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ABSTRACT: 

 

While Satellite imagery holds the advantage of encompassing expansive geographical regions. spanning square kilometers, its 

Spatial Resolution (SR) might prove inadequate for specific tasks. Conversely, Unmanned Aerial Vehicles (UAVs) excel in 

capturing high-resolution images with spatial resolutions in the range of a few centimeters or even millimeters. However, the 

accuracy of sensor locations during UAV flights is non-accurate enough by the Global Navigation Satellite Systems (GNSS) 

technology onboard. One of the key objectives of this research is to evaluate a technique aimed at generating precise sensor 

locations. This technique employs raw data from the drone's GNSS receiver and minimum Ground Control Points (GCPs) placed 

within a 2-meter diameter circle in the study area. The goal is to achieve accurate Digital Elevation Models (DEM) and orthomosaic 

images. 

Another focus of this research is on addressing challenges related to road lane detection. This is achieved through the enhancement 

of the You Only Look Once (YOLO) v3 algorithm. The proposed approach optimizes grid division, detection scales, and network 

architecture to enhance accuracy and real-time performance. The experimental results showcase an impressive 92.03% accuracy with 

a processing speed of 48 frames per second (fps), surpassing the performance of the original YOLOv3. In the rapidly evolving 

landscape of Artificial Intelligence (AI) and drone technology, this investigation underscores both the potential and complexities 

inherent in utilizing advanced AI models, such as YOLOv8, for building detection using UAV and satellite imagery. Furthermore, 

the research delves into robustness and real-time capabilities within building detection algorithms. The outlined strategy 

encompasses precise pre-processing, Field-Programmable Gate Array (FPGA) validation, and algorithm refinement. This 

comprehensive framework aims to elevate feature detection in intricate scenarios, ensuring accuracy, real-time efficiency, and 

adaptability. 

 

 

1. INTRODUCTION 

UAVs have found extensive utility across various domains, 

encompassing applications such as agriculture, surveillance, 

road maintenance, cultural heritage preservation, and 

documentation (Ouédraogo et al., 2014). UAV photogrammetry 

has the capability to produce high-resolution Digital Elevation 

Models (DEMs), which are recognized as crucial spatial 

information resources for the exploration of geomorphology and 

hydrology (Amr et al., 2020). Even though using data from 

satellites might save money, the pictures they provide are 

usually not detailed enough to make digital elevation models as 

precise as those made from methods done on the ground. These 

methods are also not good for making very detailed maps 

(Westoby et al., 2012). Additionally, satellite method has 

limitations in terms of the temporal frequency of its data for 

economic and social services (Junqing et al., 2012). 

 

Detecting specific structures such as gas stations, airports, and 

schools is really important for planning smart cities, managing 

things better, and even for military use (Dell’Acqua, Gamba., 

2012). But the old ways of using maps and surveys to find these 

buildings take a lot of time and work. These methods aren't 

quick enough to keep up with how fast cities change. Now, 

because technology has been improved a lot, the pictures we 

take from above have way more details. This means we can spot 

different types of buildings using these pictures (Chen, 2007). 

 

In the past, finding specific buildings in pictures involved 

looking at things like corners, edges, and textures (Cooner et al., 

2016). For example, teamwork and others used these features to 

find Azhar buildings in pictures from above. Similarly, 

teamwork and others used things like plant data and colour 

details to find illegal constructions in pictures taken by drones. 

Even though these methods make sense, they aren't very 

accurate because they rely on limited information and rules set 

by people. Also, they don't work well for different types of 

buildings (Uprety, et al., 2009). 

 

In recent years, object detection methods based on deep learning 

have made significant breakthroughs for natural images, which 

can be divided into region- and regression-based methods. Since 

the breakthrough of the region-based convolutional neural 

network (R-CNN) (Girshick et al., 2014) for natural images, the 

combination of a region-based extractor and detection network 

has become a classic paradigm. In region-based object detection 

methods, the proposed object box can be generated and then 

transmitted to the deep convolutional neural network (CNN) for 

classification and location regression in the second stage. 

Although the accuracy of methods, such as Faster R-CNN (Ren 

et al., 2015) and Mask R-CNN (He et al., 2017) are relatively 

high, they are unable to conform to the requirements of real-

time applications. Apart from region-based object detection 

methods, we have regression-based methods, including You 

Only Look Once (YOLO) (Redmon et al., 2016), Single Shot 

Multi-Box Detector (SSD) (Liu et al., 2016), 

YOLOv2(Redmon, and Farhadi., 2017), and YOLOv3(Redmon, 

Farhadi., 2018), YOLOv5 (Redmon, Farhadi., 2018) and 

YOLOv8 (Han et al., 2017) that's we are using.  
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The rest of this paper is organized as follows. Section 2 

describes the study area and details of the model improvements. 

Section 3 describes the results evaluation indicators, 

experimental settings and presents the analysis of the 

experimental results. Section 4 discusses the improved model. 

Finally, Section 5 concludes this paper. 

 

2.  MATERIAL AND METHODS 

2.1  Study area and data sources 

The study areas chosen were in the campus of Al-Azhar 

University in Cairo, situated within the Arab Republic of Egypt 

and in Moscow, Russia. UAV flights were carried out at 

different altitudes to capture images spanning diverse spatial 

resolutions and areas of coverage. These flights were executed 

using a DJI Air 2s drone. The SR were 1-2 centimeter.  

UAV flights were conducted at various altitudes to capture 

images with different spatial resolutions and coverage areas 

using a DJI Air 2s drone in Cairo, Egypt. Aerial imagery was 

carried out using DJI Phantom 4 Pro drone in Moscow Russia. 

The study incorporated more than 30 GCPs evenly distributed 

across the surveyed area in every site. RTK-GNSS, utilizing 

dual-frequency GNSS receivers Trimble R4, were employed to 

determine the coordinates of these GCPs. Photogrammetric 

processing of the data was accomplished using Agisoft 

Metashape Professional and DroneDeploy software. Accuracy 

assessment of georeferencing was carried out using pre-marked 

Check Points (CPs) reliably identifiable in the images. 

 

2.2  Methodology 

Currently, aerial photography materials obtained from UAVs 

are being employed to address numerous civil tasks, such as 

cartography and disaster monitoring. One of the advantages of 

UAV-based imagery lies in its ability to provide high spatial 

resolution images, crucial for detailed cartography. A 

significant application has emerged in mapping using UAV-

captured materials. Most UAV platforms are equipped with 

GNSS receivers based on Micro Electro Mechanical Systems 

(MEMS) technology, capable of determining spatial coordinates 

of imaging centers with an accuracy of up to 10 meters during 

flight. 

 

In this study, a comparison was conducted regarding the 

geometric accuracy of three different methods of 

georeferencing, specifically the determination of linear elements 

in exterior orientation (EO) of images. The first method, known 

as Direct Georeferencing (DG), primarily relies on the onboard 

GPS equipment without the use of Ground Control Points 

(GCPs). The second method, Indirect Georeferencing (IG), 

relies mainly on GCPs utilized in aerial triangulation (AT). The 

third method, a modified approach, builds upon the 

extrapolation of systematic errors in linear EO determination 

from local route segments to the entire route. It employs 

Modified Georeferencing (MG) technique and the same three 

GCPs as the second method. 

 

The study areas chosen were in the campus of Al-Azhar 

University in Cairo (Figure 1), situated within the Arab 

Republic of Egypt and in Moscow, Russia. UAV flights were 

carried out at different altitudes to capture images spanning 

diverse spatial resolutions and areas of coverage. These flights 

were executed using a DJI Air 2s drone. The spatial resolutions 

(SR) were 1-2 centimeter. The study incorporated more than 30 

evenly distributed GCPs across the surveyed area. RTK-GNSS, 

utilizing dual-frequency GNSS receivers Trimble R4, were 

employed to determine the coordinates of these GCPs. 

Photogrammetric processing of the data was accomplished 

using Agisoft Metashape Professional and DroneDeploy 

software. Accuracy assessment was carried out using pre-

marked Check Points (CPs) reliably identifiable in the images. 

 

 

Figure 1. Study area, Al-Azhar University, Cairo, Egypt. 

The three methods compared are direct georeferencing, relying 

mainly on the onboard GNSS equipment without the use of 

GCPs; indirect georeferencing, primarily reliant on three GCPs 

used in aerial triangulation; and the modified technique of 

georeferencing, which extrapolates systematic errors in linear 

EO determination from local route segments to the entire route, 

employing a Linear Relationship (LR) model and the same 

GCPs as the second method (Elsheshtawy et al., 2202). 

 

The proposed MG technique for generating EO (XNi, YNi, 

ZNi) obtained by GNSS on the drone platform and use it in 

georeferencing, consists of the following steps: 

• Obtaining EO (XGi, YGi, ZGi) for all images (n) through on-

board drone GNSS (Direct Georeferencing). 

• Computing EO (XRi, YRi, ZRi) for that limited images (k) 

which have in it the three GCPs locally located in a circle about 

two meters diameter (Indirect Georeferencing with limited 

images. k << n. 

• The computation of discrepancies (DXi, DYi, DZi) in the 

Exterior Orientation (EO) derived from the initial and 

subsequent steps, limited to a certain number of images (k), 

follows formulas similar to equation (1): 

DXi = XGi - XRi                                                                     (1) 

Where: 

DXi represents the disparity between XGi and XRi (DXi = XGi 

- XRi). 

XGi denotes the camera station position X of image i attained 

through drone GPS (X GPS). 

XRi signifies the camera station position X of image i as 

determined by the initial georeferencing (X reference). 

n corresponds to the total number of images considered.  

• Computing the average value of differences DXi 

(mean)obtained from formulas (1) for k images using formulas 

like (2): 

mean = (∑1_(i=1) ^k DXi) / k                                                 (2) 

Taking the value of mean as the systematic error XGi. 

• Calculating generated EO (XNi, YNi, ZNi) for all remaining 

images using formulas like (3): 

XNi = XGi – mean                                                                   (3) 

Where: 

XNi represents the newly generated sensor location X for image 

i in the remaining set of images (X new). 
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XGi signifies the camera station position X of image i acquired 

through drone GNSS (X GNSS).• Similar equations are used for 

the Y and Z coordinates of imaging centers. 

• The generated EO (XNi, YNi, ZNi) is used in final 

georeferencing. 

 

Another aspect of this research is dedicated to addressing Lane 

detection techniques, which fall into two primary categories: 

traditional machine vision methods and modern deep learning 

approaches. Traditional methods rely on statistical analysis of 

image features, such as colour, gray levels, and edges, while 

deep learning techniques employ convolutional neural networks 

for robust feature extraction. While traditional methods offer 

acceptable accuracy levels, they often entail intricate processes 

with substantial human involvement, limiting their practical 

applicability. On the other hand, deep learning solutions, 

exemplified by YOLO, strike a balance between accuracy and 

detection speed.  

 

Against this backdrop, this paper presents a novel lane detection 

system based on an enhanced YOLOv3 architecture. The 

proposed model leverages YOLOv3's rapid detection 

capabilities while addressing inherent limitations. The 

contributions of this study include a grid-based image division 

to accommodate varying lane line densities, optimization of 

detection scales for improved small target detection, adoption of 

a Darknet-49 backbone architecture, and parameter refinement 

for focused lane detection. This research aims to amplify lane 

detection technology by synergizing the strengths of YOLOv3 

with tailored enhancements, promising heightened robustness 

and operational efficiency. 

 

The process of lane detection and recognition comprises the 

following components: image acquisition, image preprocessing, 

image segmentation, and edge detection, feature point 

identification, and lane line recognition, as shown in Figure 2. 

 

 

Figure. 2 Method to detect lane lines. 

 

 

 2.2.1 Road image acquisition and pretreatment: 

 

This discussion centers on the significance of image pre-

processing in the context of lane line detection UAVs. 

The study utilizes a Canon EOS 100D DSLR camera for 

imagery acquisition within a smart car identification and 

navigation system. Real-world road conditions introduce 

various external factors, resulting in artifacts like spots and pits 

in UAV-captured images. Such interference, coupled with 

potential image quality degradation, directly impacts the precise 

detection and recognition of lane line information. To address 

this, pre-processing of collected images is crucial, involving 

interference reduction, target information enhancement, 

streamlined image processing, and heightened detection 

accuracy. 

 

Image capture occurs amidst dynamic road scenes, often at high 

speeds. Stringent safety considerations dictate specific capture 

conditions, such as during red light intervals or at pedestrian 

crossings. Image focus is optimized for UAV operations, 

ensuring swift and accurate capture to maintain image quality. 

Images from UAV cameras, influenced by real-world 

conditions, may contain interference factors like spots and 

depressions. This degradation impairs accurate lane line 

detection. Image pre-processing aims to remove noise, enhance 

target details, and streamline algorithms, encompassing greying, 

noise reduction, and image enhancement techniques. 

 

Greying reduces colour complexity, aiding algorithmic 

efficiency. Leveraging wavelet decomposition improves 

frequency resolution, while image enhancement emphasizes 

region-of-interest characteristics, reinforcing grayscale 

attributes and lane line information. 

UAV-captured images undergo processing to expedite detection 

algorithms. Grayscale conversion simplifies processing, while 

addressing salt and pepper noise, the most common noise type. 

Median filtering emerges as effective in noise reduction, 

preserving image quality and contour information. Its real-time 

performance makes it an optimal choice for noise mitigation 

 

By leveraging a streamlined dataset and custom pre-processing, 

we prepared the model for training on CUDA, ensuring rapid 

processing and sufficient memory allocation. The customized 

YOLOv8 nano model demonstrated impressive accuracy in 

identifying buildings from satellite images, thereby validating 

its effectiveness in addressing this specialized task. 

Our approach to achieving accurate building detection through 

the YOLOv8 pre-trained model is marked by a comprehensive 

and systematic methodology: 

Data Gathering: We collected a concise building detection 

dataset from Kaggle, comprising approximately 160 images 

categorized into training (~140 images), validation (~10 

images), and testing (~10 images) sets, accompanied by their 

corresponding labels. 

 

The Massachusetts Buildings Dataset consists of 151 aerial 

images of the Boston area, with each of the images being 1500 

× 1500 pixels for an area of 2.25 square kilometers. Therefore, 

the complete dataset encompasses approximately 340 square 

kilometers, as depicted in Figure 3. This dataset is partitioned 

into a training set comprising 137 images, a test set containing 

10 images, and a validation set encompassing 4 images. 

he desired maps were derived by converting building footprints, 

acquired from the OpenStreetMap project, into raster format. 

The dataset was limited to areas with an average omission noise 

level of approximately 5% or lower. The substantial volume of 

building footprint data of excellent quality was feasible to 

gather due to the contribution of building footprints for the 

entire city by the City of Boston to the OpenStreetMap project. 

The dataset predominantly encompasses urban and suburban 

regions, encompassing buildings of varying sizes, including 

individual houses and garages, within the labelling. The datasets 

utilize imagery made available by the state of Massachusetts, all 

of which has been rescaled to a resolution of 1 pixel per square 

meter. The target maps within the dataset were generated 

through the utilization of data sourced from the OpenStreetMap 

project. 

Target maps allocated for the test and validation segments of the 

dataset underwent manual correction to enhance the precision of 

evaluations. Figure 3. Image from training of dataset. 2.2 

Dataset Preparation Data Pre-processing: The labels were 

initially available as Black-White images, but YOLO 

necessitates annotation in the form of boundary boxes provided 

in text files. Thus, we developed Python scripts that operate by 

taking these "BW images" labels as shown in Figure 4. along 

with the original images.   
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Figure 3. Image from training of dataset. 

 

2.2.1 Dataset Preparation 

Data Pre-processing: The labels were initially available as 

Black-White images, but YOLO necessitates annotation in the 

form of boundary boxes provided in text files. Thus, we 

developed Python scripts that operate by taking these "BW 

images" labels as shown in Figure 4. along with the original 

images. The scripts then proceed to create bounding boxes 

around each building in the corresponding original image. 

These images with superimposed boundary boxes are saved as 

new images as shown in Figure 5. and the associated data for 

each bounding box, in the format "class_id center_x center_y 

width height," is extracted and stored in annotation files  

The models were executed using CUDA to enhance processing 

speed and enable the allocation of greater memory capacity. A 

YOLOv8 model of nano size was trained on these customized 

datasets, specifically tailored to facilitate the detection of 

buildings in satellite imagery. The results of this training 

exhibited notably high accuracy across both the training and 

validation phases.       

 

 
 

 

Figure 4. Image from 

training of dataset. 

Figure 5. Detecting buildings 

from satellite image. 

 

Model Training: To optimize performance, we utilized CUDA 

to enhance the model's processing speed and memory 

allocation. We selected a YOLOv8 nano model tailored to our 

custom dataset's specifications. This model was specifically 

designed for detecting buildings in satellite imagery as shown in 

Figure 6  

  

 
 

Figure 6. Detect building from dataset. 

 

Accuracy and Performance: Throughout both the training and 

validation stages, the trained YOLOv8 nano model displayed 

remarkable accuracy as shown in Figure 7. Its specialized 

architecture, focusing on identifying buildings in satellite 

images, delivered promising outcomes. 

  

 
 

Figure 7. YOLOv8 Ultralytics: State-of-the-Art YOLO Models. 

 

2.3   Experimental Settings 

2.3.1 Evaluation Indicators: To provide a quantitative 

assessment of the chosen models' performance, we employed 

the average precision (AP) and the Precision Recall Curve 

(PRC). Furthermore, the F1 score (Tian et al.,2019) and Frames 

Per Second (FPS) were employed to gauge the model's 

effectiveness and detection speed. 

 

2.3.1.1 Precision Recall Curve: The Precision Recall Curve 

(PRC) is depicted with precision on the Y-axis and recall on the 

X-axis. Prior to constructing the PRC, the calculation of 

precision and recall (Benjdira et al., 2019) is imperative. The 

equations for the precision, P, and recall rate, R (Figure 8), are 

as follows: 

                                                (4) 

                                                                          (5) 

Where: 

TP is the number of correctly detected positive samples.  

FP is the number of negative samples detected by error as 

positive samples. 

FN is the number of positive samples not detected.  

If the area overlap ratio between the predicted bounding box 

and ground-truth bounding box is larger than 0.5, we set the 
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Alternatively, if no overlap exists, it is designated as a false 

positive (FP). Furthermore, in cases where multiple predicted 

bounding boxes intersect with the same ground-truth bounding 

box, only the box with the highest overlap is deemed a true 

positive (TP). It's important to note that precision and recall rate 

possess an inverse correlation. Refer to Figure 8 for the 

confusion matrix representing predicted outcomes and ground 

truth. 

 

Figure 8. Confusion matrix for predicted results and ground 

truth. 

3. RESULTS 

3.1 Testing the Modified Technique of Georeferencing 

The test demonstrating a Root Mean Square Error (RMSE) of 2-

3 cm was selected as the benchmark for subsequent tests. The 

calculated sensor location obtained through this reference test 

was considered reliable data. To evaluate the accuracy of the 

sensor location generated by the Modified technique, the 

disparities in the X, Y, and Z coordinates were computed 

between the generated data and the reference data of the sensor 

location for each image figure 9. The same approach was taken 

for calculating the differences between the drone's GNSS data 

and the reference sensor location data figure 10. 

 

 
 

Figure 9. Descriptive statistics of the differences the Modified 

technique and considered reliable data. 

 
 

Figure 10. Descriptive statistics of the differences drone GNSS 

and considered reliable data. 

 

Based on the preceding outcomes, it becomes evident that the 

sensor locations generated through the modified georeferencing 

technique exhibit greater accuracy compared to the utilization of 

drone GNSS data in direct georeferencing. 

 

3.2 The PRC Evaluation 

In the context of the object detection method, the Precision-

Recall Curve serves as a fundamental metric for gauging both 

the robustness and efficacy of the approach. Upon examining 

the curve, it becomes evident that as the recall rate increases, 

there is a gradual decline in precision (Figure 11). 

 

 

Figure 11. PR curve. 

The endeavour yielded intriguing results. The model exhibited 

remarkable accuracy in detecting buildings from satellite 

images, affirming its initial proficiency. However, the true test 

lay in its performance with drone-captured images. While 

improvements were achieved, the model's struggles persisted, 

particularly with close-up shots. The misidentification of pillars 

and air conditioners as buildings remained a challenge. The 

augmented dataset and fine-tuning will lead to a progress as 

we’ll train our model on drone images also, but further 

refinement is essential to bridge the disparity between the two 

types of images. 
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Figure 12. Train and validation loss. 

4. DISCUSSION 

Numerous studies have been conducted to utilize remote 

sensing images for extracting information about collapsed or 

damaged buildings following the 2008 Wenchuan earthquake 

and the 2010 Yushu earthquake. An object-oriented change 

detection method was applied employing multiple classifiers to 

identify building damage after the Yushu earthquake. This 

involved integrating multiple feature extraction, selection, and 

random subspace recognition techniques to enhance the multi-

classifier system, leading to an overall accuracy of 88.45% ( 

Zhao et al., 2018). The researchers employed LiDAR data and 

high-resolution Quickbird remote sensing data in the Yushu 

disaster zone. They combined object-oriented classification with 

SVM technology to extract information about collapsed 

buildings, achieving a total extraction accuracy of 82.21% 

(Wen. Ji et al., 2015). adopted a method that involved using 

building vector data to extract individual building objects from 

remote sensing images. They then employed CNN for 

classifying fully collapsed buildings and those that were intact 

or minimally affected, attaining an average accuracy of 78.6%. 

While most of these studies achieved high accuracy, they often 

relied on a variety of data sources such as pre-earthquake 

remote sensing images, LiDAR data, and building vector data. 

Obtaining such data immediately post-earthquake can be 

challenging. In contrast, our study employed the CNN-based 

object detection method YOLOv8 to detect collapsed buildings, 

yielding a notable accuracy of 90.89%. Our approach proves 

more practical as YOLOv8 exclusively requires post-earthquake 

remote sensing images, eliminating the need for pre-earthquake 

data. Furthermore, YOLOv8 can detect collapsed buildings 

without the aid of building vector data, addressing practical 

limitations posed by the latter. 

 

To mitigate overfitting during CNN training, we undertook 

specific measures. The limited seismic data collection, coupled 

with the necessity to identify individual collapsed buildings 

using high-resolution data, led to a small dataset. This could 

result in overfitting when training a large convolutional neural 

network on the training set. To counter this, we expanded and 

enriched the dataset to enhance sample diversity. Additionally, 

in the YOLOv8 network structure, replacing Darknet53 with the 

lightweight CNN ShuffleNet v2 reduced the parameters and 

effectively alleviated overfitting. In instances where the loss 

function value stagnated after 50 epochs during training, we 

terminated training prematurely to prevent excessive learning. 

 

In the context of enhancing detection precision for damaged 

buildings, modifications were introduced to the YOLOv8 loss 

function. The original cross-entropy loss function employed in 

YOLOv8 for predicting center point coordinates and box 

dimensions was substituted with the GIoU loss. The GIoU loss 

was adopted as it accurately describes the relationship between 

prediction and true boxes, allowing for accurate evaluation of 

loss during the training process. 

 

5. CONCLUSION 

The experimental work in this study demonstrates that the 

proposed modified georeferencing technique to refine sensor 

locations, is more accurate than the drone GNSS data, all 

without incurring additional costs. This is particularly 

significant in projects where GCPs cannot be distributed 

extensively or where is bad GNSS signal places. Furthermore, 

this study has contributed to the realm of road monitoring and 

navigation through innovative lane detection techniques. The 

integration of image pre-processing, YOLO-based edge 

detection, and lane line feature point recognition has yielded a 

robust framework. Image pre-processing effectively elevates 

lane detection accuracy by minimizing noise and refining target 

information. YOLO's real-time edge detection capabilities excel 

in identifying and localizing lane boundaries, even in complex 

scenarios.  

Amidst the ever-evolving landscape of AI and UAV 

technology, this paper delves into both the potential and 

intricacies of implementing advanced AI models, such as 

YOLOv8, for building detection using UAV and satellite 

images. While the model displayed its capability in analyzing 

satellite images, the complexities of drone imagery have posed 

challenges that necessitate ongoing exploration. The path ahead 

involves a steadfast commitment to innovation, method 

refinement, and recognition of the nuances involved in close-

range image analysis. As researchers continue to unveil the 

synergy between AI and UAV imagery, we edge closer to a 

future where structures are not just understood from a distance 

but also up close, heralding a new era of precise, adaptable, and 

comprehensive building detection. 

Furthermore, this study has contributed to the realm of road 

monitoring and navigation through innovative lane detection 

techniques. The integration of image pre-processing, YOLO-

based edge detection, and lane line feature point recognition has 

yielded a robust framework. Image pre-processing effectively 

elevates lane detection accuracy by minimizing noise and 

refining target information. YOLO's real-time edge detection 

capabilities excel in identifying and localizing lane boundaries, 

even in complex scenarios. 
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