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ABSTRACT:

Unmanned aerial vehicle (UAV) photogrammetry is widely used for acquiring high-quality 3D models of urban areas. However,
the completeness and quality of the reconstructed model can be affected by complex or concave structures when using common
flight paths. Furthermore, flight paths with multi-altitude and multi-attitude waypoints can be time-consuming and may not be
efficiently implemented by a single drone. To address these challenges, we propose a model-based multi-UAV path planning
method for capturing images that enable complete and precise 3D reconstruction of buildings. Our method analyzes the geometry
of the input coarse model and plans viewpoints based on the reconstructability related to completeness and precision. By solving
a multiple travelling salesmen problem (mTSP), individual flight paths for each UAV are generated. We conducted a real-world
experiment comparing the performance and efficiency of the proposed method with two existing solutions. Results the proposed
method produces a more complete 3D reconstruction with fewer images compared to the existing methods. It also shows that using
two UAVs with the proposed method can significantly reduce the overall time required for 3D reconstruction.

1. INTRODUCTION

Unmanned aerial vehicle (UAV) photogrammetry is a primary
method for acquiring high-quality 3D models of urban areas,
which serve as spatial references for various urban applica-
tions and management tasks, such as construction site mon-
itoring and building information modeling (BIM) (Anwar et
al., 2020; Alshawabkeh et al., 2021). Drones equipped with
gimbaled cameras offer high maneuverability, enabling them to
capture images at close range and from various angles (Nex et
al., 2022), resulting in the acquisition of ultra-high resolution
3D models (Cramer et al., 2018). However, when it comes to
urban buildings, which often have complex or concave struc-
tures, commonly used UAV path planning methods (such as
nadir, oblique, or orbit modes) may lead to incomplete or im-
precise 3D reconstructions due to self-occlusion (Jiang et al.,
2021).

In urban environments, the use of larger or fixed-wing UAVs,
which can carry more powerful mapping sensors, is limited due
to the complexity of the environment and regulations (Kandeel
et al., 2022). On the other hand, small and lightweight drones
are more flexible and cost-friendly, making them the preferred
choice. However, the limited flying range of small drones re-
stricts their mapping capabilities. Furthermore, these small
mapping drones lack smart features such as real-time obstacle
avoidance and can only follow pre-planned waypoints. There-
fore, allocating the mapping task to multiple UAVs and plan-
ning individual waypoints for each UAV is a practical solution
to improve the efficiency of data capture for high-quality 3D
reconstruction of urban areas (Otto et al., 2018).

Effectively acquiring high-quality 3D models for complex
buildings involves two main aspects: fine-grained viewpoint
planning and multi-UAV path planning. In terms of viewpoint
planning, the challenge of occlusion caused by complex build-
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ings needs to be addressed first (Cabreira et al., 2019). Model-
based UAV path planning methods analyze the geometry of the
input coarse model (or proxy model), which can be obtained
from previous exploration flights (Hepp et al., 2019) or exist-
ing models such as satellite reconstructions or BIM (Zhou et
al., 2020; Tan et al., 2021). Subsequently, an optimal subset of
viewpoints is selected from a candidate set that is uniformly and
densely initialized in the navigable space (Roberts et al., 2017).
The selection of viewpoints is often guided by a customized re-
construcability index, which takes into account factors such as
parallax angle, baseline, and ground sampling distance (GSD)
in Structure from Motion-Multi-View Stereo (SfM-MVS) the-
ory (Zhang et al., 2020; Peng and Isler, 2019). To address
the trade-off between intersection angle and image matching
quality, Smith et al. (2019) proposed a parallax weighing func-
tion (Wenzel et al., 2013). The problem of viewpoint selec-
tion involves non-linear constraints, making it NP-hard, while
the objective function is often submodular (Koch et al., 2019).
However, the computational complexity can be reduced while
maintaining a certain level of global optimality (Krause and Go-
lovin, 2014). Li et al. (2022) formulated a max-min optimiza-
tion problem to efficiently plan viewpoints in 3D space. Never-
theless, widely used image overlap-based reconstrucability may
lead to redundant viewpoint planning and still lacks the guaran-
tee of complete reconstruction. In summary, the reconstrucabil-
ity index should be carefully designed to balance reconstruction
quality and computational cost.

To increase the efficiency of image capture for high-quality
3D reconstruction of buildings, a practical solution is to util-
ize multi-UAV path planning. In conventional nadir image cap-
ture, a boustrophedon coverage flight path is commonly em-
ployed. The survey area is divided into sub-regions or sub-
strips, with each UAV assigned to cover a specific sub-region
(Avellar et al., 2015; Cabreira et al., 2019). However, it is
important to note that viewpoints for high-quality 3D recon-
struction are irregularly distributed. Therefore, the task alloca-
tion of multiple UAVs needs to be carried out at the waypoint
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level rather than the geometry level. This problem can be for-
mulated as a multiple traveling salesman problem (mTSP) or
a vehicle routing problem (VRP). The essence of the problem
is that multiple drones start at the same point and need to reach
multiple waypoints, with each waypoint being accessed by only
one drone. The objective of multi-UAV path planning for high-
quality 3D reconstruction is to allocate their paths in order to
achieve the lowest total time, shortest total route, or lowest total
cost (Coutinho et al., 2018).

For multirotor drones, energy consumption is largely dependent
on flight time and has little to do with the attitude of the drone
(Liu et al., 2020). Therefore, the main objective of multi-UAV
path planning for high-quality 3D reconstruction should be to
minimize the total time taken. However, it is important to note
that this problem is NP-hard, and commonly used methods such
as genetic algorithms and simulated annealing algorithms can
only achieve approximate optimization (Aggarwal et al., 2000).
Recent advancements in linearization and mixed integer pro-
gramming have further improved the optimality of the solutions
(Staněk et al., 2019). However, for mapping missions, conflicts
between UAVs and the buildings should also be considered and
resolved.

In this paper, we propose a model-based multi-UAV path plan-
ning method for capturing images that enable complete and pre-
cise 3D reconstruction. The proposed method analyzes the geo-
metry of the input coarse model and plans viewpoints based
on the reconstructability related to completeness and precision.
Individual flight paths for each UAV are generated by solving
the multiple traveling salesman problem. (Bektas, 2006). The
workflow concept is illustrated in Figure 1.

Figure 1. Concept of the proposed method.

2. METHOD

The workflow of the proposed method is illustrated in Figure 2.
This method begins by taking a coarse mesh model of the target
as input, which can be obtained from BIM (building inform-
ation modeling) or satellite reconstruction. Candidate view-
points are then densely initialized in the normal direction of
each facet of the target. The distance is calculated using the
sensor size, focal length, and the required GSD. Subsequently,
the reconstructability of each viewpoint is evaluated by consid-
ering factors such as the GSD, baseline, intersection angle, and

the estimated error ellipsoid (Zhang et al., 2020). Viewpoints
are selected from the candidate viewpoint set to ensure com-
plete coverage of the target, resulting in a strengthened cam-
era network. Next, the error ellipsoid of all target points is es-
timated through photogrammetric forward intersection. Targets
with an error ellipsoid larger than the given threshold are iden-
tified as low-precision. Additional viewpoints are planned to
optimize the viewing geometry of these targets, thereby increas-
ing the reconstruction precision. The viewpoints planned in the
previous two steps are combined to form the optimized camera
network. Finally, the viewpoints are divided and connected to
form the flight path for each individual UAV. The details of the
workflow are explained as follows.

Figure 2. The proposed workflow.

2.1 Viewpoint Selection for Completeness

The viewpoint C in this study has five degrees of freedom,
consisting of three degrees of freedom for the position Cp =
{x, y, z} and two degrees of freedom for the attitude Ca =
{ϕ, κ}. The roll angle ω of the camera is assumed to be zero
due to onboard stabilization. The objective of the viewpoint
selection is to choose the minimum number of viewpoints C∗

c

from the candidate set C0 to fully cover the target surface by
planning two viewpoints to observe each sampling point. The
viewpoint set C∗

c should satisfy the objective function and con-
straints:

C∗
c =argmin |Cc| (1)

s.t. f(C∗
c) ≥ q

In Equation 1, |Cc| is the number of viewpoints. f(C∗
c) =∑n

i=1R(Ci) is the overall reconstructability, and q is the tar-
get reconstruction percentage. Considering that there may be
highly occluded parts that cannot be observed by the UAV, q
can be reduced by a factor of 0.9. R(Ci) is the reconstructabil-
ity of a viewpoint Ci.

R(Ci) = argmax
so
s

+
∑
j

sinψj (2)
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The reconstructability function (Equation 2) considers the ratio
of the observed sampling points so from viewpoint C to all the
points s, and ψj is the angle between the light ray direction
and the principal direction of the error ellipsoid of point sj .
Other reconstructability factors are transformed into constraints
for the optimization problem. The geometry for this viewpoint
selection step is shown in Figure 3. The viewpoint candidate
(grey) is planned alongside the target point normal n, and its
distance to the target dg depends on the required GSD.mc is the
light ray direction. θp is the angle between mc and n, which is
set to 40◦ according to (Hoppe et al., 2012). Ne is the principal
direction of the error ellipsoid, and ψi is the angle between mc

and Ne.

Figure 3. The geometry illustration of viewpoint selection for
completeness

2.2 Viewpoint Planning for Precision

This step aims to select additional viewpoints based on the pre-
viously strengthened camera network C∗

c in order to increase
precision. The error ellipsoid of each target point s is estim-
ated through multiview intersection. The linearized collinearity
equation is given by (Zhang and Hu, 2007):

[
r31xij + r11c r32xij + r12c r33xij + r13c
r31yij + r21c r22yij + r12c r33yij + r23c

]X̂i −Xsj

Ŷi − Ysj

Ẑi − Zsj

 = 0 (3)

Here, (X̂i, Ŷi, Ẑi) are the coordinates of sampling point i, and
xij indicates that sampling point i is observed by viewpoint
j. The error ellipsoid can be calculated using the eigenvalues
and eigenvectors of the target point (Spruyt, 2015). The size of
the semimajor axis m is considered as the theoretical precision
of a target point. If m is larger than a threshold, for example
3×GSD, the target point is considered to have low precision.
For each selected target point, a new viewpoint Cp is planned to
increase precision. The position and attitude of the initialized
viewpoint are optimized using the objective function:

C∗
p = argmax fp(C, s) + Ψ′(C) (4)

where fp(C, s) =
so
s
, Ψ′(C) = sinψi

In Equation 4, Ψ′(C) represents the angle between the semima-
jor axis of the error ellipsoid and the direction of the light ray.
Therefore, fp(C, s) promotes the observation of the viewpoint
from more sampling points and increases the precision of the
target point simultaneously. It plans the viewpoint with a large

intersection angle to increase precision. Figure 4 demonstrates
the geometry, illustrating the optimization of precision. The
planned viewpoint Cp is also constrained by the distance dg
and intersection angle θp.

Figure 4. The geometry illustration of viewpoint planning for
precision.

The new viewpoints planned in this step, Cp , are finally
combined with the viewpoints for completeness, Cc, to form
the final optimized camera network for UAV path generation
Cr = Cc

⋃
Cp.

2.3 Path Generation for Multiple UAVs

This step involves planning flight paths for nd UAVs using the
camera network Cr obtained from the previous steps. We as-
sume that the UAVs are multirotor drones equipped with gimbal
cameras, allowing them to fly in 3D space and capture images
from various attitudes by yawing and rotating the gimbal.

To begin, we construct a graph G(V,E) where each view-
point Cr in the set Cr corresponds to a vertex V . The edges
E represent the cost between vertices. Assuming there are n
UAVs required to traverse all viewpoints in Cr, the takeoff
positions for each UAV are denoted as S = {S1, S2, ..., Sn},
where ∀Si /∈ Cr. The path for the ith UAV is denoted as
Pi = {S1, E1, ..., Ek ∈ E, S1}, indicating that the UAV takes
off from Si, follows the edgesEk, and returns to the takeoff po-
sition. We define the set of break-points B = [B1, B2, ...Bn−1]
to divide the path P into Pi segments.

The objective of using multiple UAVs for the flight path is to
save time. For multirotor UAVs, the flight time is primarily de-
termined by the length of the path (Liu et al., 2020). Therefore,
we set the cost E as the Euclidean distance between vertices,
and the objective function is to minimize the overall length:

min

n∑
i=1

L(Pi) (5)

where L(Pi) represents the length of the ith path. Assuming
that the maximum flying range of each drone is dm, we intro-
duce a penalty coefficient kd to adjust the distance correlation
function beyond the range path. This adjustment effectively
modifies the value of the objective function to increase the con-
straint:

L(Pi) =

{
L(Pi) L(Pi) ≤ dm

kd(L(Pi)− dm) + dm L(Pi) > dm
(6)

In Equation 6, if the path for a certain UAV exceeds the range,
the cost of its excess part increases by a factor of kd. If an
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obstacle is present between two vertices, the distance is adjusted
using an obstacle-avoidance trajectory, which can be planned
using an algorithm such as A*. Finally, a multiple traveling
salesmen problem is formulated and solved on the graph G to
obtain the flight path for each UAV.

3. EXPERIMENT AND RESULTS

A real-world experiment was conducted to evaluate the per-
formance and efficiency of the proposed method. The ex-
periment compared the proposed method with the Nap-of-the-
object photogrammetry planning (NFP) method (Wang et al.,
2022) and Agisoft Metashape’s method (MS) (Agisoft LLC,
2022). The target building was a multipart Chinese-style build-
ing with dimensions of approximately 155 × 155 m. A lower-
resolution model reconstructed from nadir UAV images was
used to simulate the input satellite model. Two DJI Phantom
4 RTK drones were used for image capture, with an average
capture distance of 30 m and a GSD of approximately 1.5 cm.
The overlap settings for NFP and Metashape were set to 65%.
The sidelap for NFP was set to 50%, while Metashape does not
provide such a setting. Figure 5 shows the viewpoints planned
by each comparing method. Agisoft Metashape was used for
model reconstruction.

To evaluate the absolute accuracy, 20 reference points were
signalized with the real-time kinematic (RTK) system, and 5
of them were ground control points (GCPs) (Figure 6). The
ground truth model was reconstructed from oblique imaging
and georeferenced with all reference points, ensuring high com-
pleteness and accuracy.

Table 1 presents the properties of the flight paths. The pro-
posed method planned only 62 images, while NFP planned 169
images and MS had 192 images, resulting in the longest flight
path. The flight time was significantly lower for the proposed
method due to the fewer viewpoints. The ”Proposed-DUAL”
paths were implemented by individual drones (No. 1 and 2),
which saved approximately 160 seconds compared to a single
drone.

Table 1. Flight path comparison.

Name # of images Length(m) Flight time (s)
NFP 169 2300 1667
MS 192 2814 1874
Proposed 62 1746 549
Proposed-DUAL-1 28 1674 354
Proposed-DUAL-2 34 1575 384

The visual comparison of the dense image matching (DIM)
point cloud is shown in Figure 7. The reconstruction from
NFP’s method has many defects on the green roof and red
façade, while the proposed method produces a more complete
result with only some defects on the roof. The MS path with
192 images appears to be the most complete one. The strip-like
viewpoint distribution of NFP’s method may not be as good
as the even distribution achieved by Metashape’s method. The
Proposed-DUAL method had exactly the same viewpoints as
the Proposed method, but it was implemented with two drones
working collaboratively. There was one more set of interiors to
solve, and the reconstruction looks similar to that from a single
drone.

The DIM point cloud from each flight path was compared with
the reference model, and the quantitative results are demon-
strated using three indicators: precision, recall, and F1-score.

Precision P quantifies the number of reconstructed points that
are close to the ground truth points, while recall R quantifies
the number of ground truth points that are close to a recon-
structed point, which can also be interpreted as the complete-
ness and an indicator of the overall absolute accuracy. The F1-
score, F = 2PR

P+R
, can be used as a performance measure for

3D reconstruction (Hepp et al., 2019). Table 2 presents the res-
ults. The quantitative results align with the visual comparison.
Among all three flight paths, the proposed method achieves the
best results for all three indicators. The NFP method has a
higher precision but lower recall compared to the MS method,
despite using fewer images. The strip-like viewpoints of the
NFP method may assist in accurate image matching and exter-
ior estimation, resulting in better precision. Compared to the
single drone method, the results from the two drones method
(Proposed-DUAL) are slightly lower, possibly due to the intro-
duction of another set of camera interior.

Table 2. Quantitative comparison of DIM point cloud.

Name Precision (%) Recall (%) F1-score
NFP 36.26 26.91 0.309
MS 34.94 28.42 0.313
Proposed 41.32 30.30 0.350
Proposed-DUAL 40.98 29.90 0.346

Regarding the absolute accuracy, we compared the errors in the
XY, Z, and total dimensions for the checkpoints. The results are
presented in Table 3. It is worth noting that the XY errors ob-
tained from all flight paths are relatively large, considering the
centimeter-level GSD. This might be attributed to systematic
errors between the reference points and the initial exteriors ob-
tained from the drone. All the compared methods yielded sim-
ilar results, with only a few centimeters of difference. However,
the proposed flight path implemented with two drones exhibited
slightly better performance in terms of XY and total error.

Table 3. Absolute error comparison via checkpoints (cm)

Name XY error Z error Total
NFP 48.35 8.98 49.18
MS 40.95 5.40 41.30
3D 42.99 6.23 43.44
3D-DUAL 40.38 5.69 40.78

4. CONCLUSIONS

In this paper, we proposed a model-based multi-UAV path plan-
ning method for capturing high-quality 3D reconstructions of
buildings. The proposed method utilizes a coarse model as in-
put and incorporates photogrammetric constraints and error el-
lipsoids to guide viewpoint selection. The flight paths for mul-
tiple UAVs are then planned by solving a multiple traveling
salesman problem. The results demonstrate that the proposed
method achieves a more comprehensive 3D reconstruction us-
ing fewer images compared to existing methods such as NFP
and Metashape. Additionally, the efficiency of image capture is
increased through the planning of paths for multiple UAVs.

However, there are still some limitations that need to be ad-
dressed. Firstly, the proposed method assumes that the input
coarse model is error-free. In practice, the coarse model may
contain errors up to several meters, which can impact the qual-
ity and safety of the reconstruction. Therefore, future work
will consider the uncertainty associated with the input model.
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Figure 5. Planned viewpoints of the experiment.

Figure 6. The target building and reference points of the
experiment. Red points indicate GCPs.

Figure 7. Comparison of DIM point clouds.

Secondly, the current multi-UAV path generation method only
considers obstacle avoidance. However, there may be potential
conflicts between UAVs during operation, necessitating mission
planning that avoids collisions between UAVs. To address this,
future work will introduce additional dynamic constraints to en-
sure safety.
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