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ABSTRACT: 
 
Forest biodiversity is essential in maintaining ecosystem functions and services. Recently, unmanned aerial vehicle (UAV) remote 
sensing technology has emerged as a cost-effective and flexible tool for biodiversity monitoring. In this study, we compared the 
optimal clustering algorithm, classification method (spectral angle mapper, SAM), spectral diversity metric and structural 
heterogeneity index for forest species diversity estimation in two complex subtropical forests, Mazongling (MZL) and Gonggashan 
(GGS) National Nature Forest Reserves in China, using UAV-borne hyperspectral and LiDAR data. The results showed that the 
SAM classification method performed better with higher values of R2 than the clustering algorithm for predicting both species 
richness (MZL: 0.62 > 0.46 and GGS: 0.55 > 0.46) and Shannon-Wiener index (MZL: 0.64 > 0.58 and GGS: 0.52 > 0.47), while the 
optimal clustering algorithm had the highest prediction accuracy for the Simpson index, followed by the SAM classification method, 
spectral diversity metric and structural heterogeneity index (MZL: 0.83>0.44>0.31>0.12, GGS: 0.62>0.44>0.38>0.00). Our study 
indicated that the SAM classification method had the advantage of identifying rare species and estimating species richness, while the 
clustering method could capture forest diversity patterns rapidly without distinguishing the specific tree species and predict the 
Simpson index more accurately. Overall, both clustering and classification methods exhibited superior performance compared to 
spectral or structural diversity indices. Our findings highlight the applicability of UAV remote sensing in monitoring forest species 
diversity in complex subtropical forests.  
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1. INTRODUCTION 

Biodiversity plays a crucial role in maintaining ecosystem 
functions and services. Forest ecosystems are one of the most 
important global repositories of terrestrial biodiversity, 
providing habitat for over half of terrestrial plant and animal 
species. However, the biodiversity of forests is facing serious 
decline globally due to climate change and human activities, 
and this trend is likely to continue in the future. Forest species 
diversity, which refers to the number and distribution of tree 
species within forest ecosystems, is a primary component of 
forest biodiversity. Traditional forest species diversity 
estimation relies on field surveys, which are time-consuming, 
labor-intensive, and spatio-temporal limited. Monitoring forest 
diversity is therefore essential for ecological conservation and 
management.  
 
Remote sensing techniques have been increasingly used for 
monitoring and assessing forest species diversity loss across 
scales in a repeatable and rapid manner. The UAV (unmanned 
aerial vehicle) remote sensing technology can be equipped with 
hyperspectral sensors to obtain continuous spectral information 
of vegetation and LiDAR (Light Detection and Ranging) 
sensors to penetrate the vegetation canopy to obtain 3-
dimensional structural features directly, showing great potential 
in forest species identification and diversity monitoring in 
recent years. Furthermore, advances in LiDAR remote sensing 
have enabled the accurate extraction of information from 
individual tree crowns (ITCs). Compared to the pixel-based 
approach, the ITC-based approach is more directly analogous to 
the field-based individual sampling method, which can better 

extract structural features of the canopy and minimize the signal 
confusion brought by non-tree pixels (Zheng et al., 2022).  
 
Monitoring species diversity by remote sensing can be divided 
into roughly two categories: identifying the species directly and 
estimating the species diversity indices indirectly based on 
habitat or relevant indicators (Xu et al., 2022). Distinguishing 
individual tree species in complex subtropical or tropical forests 
is challenging due to spectral similarities among species and 
variations within the same species (Wang and Gamon, 2019). 
Moreover, classification confusion increases with greater 
biodiversity, necessitating more training data for species-rich 
forests to enhance accuracy. However, gathering adequate data 
for training and validation in these diverse, complex terrains is 
difficult. 
 
Compared with direct species identification methods limited to 
big-size species or non-mixed species, spectral variation 
hypothesis (SVH), as the most representative indirect 
observation method, has strong applicability in monitoring 
species diversity. The spectral variation hypothesis assumes that 
the remotely sensed variation in spectral patterns is related to 
plant species diversity. Many SVH-based approaches such as 
spectral diversity metrics and clustering algorithms, have been 
applied for species diversity estimation at the individual canopy 
level of the forest, especially in combination with LiDAR data. 
Moreover, some studies indicated that tree height or the 
structural heterogeneity index is beneficial for predicting 
species richness in Mediterranean forests (Lopatin et al., 2016; 
Simonson et al., 2012). However, it remains unclear which 
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method is more effective for monitoring different aspects of 
species diversity in complex forest conditions.  
 
Therefore, the major objectives of our study are to explore the 
performance of individual tree-based classification, clustering, 
spectral diversity metric and structural heterogeneity methods in 
estimating three commonly used forest species diversity indices 
(species richness, Shannon-Wiener index and Simpson index) in 
two typical subtropical forests in China using UAV-borne 
hyperspectral and LiDAR data. We aim to (1) classify tree 
species using the SAM classification method based on 
hyperspectral image and the individual tree crown segmentation 
results from LiDAR data, (2) estimate forest species diversity 
using different clustering algorithms, spectral diversity metrics 
and structural heterogeneity metrics based on optimal 
biochemical vegetation indices and structural features, and (3) 
further compare the performance and applicability of these 
methods for predicting different species diversity indices in 
these two subtropical forest sites. 
 

2. MATERIALS AND METHODS 

We conducted this study in two complex subtropical forest 
areas, Mazongling (MZL, 115°41′37′–115°42′5′E, 31°15′25′–
31°15′44′N) and Gonggashan (GGS, 102°3′50′–102°4′28′E, 
29°36′2′–29°36′15′N) National Nature Forest Reserves (Figure 
1). MZL study area located in Jinzhai county, Anhui province 
of China covers about 23.8 ha and contains more than 10 
dominant tree species, such as Quercus glandulifera, Platycarya 
strobilacea, Castanea mollissima and Lindera glauca. GGS 
study area located in Ganzi (Garzê) Tibetan autonomous 
prefecture, Sichuan province of China covers an area of 
approximately 20.5 ha and the forest canopy comprises more 
than 15 dominant tree species, such as Fagus longipetiolata, 
Jasminum nudiflorum, Ailanthus altissima, Cercidiphyllum 
japonicum and Bothrocaryum controversum.  
 
Field measurements in 26 plots (30×30 m) were collected in 
September–October 2020 and July 2022. The differentially-
corrected GPS was used to determine the coordinates of the four 
corners of each plot and tree parameters (incl. species name, 
tree height, DBH, crown base height, crown dominant classes 
and crown diameters) were measured for all individual trees 
with DBH≥ 5 cm. We additionally measured the exact location 
of each tree in two of the MZL plots and four of the GGS plots 
by integrating the Real-Time Kinematic (RTK) 
GPS/GLONASS System with a total station to validate the 
individual tree segmentation accuracy and provide samples for 
tree species classification. The top-of-canopy leaves for 10 
dominant tree species in MZL and 15 dominant tree species in 
GGS were collected to measure their spectral properties and 
biochemical components, which include chlorophyll a and b 
(Chl-a, Chl-b), total carotenoids (Car), total carbon (C), 
nitrogen (N), phosphorus (P), cellulose (Cel), lignin (Lig), 
specific leaf area (SLA) and equivalent water thickness (EWT), 
following the method described in Zhao et al. (2016).  
 
We employed three distinct diversity indices, namely species 
richness, Shannon-Wiener index, and Simpson index, to 
represent forest species diversity and calculated them within 
each sample plot based on the field measurements. Species 
richness refers to the total number of species in the sample plot. 
Shannon-Wiener index and Simpson index can reflect species 
richness and evenness of species distribution. The Shannon-
Wiener index is more sensitive to the number of species, and 
the Simpson index is more sensitive to the evenness of enriched 
species (Nagendra, 2002). The calculation formula of the 

Shannon-Wiener index (H) and Simpson index (D) were as 
follows: 
 

,                                 (1) 
 

,                                   (2) 
 
where n is the total number of species in the sample plot, and pi 
is the proportional abundance of the species i. 
 
The UAV-borne hyperspectral data were collected on 
September 18 and October 15, 2020, using the Cuber UHD185 
Firefly imaging spectrometer (Cubert GmbH, Ulm, Baden-
Württemberg, Germany) onboard a DJI Matrice 300 aircraft 
under cloudless conditions. The sensor comprises 125 visible 
and near-infrared spectral channels ranging from 450 nm to 946 
nm with an 8 nm spectral resolution. The UAV flew at an 
altitude of 80 m, resulting in a 7 cm spatial resolution. The 
image preprocessing consisted of image mosaic, spectral 
radiation calibration, reflectance calibration and geometric 
correction. The UAV-borne LiDAR data were obtained 
simultaneously with the hyperspectral dataset acquisition using 
the LiAir VH Pro scanner (Green Valley Inc., Beijing, China) 
operating at a wavelength of 905 nm. The average point density 
in MZL is more than 117 points/m2, and the average point 
density in MZL is more than 168 points/m2. The UAV-borne 
LiDAR data were terrain normalized based on the ground points 
and the vegetation point clouds with a normalized height below 
2 m were removed to reduce the effect of background factors 
such as shrubs and grasses in the point clouds. The pre-
processing of the UAV-borne hyperspectral and LiDAR data 
was described in detail in Li et al. (2023). 
 

 
 
Figure 1. Manzongling study area (MZL, top) and Gonggashan 
study area (GGS, bottom) with imaging spectroscopy data 
acquired from Cuber UHD185 Firefly imaging spectrometer 
(left, Red: 866 nm, Green: 654 nm, Blue: 566 nm) and canopy 
height model (CHM) derived from LiDAR point clouds 
obtained from LiAir VH Pro scanner. The blue triangles 
indicate the locations of field-measured sample plots. The green 
circles indicate the locations of individual tree crown (ITC) 
validation plots. 
 
The species diversity was estimated from the perspective of 
spectral and structural variation of individual trees by 
combining the UAV-borne hyperspectral and LiDAR data and 
ground survey data. We calculated the average spectrum of each 
canopy based on the ITC segmentation results in the sample 
plots. To obtain accurate canopy spectral data of dominant 
species, pixels with NDVI<0.2 and canopy height<2 m were 
removed from the hyperspectral images to reduce the effect of 
background factors such as canopy gaps. Moreover, the two 
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detailed ITC plots with 14 tree species in MZL (covering more 
than 90% of local tree species) and four detailed ITC plots with 
22 tree species in GGS (covering more than 75% of local tree 
species) that measured the exact location of each tree were used 
to establish the endmember spectral library by calculating the 
average spectrum of each species in the two study areas (Figure 
2). The endmember spectra were further applied in the SAM 
classification method and the diversity indices were calculated 
based on the classified species and abundance results.  

 

 
Figure 2. Individual tree mean spectra of dominant tree species 
in two study sites (up: MZL, bottom: GGS) 
 
Aiming at the clustering algorithm developed in remote sensing 
monitoring of forest species diversity, we firstly explored the 
association of leaf biochemical diversity, leaf spectral diversity 
and species diversity, and used the partial least squares 
regression (PLSR) method to determine the optimal leaf 
biochemical components that can be well estimated by the leaf 
spectra. Then we calculated the common-used vegetation 
indices (VIs) that represent the corresponding biochemical 
components based on the literature (Table 1). We calculated the 
standard deviation of VIs for all detected ITCs at each plot, and 
performed Spearman correlation analysis with the field-
measured species diversity indices (corrplot, R-package) to 
select the optimal VIs. These canopy-level biochemical VIs 
were then converted into leaf-scale biochemical VIs by dividing 
them by the ITC’s LAI to eliminate the canopy structure effects 
(Zarco-Tejada et al., 2001; Zhao et al., 2018). In addition, 
individual-tree structural features were extracted from the 
terrain-normalized point clouds within the polygons of 
individual tree crowns (ITCs) segmented by the watershed 
algorithm (Zhao et al., 2014), and the optimal structural features 
were selected based on the correlation between the standard 

deviation of ITC structural features and three species diversity 
indices.  
 
Biochemical 
component Vegetation index Reference 

Chl 
 
 

TCARI/OSAVI 
 

VOG1 

Daughtry et al. (2000);  
 Wu et al. (2008) 

Vogelmann et al. (1993) 

EWT WBI Penuelas et al. (1993) 
Car CRI Gitelson et al. (2002) 
Cel PRI Gamon et al. (1992) 
N CCCI El-Shikha et al. (2007) 
P NDSI Patil et al. (2007) 
SLA  
C 

RVI 
PSRI 

Jordan (1969) 
Merzlyak et al. (1999) 

Table 1. Vegetation indices that represent the corresponding 
biochemical components. 
 
The three clustering algorithms, namely, the self-adaptive Fuzzy 
C-Means (FCM) algorithm (Zhao et al., 2018), the mean shift 
algorithm (Cheng, 1995) and the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm 
(Ester et al., 1996), were compared in the two representative 
subtropical forest study areas (i.e., MZL and GGS) based on the 
optimal leaf biochemical components and structural features to 
select the optimal clustering algorithm for species diversity 
estimation. Finally, the estimation results of the optimal 
clustering algorithm were compared with the spectral angle 
mapper (SAM) classification method and monitoring methods 
based on spectral diversity metric (convex hull volume, CHV) 
and structural heterogeneity index (standard deviation of 
optimal structural features). The performance and applicability 
of different remote sensing monitoring methods for forest 
species diversity indices (species richness, Shannon-Wiener and 
Simpson index) were explored.  
 

3. RESULTS AND DISCUSSIONS 

The regression relationships between leaf spectra and 
biochemical components were established using the PLSR 
method to determine whether leaf spectra have ability to 
retrieve leaf biochemical components. In MZL, Chl-a, Chl-b, 
EWT, Car, SLA, C, Cel, N, Lig and P could be strongly 
predicted by leaf spectra (R2=0.44–0.82, p<0.01; Table 2) and 7 
biochemical VIs (WBI, TCARI/OSAVI, PRI, RVI, CCCI, 
VOG1, and PSRI) were finally determined. In GGS, Chl-a, Chl-
b, EWT, SLA, Cel, N and C could be well estimated by spectral 
signatures (R2=0.30–0.73, p<0.01) and 3 biochemical VIs 
(TCARI/OSAVI, RVI, and PSRI) were finally selected.  
 

 
Table 2. Estimation results of leaf biochemical components. 
 
The ITC segmentation results of all 26 sample plots show that 
the amounts of segmented ITCs are quantitatively close to the 
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ground-measured tree number (MZL: R2=0.76, RMSE=5.41; 
GGS: R2=0.82, RMSE=7.17). Combining the correlation 
analysis between structural features and field-measured species 
diversity indices, the two most relevant features, namely canopy 
cover (CC) and density metric 30% (DM 30%) were selected as 
the optimal structural features in MZL. And we finally 
determined five optimal structural features in GGS, including 
the interquartile range of accumulated elevation (Elev AIQ), 
coefficient of variance of elevation (Elev CV), the variance of 
elevation (Elev Var), density metric 20% (DM 20%) and 
density metric 30% (DM 30%). 
 
Three clustering algorithms were used to estimate species 
richness, Shannon-Wiener index and Simpson index in the two 
study areas of MZL and GGS, respectively. Among them, the 
self-adaptive FCM clustering algorithm had the highest 
accuracy for estimating species richness, followed by the mean 
shift algorithm, and the lowest accuracy was obtained by the 
DBSCAN algorithm (MZL: 0.46>0.16>0.14, GGS: 
0.46>0.29>0.23). For the Shannon-Wiener index and Simpson 
index, the self-adaptive FCM algorithm still obtained the 
highest accuracy, followed by the DBSCAN algorithm and the 
mean shift algorithm (Shannon-Wiener index: 0.58>0.26>0.14 
for MZL, 0.47>0.36>0.35 for GGS; Simpson index: 
0.83>0.28>0.11 for MZL, 0.62>0.19>0.08 for GGS). Therefore, 
the performance of the self-adaptive FCM clustering algorithm 
was most stable (Figure 3). 

 
Figure 3. Field-measured species diversity indices compared 
with the predicted values based on three clustering algorithms, 
namely, the self-adaptive Fuzzy C-Means (FCM) algorithm, the 
mean shift algorithm and the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithm for MZL (top) 
and GGS (bottom).  
 
The optimal clustering algorithm (the self-adaptive FCM) was 
compared with other species diversity monitoring methods. The 
results showed that the spectral angle mapper (SAM) 
classification method had the highest accuracy in estimating 
species richness, followed by the self-adaptive FCM clustering 
algorithm, and the lowest accuracy was achieved by the spectral 
diversity metric and the structural heterogeneity index (MZL: 
0.62>0.46>0.20>0.20, GGS: 0.55>0.46>0.43>0.07). For the 
prediction of the Shannon-Wiener index, the SAM classification 
method performed the best in MZL, followed by the self-
adaptive FCM algorithm and the spectral diversity metric, with 
the lowest prediction accuracy of the structural heterogeneity 
index (0.64>0.58>0.39>0.02). As for GGS, the SAM 
classification method also had the highest prediction accuracy, 
followed by the structural heterogeneity index and the self-
adaptive FCM algorithm, with the worst performance of the 
spectral diversity metric index (0.52>0.48>0.47>0.01). The 
SAM classification could effectively distinguish the non-
dominant species based on hyperspectral data when the 
endmember spectral library of dominant tree species is available 
(Zhao et al., 2020). However, when the spectra of non-dominant 
trees and dominant trees are very similar (such as Carpinus 

turczaninowii and Castanea mollissima in this study, Figure 2), 
SAM classification may also incorrectly classify them, which 
brings some challenges to the accurate estimation of diversity 
indices. 
 

 
Figure 4. Field-measured species diversity indices compared 
with the predicted values based on classification and clustering 
approaches for MZL (top) and GGS (bottom). 
 
The results of both study areas showed that the self-adaptive 
FCM clustering algorithm had the highest prediction accuracy 
for the Simpson index, followed by the SAM classification 
method, spectral diversity metric and the structural 
heterogeneity index (MZL: 0.83>0.44>0.31>0.12, GGS: 
0.62>0.44>0.38>0.00; Figure 4, Table 3). This is probably 
caused by the fact that the Simpson index weights rare species 
less and dominant species more than Shannon-Wiener index, so 
the clustering algorithm taking dominant species/traits more 
into account is expected to predict the Simpson index more 
accurately. The clustering approach also had the advantage of 
rapidly capturing forest diversity patterns based on individual 
tree-based variations in biochemical and structural features 
without distinguishing the tree species. 
 

 
Table 3. Comparison of the accuracy of four monitoring 
methods. 
 
We applied the optimal diversity estimation approaches to the 
two study areas covered by the UAV campaigns and mapped 
forest species diversity indices using a moving window 
approach with the window size of 30 m × 30 m. Maps of the 
Simpson index in MZL and GGS estimated by the self-adaptive 
FCM algorithm are shown in Figure 5. 
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Figure 5. Predicted forest canopy species diversity of Simpson 
index with spatial resolution of 30 m in MZL (top) and GGS 
(bottom). 
 

4. CONCLUSIONS 

In this study, we compared the performance of individual tree-
based classification, clustering, spectral diversity metric and 
structural heterogeneity methods with UAV-borne data for 
estimating the forest species diversity indices in the Mazongling 
and Gonggashan National Nature Forest Reserves of China. We 
proved that the SAM classification could provide more accurate 
predictions of species richness indices but requires spectral 
information of all dominant tree species. The self-adaptive FCM 
clustering algorithm could achieve high-precision predictions 
for evenness indices (especially Simpson index), although 
information on specific tree species is unavailable. It also 
revealed that the self-adaptive FCM clustering algorithm had 
the highest prediction accuracy among other clustering 
algorithms. The combination of UAV imaging spectroscopy and 
LiDAR data make it possible to predict regional forest species 
diversity more accurately at individual canopy scale for 
complex forests, comparing only using spectral or structural 
information. Future studies could improve the forest species-
spectral library and explore forest species identification from 
multiple perspectives. For example, considering the variation in 
forest species characteristics over time, it would be valuable to 
further examine the accuracy of classification and clustering 
methods by incorporating phenological or multi-temporal 
features. 
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