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ABSTRACT:

Tree plantations, characterized by large-scale cultivation of trees with high commercial values, often rely on accurate inventory data
to improve their capacity. However, understanding tree plantations with different components on a large scale for growth prediction
is still a tricky problem. In this paper, we harness the power of Unmanned Aerial Vehicle (UAV) Light Detection and Ranging
(LiDAR) systems to acquire 3D point clouds of tree plantations and investigate the potential of deep learning segmentation for
enhanced understanding of plantation UAV LiDAR point clouds, thereby promoting precision forest management. Two datasets
from the same plantation without debris on the ground and with harvested debris were tested. Experimental results showed that we
were able to process a plantation consisting of 300 trees in 2 min and achieve an overall accuracy of 95% segmentation for this
plantation. This research demonstrates the feasibility of the deep learning method in segmenting large-scale tree plantation point
clouds, which is able to speed up the inventory of tree plantations.

1. INTRODUCTION

A significant amount of forest products are derived from dif-
ferent species of trees that are cultivated from tree plantations
(Shmulsky and Jones, 2019). To accurately evaluate the eco-
nomic values of tree plantations, tree inventory that provides in-
dividual trees’ timber volume is essential (Klimas et al., 2012).
Traditional forest inventory methods, including manual tree
counting and diameter measurement at breast height (DBH), are
time-consuming, labor-intensive, and subject to human errors.

In recent years, advancements in remote sensing technolo-
gies have provided promising alternatives for forest inventory
(White et al., 2016). Among these, UAV LiDAR systems
have emerged as a powerful tool for collecting precise three-
dimensional (3D) data over extensive areas in a relatively short
period of time (Wallace et al., 2012). By integrating with UAV,
LiDAR is able to measure distances, penetrate the forest canopy
in the air, and provide highly accurate data about the ground
surface and the structures on it (Lin et al., 2022). As a result, it
holds great potential for improving the efficiency and accuracy
of forest inventory tasks (Wallace et al., 2012).

To conduct tree plantation inventory with LiDAR, it’s essen-
tial to derive different components of tree plantations accur-
ately, which relies on LiDAR point cloud segmentation. Con-
ventional point cloud segmentation requires hand-crafted geo-
metric feature extraction, such as linear, planar, and scatter fea-
tures. And then these fundamental geometric features are fur-
ther clustered into meaningful objects, such as ground, trunks,
and canopy. Geometric features were analyzed and trunks were
extracted by using cylinder fitting for pine, spruce, and birch,
and 73% stem mapping accuracy was achieved (Liang et al.,
2011). Other geometric features were also able to be used
for stem points segmentation. By computing surface curvature
for each point, tree stems were further extracted with postpro-
cessing for a pure Chinese scholar (Styphnolobium japonicum)
tree plantation (Zhang et al., 2019). To avoid point-wise geo-
metric features calculation, a bottom-up approach that utilized
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a peak detection algorithm for stem localization in height nor-
malization point clouds was developed, and the experimental
results showed that this approach performed better than DB-
SCAN (Ester et al., 1996) for red oaks stem localization (Lin et
al., 2021).

Segmented stem points can be used to localize individual stems,
but it is unable to derive other inventory attributes. With more
structural forest attributes being requested, segmenting only
stem points is apparently not sufficient. Therefore, algorithms
that are able to understand point clouds semantically were sub-
sequently adopted in forestry. A graph-based method that re-
lied on all points’ geometric features classified tropical trees
into two classes (i.e., leaf and wood), and then woody compon-
ents were reconstructed to obtain quantitative structural mod-
els (QSM) and estimated biomass for tropical trees (Wang et
al., 2020). These geometric feature-based methods require
point-wise computation, which leads to high time complexity.
Moreover, it is difficult for geometric feature-based methods to
capture global context information and understand semantic in-
formation.

As deep learning showed its capability in point cloud under-
standing (Qi et al., 2017), some studies explored the poten-
tial of deep learning for forest point cloud segmentation. A
PointNet model (Qi et al., 2017) was adopted to classify forest
point clouds into four categories and proved deep learning-
based method is sensor agnostic. Raw measurements provided
by laser scanners were also used as the input of a deep neural
net for boreal forest segmentation (Kaijaluoto et al., 2022). Al-
though deep learning boosted semantic segmentation for forest
LiDAR point cloud, all of the existing research was developed
based on algorithms that were initially developed for a single
object or on a small scale, which is not suitable for the outdoor
forest environment. To solve this problem, large-scale LiDAR
point clouds were tiled into small blocks (i.e., 1 x 1 m). How-
ever, this strategy destroys the spatial relationship and it’s hard
to capture the global features of forest point clouds. Some re-
search optimized algorithms for this problem (Hu et al., 2020),
but the effectiveness has not been verified in forest environ-
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Figure 1. UAV LiDAR system for plantation data acquisition.

ments.

In this paper, we apply a superpoint-based deep learning
method to UAV forest point clouds to overcome these chal-
lenges. UAV LiDAR data collected from large-area tree planta-
tions with a massive number of points is the input. Two datasets
from a northern red oak (Quercus rubra) plantation with and
without debris were tested. This research contributes to ongo-
ing efforts to improve precision forest management by demon-
strating a practical approach to enhance the speed and accuracy
of forest inventory data acquisition.

2. METHODOLOGY

2.1 UAV LiDAR System

We utilized an in-house UAV LiDAR system, as illustrated in
Figure 1. This UAV LiDAR system consists of a multi-beam
rotating laser scanner, an RGB camera, and a GNSS/INS mod-
ule for direct georeferencing. The VLP-32C laser scanner at
the system’s core employs 32 radially arranged laser rangefind-
ers. Its vertical and horizontal field of view (FOV), as observed
from the LiDAR unit’s rotational axis, spans 40◦ (extending
from +15◦ to -25◦) and 360◦, respectively. This scanner col-
lects approximately 600K points per second (under single re-
turn mode), maintaining a range precision of ± 3 cm and a max-
imum reach of 200 m. The GNSS/INS module is expected to
deliver post-processing positional precision within a range of
± 2 to ± 5 cm, and the accuracy for roll/pitch and heading is
estimated to be ± 0.025◦ and ± 0.08◦ respectively.

The UAV system is engineered such that the rotational axis of
the LiDAR unit remains nearly parallel to the direction of flight.
The FOV across the flight path was established to be ±70◦ from
the nadir, meaning a point is only reconstructed if the laser
beam’s pointing direction falls within ±70◦ of the nadir. Utiliz-
ing a rotating multi-beam LiDAR unit provides several advant-
ages, including its distinctive scanning mechanism. Given the
laser beams’ multidirectional rotation and firing, the likelihood
of LiDAR energy infiltrating foliage and mapping features be-
neath the canopy is considerably heightened. Additionally, this
method helps alleviate occlusion issues as multiple laser beams
can capture a single location in the object space at different
times. To capitalize on this unique scanning technique and form
point clouds with an extensive swath along the flight direction,
stringent system calibration is required. Therefore, this study

employed an in-situ system calibration method to ascertain the
relative orientation and position between the GNSS/INS unit
and the onboard sensors (Ravi et al., 2018).

2.2 Study Site and Dataset

The study site, Plot 5A, is a plantation of the northern red oak
species (Quercus rubra) situated within the bounds of Martell
forest (Figure 2). Plot 5A is a research-oriented forest in the
state of Indiana, USA. The plantation in Plot 5A was planted
in 2007 following a carefully planned grid pattern. This pattern
consists of 22 rows each spaced apart by 5 meters, and every
row accommodating 50 trees distanced at 2.5 meters from each
other. In order to obtain robust and detailed data, our in-house
UAV LiDAR was employed. One notable differential factor
between the two sets of data is the varying tree density. Fol-
lowing the first data acquisition, a portion of trees within Plot
5A was thinned, hence causing a decrease in tree numbers prior
to the second data acquisition. At the point of the second scan-
ning, debris of dead trees could still be found scattered on the
forest floor.

To ensure a sufficient amount of data for both training and eval-
uation, a dataset was generated from the data collected in Plot
5A. Each LiDAR point within this dataset was carefully annot-
ated with corresponding semantic labels. This is in response to
the complex nature of Plot 5A and also in preparation for con-
ducting a variety of objective research analyses in the future.
We defined five distinctive semantic categories that each rep-
resent different functional components within forests. These
include the categories of ground, debris, trunks, crowns, and
others. Here are the definitions and associated functions for
each category:

• Ground: Forest floor in the LiDAR point clouds. The seg-
mentation result of the ground provides the basic informa-
tion for the generation of Digital Terrain Models (DTMs).

• Debris: Debris includes dead materials that lie on the
ground, which could serve as potential fuels for forest fires
or wildlife habitats.

• Trunks: Trunks are parts of the trees that locate below
the Crown Base Height (CBH). The CBH is defined as the
distance from the ground surface to the lowest live branch
within a tree crown (Popescu and Zhao, 2008). Trunks are
the main sources of timber, fiber, and carbon.
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Figure 2. The study site, a northern red oak plantation, is located in West Lafayette, Indiana, USA.

• Crowns: Crowns are the canopies of the trees that are loc-
ated above the CBH.

• Others: This category encompasses unrecognized points
in the forests, such as noise and shrubs.

2.3 Semantic Segmentation of Point Cloud

To allow for semantic segmentation with massive LiDAR points
input, Superpoint Graph (SPG) (Landrieu and Simonovsky,
2018), which is a deep learning method designed for large-scale
point cloud segmentation is adopted. The process consists of
two main stages: partitioning and learning. In the partition-
ing stage, the input point cloud is initially clustered into a set
of small, geometrically-homogeneous primitives denoted here
forth as superpoints. A graph is then constructed by connecting
neighboring superpoints with superedges, resulting in a super-
point graph. In the learning stage, a PointNet (Qi et al., 2017)
is employed to extract superpoint embedding from the super-
points. Finally, a graph-based neural network is then used to
process superpoints embeddings and superedges and output se-
mantic labels for each superpoint.

In the geometric partitioning (Figure 3), geometric features are
first calculated, including linearity, planarity, and scattering.
For each point, eigenvalues λ1 ≥ λ2 ≥ λ3 are computed within
its neighborhood. Then the geometric classification can be de-
rived according to the largest of the following (Demantké et al.,
2012):

Linearity =
λ1 − λ2

λ1

Planarity =
λ2 − λ3

λ1

Scattering =
λ3

λ1

(1)

Other than the above three features, elevation is also included
as one of the geometric features. Then, a graph structure is con-
structed for the entire point cloud. The geometric partitioning
can be performed based on this graph and it is defined as the
following optimization problem:

argmin
g∈Rdg

∑
i∈C

∥gi − fi∥2 + µ
∑

(i,j)∈Enn

wi,j [gi − gj ̸= 0] (2)

Figure 3. Illustration of geometric partitioning. Top: an undirect
graph of point cloud, nodes are colored by geometric features.

Bottom: partitions that are piecewise constant approximations of
the geometric features.

where i and j are points in the LiDAR point cloud; g is a piece-
wise constant approximation of the geometric feature f ; ω is
the edge weight that is related to the distance between points; µ
is the regularization strength. The first part of summation rep-
resents the fidelity that makes components of g correspond to
homogeneous values of f ; the second part adds a penalty term
for each introduced geometric partitioning. The regularization
strength µ determines the trade-off between fidelity and sim-
plicity and thus simplicity determines the number of clusters.
Each cluster in the partition corresponds to a superpoint, and
their adjacency edges are referred to as superedges.

The learning stage aims to classify every superpoints. Although
the construction of SPG reduces the complexity of computation
for deep learning input, the sizes of superpoints are different
so they need to be converted to a unified form. Therefore, a
PointNet (Qi et al., 2017) is introduced to extract superpoint
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Figure 4. Model structure of superpoint graph. Each suerpoint is fed into a PointNet to get embedding vector, then superpoint
embeddings and superedges are fed into a graph net that consists of a series of GRU.

embedding that provides a rich representation of the underlying
3D structure. Figure ?? illustrates the structure of PoineNet. A
single partition of point clouds is first fed into a T-Net, a mod-
ule to spatial transform network which is to rotate and translate
point clouds to a fixed position that is spatial invariant. Then
the point cloud data is processed by a series of Multi-Layer
Perceptrons (MLPs) and max-pooling operations to get an em-
bedding, a descriptor for the superpoint.

A graph convolutional network is used to learn SPG (Si-
monovsky and Komodakis, 2017). As demonstrated in Fig-
ure 4, each superpoint is embedded by a Pointnet (Qi et al.,
2017), and each superedge is encoded by the offset and the ra-
tio of shape and size between adjacent superpoints. Superpoint
embeddings are then fed into a Gated Recurrent Unit (GRU) by
message passing with superedges. Superedge’s weight is from
the output of a multi-layer perceptron. A GRU leverages two
gate units, ”reset” and ”update”, to discern how much past in-
formation should be kept or forgotten (Cho et al., 2014). This
capability of selective memory, forgetting irrelevant data while
concentrating on informative features, enables a more compact
representation. Finally, the output of SPG’node is the segment-
ation result of point clouds.

3. RESULTS

To assess the performance of the SPG model, we selected two
testing sets: a tile of 60 x 70 m from the 2021 data and a tile
of 65 x 50 m from the 2022 data. The testing set of 2021 has
300 trees with 25 columns and 12 rows, while the testing set
of 2022 has 180 trees after harvesting. The remained data was
utilized for training and validation. Evaluation metrics included
commission error (precision), omission error (recall), F1-score,
and Overall Accuracy (OA), as well as overall execution time.
Table 1 and Table 2 present the quantitative results for the 2021
and 2022 datasets, respectively.

The results indicate that the SPG model performs well in dif-
ferentiating ground, trunks, and crowns for both datasets. For
the 2021 data without debris (Table 1), the model achieved per-
fect precision in detecting ground and crowns, with F1-scores
of 1.00 and 0.91, respectively. In the case of trunks, the model
demonstrated high recall (0.96) but lower precision (0.41), res-
ulting in an F1-score of 0.58. The overall accuracy for the 2021
data was 95%. The model did not identify any debris or other
features, which is consistent with the absence of debris in this

Table 1. Quantitative segmentation results of tree plantation
without debris.

Precision Recall F1-score
Ground 1.00 1.00 1.00
Debris 0.00 N/A N/A
Trunks 0.41 0.96 0.58
Crowns 1.0 0.84 0.91
Others 0.00 N/A N/A
Running time 115 seconds
Overall accuracy 95%

Table 2. Quantitative segmentation results of tree plantation with
debris.

Precision Recall F1-score
Ground 0.97 0.98 0.98
Debris 0.82 0.72 0.77
Trunks 0.55 0.91 0.69
Crowns 1.00 0.94 0.97
Others 0.00 N/A N/A
Running time 98 seconds
Overall accuracy 95%

dataset. For the 2022 data with debris (Table 2), the SPG model
maintained high performance in detecting ground, trunks, and
crowns, with F1-scores of 0.98, 0.69, and 0.97, respectively.
Notably, the model successfully detected debris with a preci-
sion of 0.82, recall of 0.72, and an F1-score of 0.77. The overall
accuracy for the 2022 dataset also stood at 95%. Similar to the
2021 dataset, the model did not identify any other features in
the 2022 data. In terms of execution efficiency, SPG consumed
115 s for 2021 dataset whose area is 4200 m2, and 98 s for the
2022 dataset with 3250 m2. Figure 5 and Figure 6 show the
visualization of segmentation results for 2021 and 2022 data-
sets, respectively.

4. CONCLUSION

Precision management of tree plantations requires an accurate
tree inventory. In this study, we implemented a deep learning-
based model, SPG, for the semantic segmentation of point
clouds covering tree plantations. By leveraging our in-house
UAV LiDAR system, we collected point cloud data for the en-
tire red oak plantation. The segmentation results on the testing
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Figure 5. Visualization of segmentation result for 2021 UAV
data without debris. From top to bottom: geometric partitioning,

reference, and prediction.

set showed that SPG is able to segment a plantation that con-
sists of 300 trees and achieve 95% overall accuracy in 2 min.
The SPG is not only able to recognize trunk and crown points
but also able to detect harvested trees on the ground. Our exper-
imental results proved the promising potential of UAV LiDAR
systems for tree plantation inventory and the efficiency of deep
learning for plantation point cloud segmentation. In the future,
we’ll expand our study to complex natural forests and explore
some potential downstream applications, such as stem mapping
and diameter measuring.

Figure 6. Visualization of segmentation result for 2021 UAV
data with debris.From top to bottom: geometric partitioning,

reference, and prediction.
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Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.,
2014. On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259.
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