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ABSTRACT: 

 

Species reintroduction is one of the most important tasks for biodiversity conservation. In the Samara region, the Department of 

Ecology, Botany, and Nature Protection of Samara University is constantly working to return rare plants to their natural habitat. 

Field surveys are carried out to monitor the process of plant development in the natural environment. However, the complex terrain 

and the special conservation status of the territories, where reintroduction is carried out, require the development of methods for 

monitoring plants that reduce human contact with the natural environment. As such a method, the article proposes using data from 

unmanned aerial vehicles (UAVs) in conjunction with the detection of reintroduced plant species using object detection neural 

networks, namely YOLOv3. The proposed method reduces the anthropogenic impact on the territory during the monitoring process 

and simplifies plant observations. 

 

 

1. INTRODUCTION 

Due to anthropogenic impact, the number of plant species 

facing extinction is constantly growing. To protect rare plants 

and preserve biodiversity, ecologists worldwide are engaged in 

species reintroduction. This process involves artificially grown 

plants being moved into their natural habitat (Malone et al., 

2018). 

 

In the Samara region, the Botanical Garden and the Department 

of Ecology, Botany, and Nature Protection of Samara National 

Research University (Samara University) have been working on 

species reintroduction for over 10 years. One of the plants 

reintroduced through their efforts is Paeonia Tenuifolia, which 

is included in the Russian Federation Red Book and classified 

as a decreasing population in the UCN Red List (Bilz, 2011). 

Ecologists cultivated Paeonia Tenuifolia in the Botanical 

Garden and relocated it to a protected area near the village of 

Chubovka in the Samara region. 

 

The process of reintroduction requires constant monitoring of 

the health and population of reallocated plants. Ecologists 

conduct field surveys to obtain up-to-date information about the 

characteristics of the plant population. Traditionally, these 

surveys involve manual plant counting through ground surveys. 

However, conducting ground surveys over large territories with 

complex relief demands a significant amount of human labor 

and time. To minimize them and reduce the anthropogenic 

impact of surveys, remote sensing tools can be employed for 

species monitoring. 

 

Existing research on species monitoring using remote sensing 

data primarily focuses on unmanned aerial vehicle (UAV) data 

for direct detection and sampling of species due to their high 

resolution (Randin et al., 2020). The monitoring methods 

include data collection from various sensors mounted on a UAV 

platform, manual mapping of species of interest, and the 

application of machine learning algorithms. 

 

Cao et al. classified mangrove species using a fusion of 

hyperspectral images, light detection, and LiDAR data obtained 

from UAV-based sensors and the rotation forest (RoF) 

ensemble learning algorithm (Cao et al., 2021). Belcore et al. 

detected tree species using multi-spectral and multi-temporal 

UAV data and a random forest algorithm (Belcore et al., 2021). 

Alvarez-Taboada et al. applied the nearest neighbour algorithm 

to recognize Hakea sericea in UAV and World View-2 satellite 

images (Alvarez-Taboada et al., 2017). Both Belcore et al. and 

Alvarez-Taboada et al. considered complex sets of features, 

including vegetation indices, different spectral bands, and 

texture features. Li et al. exploited a support vector machine 

algorithm for classification in the wetland area (Li et al., 2017). 

They are concerned with UAV-based hyperspectral images and 

digital surface models (DSM) derived from photogrammetric 

point clouds as source data. Thus, it is evident that species 

mapping and quantification were primarily conducted using 

classical machine learning algorithms with multi-sensor UAV 

data. 

 

In recent times, the success of neural networks has led to their 

widespread use in ecological monitoring as well. In Fan et al., 

2018) Fan et al. used deep neural networks for tobacco plat 

classification using UAV data. The review (de Castro et al., 

2021) mentioned some algorithms based on Mask R-CNN for 

potato and lettuce mapping, as well as ResNet50 CNN with the 

SegNet semantic segmentation architecture for mapping raised 

bog vegetation communities. In both cases, deep learning-based 

methods outperformed classical machine learning methods. 

(Kattenborn et al., 2019) developed a method for fine-grained 

mapping of vegetation species and communities using a U-net 

network. They achieved 84% accuracy in semantic 

segmentation. However, the current research focuses primarily 

on the segmentation problem, neglecting the detection and 

counting of individual plants in the image. 

 

Our aim is to develop a method for counting Paeonia Tenuifolia 

plants using an object detection neural network and UAV data. 

The main goal of this method is to simplify the collection of 
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plant population statistics and reduce the need for manual labor 

and anthropogenic impact during monitoring. The proposed 

method was tested using UAV images obtained by scientists 

from the Botanical Garden, the Department of Ecology, Botany, 

and Nature Protection, and the Department of Information 

Security and Geoinformation Science at Samara University. In 

our research, we analyzed the following questions: 1) whether 

the network can be trained using images of plants grown 

artificially instead of gathering training data in a natural 

environment, 2) what are the best augmentation methods, and 3) 

what is the optimal number of epochs. 

 

The paper is structured as follows: Section 2 describes the 

proposed method and UAV data processing. Section 3 presents 

the main research results. Finally, the conclusion and 

acknowledgments are provided. 

 

2. PROPOSED METHOD 

2.1 General method pipeline 

The proposed method for monitoring Paeonia Tenuifolia 

includes four steps: 

Step 1. Capturing UAV images of Paeonia Tenuifolia in an 

artificial environment within the Botanical Garden during the 

flowering period. 

Step 2. Collecting UAV data of reintroduced plants in the 

natural environment during the flowering period. 

Step 3. Training the object detection neural network using the 

images obtained in the Botanical Garden, employing a transfer 

learning approach. 

Step 4. Classifying the images acquired in the natural 

environment and computing the quantity of the target plants. 

 

The first step involves collecting training data. We propose 

using artificially grown plants as reference samples for training 

the neural network. The Botanical Garden offers a more 

accessible and abundant territory compared to the plants' natural 

habitat, making the data collection process simpler, more cost-

effective, and convenient. The data can be collected once and 

used for several years. An important aspect of the data 

collection process is the shooting time. It is crucial to gather the 

data during the flowering period when the plants are most 

distinguishable from their surroundings. 

 

The second step involves conducting a field survey to collect 

test data. The field survey focuses solely on UAV data capture 

without any additional movements of personnel and equipment. 

This approach is sufficient because the reintroduced plants' 

natural habitat is a conservation area, and UAV monitoring 

ensures the safest possible data collection process. Another 

advantage of UAV data collection is the reduction in human 

labor, as the natural habitat of Paeonia Tenuifolia features 

complex terrain that makes manual monitoring more 

challenging compared to automated methods. 

 

During the data collection process, it is important to set the 

camera and flight parameters as closely as possible to the 

training data collection process. This includes capturing the data 

during the flowering season, at a similar height above the 

ground, and approximately the same time of day. However, it 

should be noted that these guidelines do not guarantee a high 

degree of similarity between the test and training data due to the 

following reasons: 1) differences in species composition 

between the natural habitat and the Garden, 2) variations in 

weather and lighting conditions, and 3) discrepancies in soil and 

terrain characteristics. Consequently, the process of plant 

detection using only images captured in the Garden for training 

becomes more complex. 

 

In this study, we propose using a transfer learning approach in 

Step 3 for training the neural network. The rationale behind this 

choice is that the artificial habitat used for training the plants is 

relatively small, limiting the opportunity to collect a large 

amount of training data. Transfer learning allows us to leverage 

the pre-trained weights of another neural network, thereby 

benefiting from the knowledge and capabilities of the parent 

network. Additionally, the transfer learning approach simplifies 

the training process as it requires fewer epochs to train the 

network. 

 

The training process involves specific preparation of training 

data and the selection of appropriate hyperparameters. In our 

paper, we explore various methods of data augmentation and 

consider the number of epochs. Data augmentation allows for 

an artificial expansion of the training set and enhances network 

generalization. On the other hand, selecting the appropriate 

number of epochs determines the optimal duration for the 

training process. 

 

In the final fourth step, the images obtained in the natural 

environment are classified using the selected neural network, 

and the number of plants in each UAV image is computed. To 

evaluate the quality of the network, we manually labeled the 

images and calculated the percentage of accurately detected 

flowers (true positive rate, TPR) and falsely detected flowers 

(false positive rate, FPR) of Paeonia Tenuifolia in each test 

image. 

 

 1 2
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N N
= =

   (1) 

 

where N1 is the number of correctly detected peony flowers,  

           N2 is the number of incorrectly detected peony flowers, 

           N is the total number of peony flowers in the image. 

 

2.2 Study Area 

The Botanical Garden (53°12′52.25″N, 50°10′18.6″E) served as 

the source of training data and is located near Samara 

University in the territory of Samara city, Russia. The Garden 

was established in 1932 and has been designated as a nature 

conservation area since 1995. It serves both scientific and 

public purposes, cultivating more than 4500 plant species, 

including Paeonia Tenuifolia, within its territory. 

 

The natural habitat of the reintroduced peony plants is located 

near the village of Chubovka, in the Kinelsky district of the 

Samara region, Russia. In 1983, this territory was designated as 

a protected area of regional significance called "Chubovskaya 

steppe". The territory consists of a grassy meadow steppe, 

housing rare and endangered species of steppe flora. The test 

site encompasses a section of a watershed slope with a height 

difference of up to 10-15 meters. In recent years, ecologists 

from the Department of Ecology, Botany, and Nature Protection 

have transplanted some peony flowers into the test site. 

Currently, they are monitoring the growth of the peony 

population. The UAV image fragments of Paeonia Tenuifolia 

for both sites are shown in Fig. 1-2. 
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Figure 1. Paeonia Tenuifolia in Botanical Garden. 

 

Figure 2. Paeonia Tenuifolia in natural habitat. 

2.3 Flight Campaign and Fieldwork 

We conducted two flight campaigns in sunny and windless 

weather, covering an area of approximately 8000 and 6200 

square meters in the natural habitat and the Botanical Garden, 

respectively. For these campaigns, we utilized an unmanned 

aerial vehicle, specifically DJI Phantom 4 PRO v2 (Bârliba et 

al., 2020), equipped with an RGB camera. 

 

The first flight campaign took place on May 18th, 2022, in the 

Botanical Garden. The flight altitude was set at 10 meters above 

the ground. Adjacent frames were captured with an 80% 

intersection in both the longitudinal and transverse directions 

relative to the flight path, resulting in an equivalent spatial 

resolution of 0.01 meters. 

 

The second flight campaign was conducted on May 23rd, 2022, 

covering four different parcels of the natural habitat ranging in 

size from 2000 to 8000 square meters. During this campaign, 

the UAV flew at an altitude of 10 meters above the highest 

point of the slope. The spatial resolution at the highest point of 

the slope was 0.01 meters. 

 

2.4 UAV Data Processing 

The UAV data processing involved the preparation of 

orthophotos. We utilized Drone Deploy software 

(https://www.dronedeploy.com/) for generating the orthophotos. 

As a result, we obtained two training images for the parcels in 

the Botanical Garden, with dimensions of 4608×4096 and 

6912×6400, respectively. Additionally, we acquired four test 

images for the parcels in the natural habitat. The characteristics 

of the test images are provided in Table 1. 

 

To prepare the input for the neural network, each image was 

divided into regions of equal size. For generating the training 

set, we used the Botanical Garden image fragments of various 

sizes: 230×205, 345×320, 461×410, and 691×640. Fragments 

that did not contain peonies were excluded from the sample set. 

The resulting training set consisted of a total of 128 images. 

 

Image Size in pixels Number of peonies 

Parcel 1 3584×6400 42 

Parcel 2 4096×8960 46 

Parcel 3 6400×6900 13 

Parcel 4 4096×3840 97 

Table 1. Test Image Characteristics. 

 

Due to the limited number of images, we implemented three 

types of augmentation to generate larger training datasets. The 

augmentation process involved applying a set of random 

transformations to each input image using the Roboflow 

software (https://roboflow.com/). The parameters for 

augmentation are provided in Table 2. In the "simple" 

augmentation type, all transformations were performed without 

interpolating the data. The "geometry" augmentation type 

included geometric transformations such as scaling and random 

rotations applied to the spatial domain of the original image. In 

addition to geometric transformations, the 

"geometry+brightness" augmentation type also incorporated 

random changes in brightness of the original image. 

 

Augmen-

tation 

type 

Algorithm 

Total number 

of images in 

augmented 

dataset 

Simple 

Flip: Horizontal and 

vertical,  

90º Rotate: clockwise, 

counter-clockwise, upside 

down 

228 

Geometry 

Simple augmentation 

Scale and Crop: min zoom 

0%, max zoom 30% 

Rotation: between 

-20º and 20º 

434 

Geometry  

+  

Brightness 

Geometry augmentation 

Saturation: between -28% 

and 28% 

Brightness: between -30% 

and 30% 

Exposure: between 

-14% and 14% 

Blur: up to 1 pixel 

1019 

Table 2. Augmentation parameters. 

 

For the test dataset, we utilized image fragments measuring 

600×600 pixels, derived from the four test images captured in 

the natural peony habitat. The test dataset included all image 

fragments, whether they contained peonies or not. The total 

number of images in the test dataset was 280. 

 

Both the training and test datasets were manually labeled using 

the LabelImg software (https://github.com/heartexlabs/ 

labelImg). Each peony in the image was enclosed within a 

bounding box. Therefore, the target object for detection was an 

individual peony flower. The process of data labeling is 

depicted in Fig. 3. 
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Figure 3. Labeling peonies in LabelImg software. 

2.5 Network Architecture 

We propose to apply object detection neural networks (ODNN) 

for peony monitoring using UAV data. Among the top-

performing ODNN architectures, YOLO (Dhillon and Verma, 

2020) stands out. This architecture, based on GoogLeNet, offers 

a combination of speed and accuracy (Du, 2018). 

 

The YOLO family encompasses several network variations. In 

our study, we used YOLOv3 due to the availability of an 

implementation with pre-trained weights. 

 

YOLOv3 tackles the task of predicting bounding boxes for 

objects in an image by solving a logistic regression problem. It 

leverages 53 convolutions for feature extraction and 

incorporates skip connections (similar to ResNet) as well as 3 

prediction heads (like Feature Pyramid Network) that process 

the image at different spatial resolutions (Almong, 2020). The 

feature extraction block of YOLOv3 is commonly referred to as 

Darknet-53. A comprehensive technical review of the 

architecture enhancements for YOLOv3 can be found in 

(Redmon and Farhadi, 2018). These improvements contribute to 

faster training and detection while maintaining good detection 

performance. 

 

The network architecture is illustrated in Fig. 4 (sourced from 

(Katuria, 2018)). 

 

 
Figure 4. YOLOv3 architecture from (Katuria, 2018). 

 

We obtained the code of the network and the pre-trained 

YOLOv3 weights from the public repositories of the authors of 

the paper (Wang et al., 2021). Wang, C. Y., Bochkovskiy, A., 

and Liao, H. Y. M. trained the YOLOv3 model using the 

MSCOCO 2017 object detection dataset and made the weights 

available in their repositories. 

2.6 Object Detection 

To implement object detection, we utilized a transfer learning 

approach and trained the YOLOv3 network using our training 

data captured in the Botanical Garden. The resulting weights 

were then applied for peony object detection in the images of 

natural habitats. 

 

Before performing the detection, we resized the input image to 

the size of 416×416, which is one of the valid input sizes for the 

network. Following the prediction of bounding boxes, we 

considered only those with a score threshold of 0.3 or higher 

and applied a non-maximum suppression threshold of 0.4. 

These threshold values were determined through multiple runs 

of the detection without augmentation, resulting in the best 

detection performance for our specific case. Finally, the 

recognized peonies were marked by bounding boxes in each test 

image fragment, as shown in Fig. 5. 

 

 
Figure 5. Peony detection example. 

 

We evaluated the object detection performance by measuring 

TPR and FPR using the equation (1) for the entire test image. 

The number of true and false detections was calculated by 

summing the values for all image fragments. 

 

3. EXPERIMENTAL RESULTS 

In our first experiment, we evaluated the effect of different 

epoch numbers ranging from 1000 to 6000 for network training 

without augmentation. The purpose of this experiment was to 

determine the optimal number of epochs for object detection. 

Throughout the experiment, the false positive rate (FPR) 

remained consistently zero across all epoch number values. The 

true positive rate (TPR) for the four test images is presented in 

Figure 6. 

 

Figure 6 illustrates that the highest TPR values for the majority 

of the test images were achieved at an epoch number of 3000. 

At this epoch number, the average TPR was 0.87. The second 

best epoch number in terms of average TPR value was 4000, 

with an average TPR of 0.83. For our subsequent experiments, 

we focused on testing these two epoch numbers for training. 

 

As for the different types of augmentation mentioned in Table 

2, we conducted tests to evaluate their impact. The average TPR 
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and FPR values are provided in Table 3. The highest TPR value 

of 0.93 was achieved when using the geometry and brightness 

augmentation type with an epoch number of 4000. This resulted 

in a TPR increase of 10.75%, while the FPR value remained 

below 1%. However, we anticipate that further improvements in 

performance can be achieved by generating a larger number of 

samples during augmentation. 

 

 

Figure 6. Test TPR values after training without augmentation. 

 

One additional observation is the overall decrease in 

performance when using the geometry type of augmentation. 

Based on our findings, we conclude that brightness changes 

play a more significant role in achieving successful training, 

while the interpolation of data has a negative impact on 

performance. As a result, we recommend excluding 

interpolation effects during training. To address this, we suggest 

preparing data of the appropriate input size for both the training 

and testing stages of the network. In our study, we used random 

input sizes and resampled the data before testing, which led to a 

decrease in network performance. 

 

Augmentation 

type 

Epoch Number 

3000 

Epoch Number 

4000 

Average 

TPR 

Average 

FPR 

Average 

TPR 

Average 

FPR 

Simple 0.84 0 0.84 0 

Geometry 0.86 0 1 0.34 

Geometry  

+  

Brightness 

0.92 0.01 0.93 0.005 

Table 3. Classification quality for different augmentation types. 

 

The detailed TPR and FPR values for the best training 

parameters are listed in Table 4. 

 

Image TPR FPR 

Parcel 1 0.74 0.00 

Parcel 2 1.00 0.02 

Parcel 3 1.00 0.00 

Parcel 4 0.98 0.00 

Table 4. TPR and FPR values for the best augmentation and 

epoch number. 

 

The testing of the network demonstrated that the proposed 

monitoring technology can be effectively utilized for peony 

monitoring. Moreover, the average accuracy of the monitoring 

is 93% with a false detection rate of less than 1%. It is 

remarkable that such impressive results were achieved using 

only two images captured in artificial habitats for training. 

Incorporating images from natural habitats in the training 

process will further enhance the peony detection quality. 

However, it is important to consider the potential increase in 

anthropogenic impact on the natural habitat when conducting 

additional field surveys. In this regard, we recommend 

prioritizing data collection in artificial habitats, which are easily 

accessible and relatively small. Nonetheless, it is crucial to 

ensure that data capture is carried out under varying 

illumination conditions to improve the robustness of the 

monitoring system. 

 

4. CONCLUSION 

This study presents a method for monitoring rare plants using 

UAV data and the YOLOv3 neural network. The proposed 

method enables the automatic mapping of reintroduced peony 

flowers in their natural habitat and the assessment of flower 

population size. By leveraging UAV data, we provide an 

affordable, environmentally friendly, and labor-efficient flower 

monitoring technology. 

 

The proposed method achieves an average detection accuracy of 

93% for correct detection and a false detection rate of 0.5%. A 

crucial aspect of this method is training the network exclusively 

using images of plants grown in artificial habitats. To fulfill this 

requirement, we employed a transfer learning approach along 

with data augmentation techniques. 

 

In our study, we determined the optimal parameters for neural 

network augmentation and epoch number. The best results were 

obtained by employing geometrical and brightness types of 

augmentation (as outlined in Table 2) and conducting training 

with 4000 epochs. 

 

Our main findings are: 

1) Images obtained from artificial habitats can be effectively 

utilized for network training without the need for additional 

images from natural habitats. 

2) The interpolation of images during training reduces the 

detection performance. 

3) In this specific task, brightness augmentation proves to be 

more advantageous than geometric augmentation. 

 

Further improvements to the method should focus on the 

following aspects: excluding interpolation effects during 

augmentation and network input preprocessing, expanding the 

training set through additional surveys in artificial habitats, and 

increasing the number of random brightness transformations per 

image during augmentation. 
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