 

this work demonstrates the potential of highly accurate 

photogrammetric models solely based on UAS-RTK imagery, 

automatically detect bridge damage and map the damages onto 

the texturized 3D bridge model. We integrate these capabilities 

into a user interface that incorporates an expert-in-the-loop, thus 

enabling quick verification of results and reducing false-positive 

detections. This system not only generates additional training 

data for UAS image analysis but also facilitates approximate 

measurements of bridge damage directly from the images.  

 

Our methodology for achieving precise photogrammetric models 

exclusively from UAS-RTK imagery is validated through a 

detailed case study. The results reveal remarkable geometric 

accuracy, demonstrating an average deviation of 1.3 cm and a 

standard deviation of 1.8 cm. while outperforming traditional 

TLS methods in both feasibility and efficiency. The trained 

Yolov8 damage detection models are able to detect exposed bars 

with a larger area than 1.6 cm² with a recall rate of 93%. The 

predictions are successfully mapped onto the bridge model, 

allowing to compute position and area of the damages. The 

proposed spatial filtering method proves to be effective in 

eliminating 29% false positive predictions, further reducing 

manual efforts in the inspection. Finally, we visualize the results 

in a user interface and create 57 newly annotated training images 

to further improve the damage detection model.  

 

 

 

 

Fig. 9. GUI, showing the detection results of a single 

exposed bar in different detection images, allowing to 

approximate damage dimensions and create new training 

data.  

Fig. 8. Damages mapped onto the rendered 3D model. The 

boxes represent the true positive (green), false positive 

(blue) and false negative (red) predictions. The detail shows 

the precise mapping of an exposed bar. 
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The results presented in this study demonstrate significant 

promise to facilitate UAS-based bridge inspections, making use 

of high-quality inspection images from otherwise hard-to-reach 

areas. Nevertheless, the overall framework stands to gain from 

further refinements, especially in the stages that are not part of 

this work, such as automated flight routes and an automated 

abstraction of damage characteristics. Continuing the outcomes 

of this work, we will evaluate the proposed integration of the 

newly annotated UAS inspection images. Furthermore, we 

propose refining the spatial filtering method by leveraging 

additional information from our ontology, e.g., the number of 

predictions per damage and mean confidence. This could help in 

better bounding box prediction and effective damage detection. 

As we continue to refine our framework, our focus will be on 

implementing the suggested improvements and conducting 

larger-scale bridge inspections, assessing the scalability of the 

method and identify possible limitations. The potential impact of 

this work is vast, suggesting a promising future for UAS-based 

bridge inspections.  
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