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ABSTRACT: 

 

This study attempts to solve these issues associated with hyperspectral (HS) data, i.e., coarse spatial resolution and high volume, by 

understanding the effect of deep learning and traditional dimensionality reduction on super-resolved products generated from the 

recently launched PRecursore IperSpettrale della Missione Applicativa (PRISMA) HS mission. Four single-frame super-resolution 

(SR) algorithms have been used to super-resolve a 30 m PRISMA scene of Ahmedabad, India and generate 15 m spatial resolution 

images with both spatial and spectral fidelity. Iterative back projection (IBP) and sparse representation (SIS) are the best and worst-

performing SR algorithms following a comparative assessment and validation protocol. Next, denoising autoencoders and PCT 

computed using singular and eigenvalue decompositions have been executed on the original PRISMA, IBP and SIS-based super-

resolved datasets. The resulting low-dimensional representations have been assessed to preserve the original dataset's topology using 

label-independent Lee and Verleysen's co-ranking matrix and loss of quality measure. Findings suggest that autoencoders are 

computationally expensive and require a higher neighbourhood size than PCT and its variants to produce a high-quality encoding. 

These insights remain significant for urban information extraction as there are few direct comparative assessments between machine 

learning-based linear and non-linear data compression methods in earlier studies. 

 

 

1. INTRODUCTION 

The advent of imaging spectroscopy in the form of airborne 

hyperspectral (HS) sensors in the 1980s and subsequently in 

spaceborne HS sensors at the beginning of the twenty-first 

century boosted the efforts in performing detailed mapping and 

monitoring of the Earth's resources and surface processes. 

Ameliorations in sensor optics and the need to ensure data 

continuity following Hyperion's decommissioning led to the 

launch of several HS spaceborne missions from 2018 onwards. 

Consequently, a huge amount of HS data is available nowadays 

with a wide swath, medium spatial resolution, and high signal-to-

noise ratio (SNR), representing the five Vs of big data (Nguyen, 

2019). Replete with similar information in multiple bands, 

feature redundancy hampers the data quality and hinders their 

usage in various thematic applications. Hence, there is a need to 

develop workflows focusing on retrieving spectral bands that 

contain the maximum information for the particular application, 

thereby highlighting the importance of dimensionality or spectral 

reduction techniques.  

 

Such techniques help to avoid Hughes’ phenomenon or the curse 

of dimensionality (Ma et al., 2013), due to which an 

exceptionally large number of points are needed for 

representation, and many machine learning algorithms 

underperform in retrieving precise content from HS data. 

Moreover, with a large number of dependent variables being 

recorded, there will be noise introduced due to erroneous 

measurements along with redundancy, leading to the increased 

need for storage, higher computation time, and substandard 

visualization in the absence of advanced tools (Xu et al., 2019). 

So, these techniques must be implemented as a pre-processing 
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step to produce computationally efficient and accurate 

classification pipelines without information loss (S. H. Lee et al., 

2018).  

 

The most well-known technique is the principal component 

transform (PCT) (Jolliffe & Cadima, 2016), which, when used on 

HS data, generates components free of correlation and noise and 

possesses the maximum information. PCT-derived narrow-band 

indices from new HS sensors: DLR Earth Sensing Imaging 

Spectrometer (DESIS) (Krutz et al., 2019), PRecursore 

IperSpettrale della Missione Applicativa (PRISMA) (Pignatti et 

al., 2015) produce the most robust lithological maps in Rajasthan, 

India (Tripathi & Garg, 2021b). Tripathi & Garg (2021a) 

compare eigenvalue decomposition (EVD) and singular value 

decomposition (SVD) methods for PCT of Earth and lunar HS 

data. The compression rate and dimensionality reduction 

techniques are important while developing a classification 

workflow for HS images (Mantripragada et al., 2022). The last 

five years have seen the evolution of semisupervised and 

supervised algorithms in executing effective dimensionality 

reduction and image classification compared to conventional 

approaches like PCT (Harikiran & Reddy, 2022). PCT and its 

variants consider the image distribution linear, only possible in 

areas with homogeneity but not in locales with heterogeneity, 

such as an urban area (Mishra & Garg, 2023). Many non-linear 

techniques: locally linear embedding (Roweis & Saul, 2000), 

diffusion maps (Coifman & Lafon, 2006), sequential forward and 

backward selections (Wang et al., 2011), genetic algorithms 

(Chatterjee & Bhattacherjee, 2011) have been developed to solve 

these deficiencies.  
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Supervised deep learning strategies like convolutional neural 

networks (Hu et al., 2015) requiring many labelled samples to 

learn the complex patterns within the data have also been used 

for dimensionality reduction. However, each deep learning 

strategy takes care of certain properties of the original data and 

may be suitable for a particular task, not another. Tuning 

parameters and assumptions adopted by each strategy may lead 

the algorithm to produce diverse outputs each time corresponding 

to differing local optimal values of the objective function. As a 

result, the underlying structure of the input data may not be learnt 

properly and adequately represented by the inner layers of the 

neural network. Unsupervised non-linear neural network 

algorithms like autoencoders have shown superior performance 

in obtaining explainable structural mappings of the HS dataset in 

a compressed sub-space defined by the HS dataset’s intrinsic 

dimensionality (Facco et al., 2017). Being independent of labels 

as in supervised learning, these representations can be deployed 

for further analyses or utilized on other scenes with varied 

heterogeneity (Sedhain et al., 2015). Priya et al. (2019) have 

found that autoencoders adequately capture the non-linear 

patterns within airborne HS data. However, unlike supervised 

learning, the output quality or the performance of two 

unsupervised methods cannot be compared with objective 

metrics like reconstruction error or classification accuracies. 

 

Additionally, real-world spaceborne HS data have medium 

spatial resolution, which is insufficient for urban area mapping. 

Due to sensor optics design, the trade-off between detailed spatial 

and spectral information is difficult to address at the hardware 

stage. Resolution enhancement strategies such as super-

resolution (SR), which attempts to retain the spectral information 

of a single or multiple low-resolution (LR) HS inputs while 

visualizing the scene at a higher spatial resolution, is a solution. 

Readers can refer to Aburaed et al. (2023)  for more information 

on SR algorithm types and super-resolved products’ quality 

assessment. 

 

The present work aims to understand and analyze the impact of 

unsupervised linear and non-linear approaches in reducing the 

dimensionality of the newly launched PRISMA and super-

resolved products generated from the original PRISMA dataset. 

Quality index based on the co-ranking matrix principle and loss 

of quality concept have been used for this purpose.  

 

The remaining paper has been organized as follows. The region 

of investigation has been discussed in section 2. Section 3 

describes the input dataset, software and machine configuration 

for executing the research. The detailed methodology is in section 

4. Sections 5 and 6 discuss the research work's results and 

conclusions, respectively.  

 

2. STUDY AREA 

A 38.8 square kilometre (sq. km.) portion occupying the west and 

central zones of the Ahmedabad municipal corporation in 

Gujarat, India, has been chosen as the region of investigation. 

This region has a mixed land use containing residential, 

institutional and commercial areas in a planned manner. Informal 

settlements such as slums are also present, and every type of 

settlement density ranging from low to high is prevalent, too. As 

a result, the study area represents almost every type of building 

rooftop and pavement material used in the city along with natural 

features such as the bare ground and the dense green canopy in 

and around the Gujarat University, the Sabarmati River or the 

lakes in Vastrapur and Jivraj Park localities. Figure 1 below 

shows the study area on a false colour composite (FCC) of the 

PRISMA data. 

 

 
 

Figure 1. Study area on PRISMA FCC (Red (R): 37, Green 

(G): 24, Blue (B): 15) 

 

3. DATASET, SOFTWARE AND TERMINAL 

SPECIFICATIONS 

As specified in Section 1, data from the Italian Space Agency’s 

(ASI's) newly launched HS mission has been used here. The 

sensor specifications are in Loizzo et al. (2018), while readers 

can refer to Mishra & Garg (2022) for the scene information.  

 

The Environment for Visualising Images (ENVI) version 5.3 has 

been used for HS data pre-processing operations such as sensor 

error corrections, geometric correction and spatial or spectral 

subset. PCT using EVD of correlation or covariance matrix has 

also been executed in ENVI. The Matrix Laboratory (MATLAB) 

R2020b has been utilized for super-resolving the PRISMA data, 

estimating the dataset's intrinsic or virtual dimensionality, 

reducing its dimensionality by simple and deep autoencoders and 

PCT using singular value decomposition (SVD) of correlation or 

covariance matrix, and evaluating the quality of the 

dimensionally reduced outputs. R programming language has 

been used for stacking and assigning the coordinate projection 

system to the super-resolved output.  

 

The research has been carried out on a single terminal with the 

central processing unit (CPU) specification: random access 

memory (RAM) = 64 GB, processor = Intel Xeon E5-1630 

version 4, clock speed = 3.70 GHz. 

 

4. METHODOLOGY 

The methodology adopted for this research consists of HS data 

pre-processing, super-resolved output generation, performing 

dimensionality reduction and quality evaluation of dimensionally 

reduced outputs. These steps have been described in the 

following sub-sections. 

 

4.1 PRISMA Data Pre-processing 

The PRISMA dataset is a level-2D file, indicating that no 

atmospheric correction is required. The separate VNIR and 

SWIR data cubes are combined into a single file in standard 

ENVI format using the R programming language package 

'prismaread' (Busetto & Ranghetti, 2020). Through a 1-degree 

polynomial affine transformation, the dataset is geometrically 

aligned to a terrain-corrected Hyperion dataset acquired in 2002 

around the same time as the PRISMA data. The 'spatial subset' 

operation yields the study area in the dataset in square shape, 

having 209 samples and 209 lines. Manual inspection of each 

spectral band for haze, one or more than one column of no 

information or pixels having very low radiometric values led to 

the removal of 125 spectral bands out of 237 spectral bands in 

total. 
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4.2 Super-resolved Product Generation 

The pre-processed PRISMA data is segregated into individual 

bands using the 'spectral subset' operation and fed into the SR 

algorithm as the LR input. Band-wise SR process execution has 

been performed to ascertain the algorithm's computation 

efficiency. Initially, four single-frame SR algorithms: iterative 

back projection (IBP) (Elad & Feuer, 1996; Irani & Peleg, 1991; 

Yang et al., 2014), sparse representations (SIS) (Zeyde et al., 

2012), neighbourhood embedding – locally linear embedding 

(NELLE) (Chang et al., 2004), and gaussian process regression 

(GPR) (He & Siu, 2011) were applied 112 times for a scale factor 

(SF) = 2 to produce HR spectral bands at 15 m spatial resolution. 

These bands were stacked and given the coordinate projection 

system of the input dataset to generate the super-resolved output.  

 

Readers can refer to the above-cited papers or Mishra & Garg 

(2022) for the algorithms' working and parameters adopted 

during implementation. The algorithms' performance was 

assessed using the comparative assessment and validation 

protocol proposed by Mishra & Garg (2022). IBP and SIS were 

the best and worst-performing SR algorithms among the selected 

algorithms. These super-resolved products and the original 

PRISMA dataset were chosen to assess the effect of 

dimensionality reduction. 

 

4.3 Intrinsic Dimensionality Estimation 

Before using PCT and autoencoders to reduce dimensionality, 

estimating the dataset's intrinsic dimensionality is important so 

that the target number of components needed to define the low 

dimensional feature space is known. The maximum likelihood 

estimation (MLE) (Levina & Bickel, 2004) algorithm has been 

utilized to obtain the intrinsic dimensionality of PRISMA and 

IBP and SIS-based super-resolved products. It is simple to 

execute and computationally efficient compared to existing 

approaches (Bruske & Sommer, 1998; Camastra & Vinciarelli, 

2002; Costa & Hero, 2004; Roweis & Saul, 2000), offering the 

best bias and variance and assumes that every point's 

neighbourhood can be represented by a constant density linear 

feature space (Gomtsyan et al., 2019). However, this assumption 

may not hold for many real-world datasets, where each point may 

be represented by a non-linear manifold with a variable density, 

thereby prompting the development of feature-geometry-

sensitive intrinsic dimensionality estimation algorithms.  

 

Readers may refer to Gomtsyan et al. (2019) and Levina & Bickel 

(2004) for the mathematical derivation of the MLE descriptor. 

MLE's MATLAB implementation shown in 'MATLAB Toolbox 

for Dimensionality Reduction' (Van Der Maaten et al., 2009) has 

been followed here. 

 

4.4 Dimensionality Reduction 

PCT and autoencoders have been used to reduce the spectral 

dimensions of the original PRISMA dataset and the IBP and SIS-

based super-resolved products derived from it. Here, EVD and 

SVD of covariance and correlation matrices derived from the 

input dataset have been used to determine the principal 

components (PC). Denoising single and deep autoencoders have 

also been utilized to visualize the input dataset in lower 

dimensions.  

 

The following sub-sections describe these approaches. 

 

 
1https://github.com/laserlight-cell/PCA-SVD 

4.4.1 PCT: This technique is named after Damodar 

Dharmananda Kosambi, Kari Karhunen and Michel Loève as the 

Kosambi-Karhunen-Loève transform (Sapatnekar, 2011). It 

points out similar and dissimilar patterns in multidimensional 

data using multivariate statistics. The focus is on obtaining the 

highest spectral variance by looking around for a new pair of 

orthogonal axes with their centre at the data's average value. The 

data is moved to a new projection system upon finding such a 

pair. EVD or SVD of the correlation or covariance matrix of the 

original image supports these steps. The difference between EVD 

and SVD lies in the type of vectors used to define the feature 

space. The former uses an eigenvector, which is a non-zero 

𝑛 × 1 vector 𝜗  (Vadlamudi & Vadlamudi, 2018) such that,  

  Ρ𝜗 = 𝜆𝜗                                       (1) 

where,  Ρ = 𝑛 × 𝑛 square matrix 

 𝜆 = eigenvalue 

𝜆 is a scalar and can be real or complex, and EVD holds for 

square matrices only. On the other hand, SVD uses right and left 

singular vectors 𝜇 and 𝜔, respectively (Andrilli & Hecker, 2010) 

such that, 

     Κ = ΜΔΩΤ   (2) 

where,   Κ = 𝑚 × 𝑛 rectangular matrix 

Μ = 𝑚 × 𝑚 orthogonal matrix consists of left 

singular vector set {𝜇1, 𝜇2, … , 𝜇𝑚} as its 

columns 

Ω = 𝑛 × 𝑛 orthogonal matrix consists of right 

singular vector set {𝜔1, 𝜔2, … , 𝜔𝑛} as its 

columns 

Δ = 𝑚 × 𝑛 diagonal matrix consists of all 

elements as 0, except elements at (𝑖, 𝑖), which 

is a singular value 𝜎𝑖 such that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥
𝜎𝑘 > 𝜎𝑘+1 = ⋯ = 𝜎𝑛 = 0 ∀ 𝑖 ≤ 𝑘 

SVD holds for rectangular or square matrices having real or 

complex elements. SVD's features include compressing 

imageries and retrieving optimum decomposition sub-rank 

estimates (Tripathi & Garg, 2021a). The resulting components 

from EVD or SVD are then ranked in descending order, and those 

with the highest values are selected to transform into a new 

feature space.  

 

These components also do not correlate and are linearly mixed 

proportions of the original data's spectral bands in feature space 

with low dimensions. The highest amount of information is found 

in the first principal component, which has the highest variance 

(Jolliffe & Cadima, 2016). Even if the increasing PC number 

suggests lowering variance, it does not imply that a component 

with a smaller variance value will have less priority during 

regression (Jolliffe & Cadima, 2016). The noise in the data 

governs PCT's efficiency, and it is very much possible to have 

high-quality PCs at higher PC numbers (Hyvärinen & Oja, 2000). 

The reversal of both EVD and SVD makes it possible to obtain 

the original Ρ and     Κ, respectively. 

 

As pointed out in Section 3, ENVI has been used to calculate the 

correlation and covariance matrices from the original PRISMA 

and super-resolved products and execute EVD on both 

correlation and covariance matrices. For SVD of both correlation  

and covariance matrices, MATLAB script1 has been developed 

by the authors following the functions and syntax in the 

toolboxes: 'Open Source MATLAB Hyperspectral Toolbox' 

(Gerg, 2006) and 'MATLAB Toolbox for Dimensionality 

Reduction' (Van Der Maaten et al., 2009). The reduced dataset 

has been saved in ENVI standard format to facilitate easy 

visualization in ENVI. 
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4.4.2 Autoencoders: According to Hinton & Salakhutdinov 

(2006), an unsupervised feed-forward neural network comprising 

an encoder ℒ𝐸 and a decoder ℒ𝐷 is called an autoencoder. ℒ𝐸 

learns a low-dimensional hidden representation 𝑟𝑢 of the input 

data Α whereas ℒ𝐷 attempts to recreate the input from 𝑟𝑢 such 

that Α̂ = ℒ𝐷(𝑟𝑢) while simultaneously reducing the loss function 

 ℳ (Α, ℒ𝐷(ℒ𝐸(Α)))    (3) 

where, 𝑟𝑢 = ℒ𝐸(Α) and replacing ℒ𝐷(ℒ𝐸(Α)) in the above 

equation, by ℒ𝐷(𝑟𝑢) and subsequently by Α̂, loss function 

becomes ℳ(Α, Α̂). This function measures the discrepancy 

between Α and Α̂ and is generally a mean square error (Rasti et 

al., 2018). Let ℎ𝐸 and ℎ𝐷 be the weight matrices of ℒ𝐸 and ℒ𝐷, 

respectively, then the basic autoencoder's forward pass is  

 Α̂ = ℴ𝐷 (ℎ𝐷(ℴ𝐸(ℎ𝐸Α)))  (4) 

where, ℴ𝐷 and ℴ𝐸 denote the output and latent layer's activation 

function, respectively. Readers must note that a basic or simple 

autoencoder consists of only one latent layer, which contains 𝑟𝑢 

and has 𝑑 junctions such that 𝑑 < 𝐷, where 𝐷 is the number of 

junctions in the input and output layer. Although 𝐷 should be 

equal in both layers preferably, asymmetry is also possible in the 

network architecture. Sigmoid activation functions are used in 

the input and output layers to understand the non-linear patterns 

in Α, while the latent layer's activation function is linear. Since 

the loss function is unaffected by the characteristics of the latent 

layer, a regularization term must be introduced to warrant that all 

sorts of possible representations within Α are learnt, and accurate 

reconstructions happen. Hence, the regularized loss function can 

be expressed as 

ℳ𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑(Α, Α̂) = ℳ(Α, Α̂) + 𝜏ℱ(𝑟𝑢, ℎ𝐸 , ℎ𝐷)  (5) 

where, ℱ(𝑟𝑢, ℎ𝐸 , ℎ𝐷) is a penalty function keeping track of the 

latent layer characteristics and weights of ℒ𝐸 and ℒ𝐷 and 𝜏 = 

tuning parameter controlling the regularization strength. 

 

A simple autoencoder becomes a deep autoencoder when the 

latent layers increase in number and are usually odd, thereby 

allowing the autoencoder to address complex issues. However, 

the increment in the number of hidden layers leads to a reduction 

in the miscalculations sent back to the previous layer, implying 

regular weight updation in the latent layers adjoining the output 

layer. In contrast, the latent layers' weights near the input layer 

are seldom or never updated. Also known as the vanishing 

gradient problem (Roodschild et al., 2020), this issue prohibits 

learning very deep autoencoders and can be solved using a three-

stage pre-training procedure (Hinton et al., 2006; Zheng & Zhao, 

2020). Each layer from Α to 𝑟𝑢 is trained individually in the first 

stage using a restricted Boltzmann machine (Fischer & Igel, 

2012) or a small denoising autoencoder (Vincent et al., 2008) as 

in the current research.  

 

A small denoising autoencoder is nothing but a simple 

autoencoder that transforms Α into a noisy version 𝑟𝑢 in the latent 

layer during training via a stochastic function and then attempts 

to reconstruct the original data, i.e., obtain Α̂ from this noisy 

version using (3) and (4). The second stage is the inversing of the 

trained encoder layers to obtain the latent and output layers of the 

decoder. Supervised finetuning of the trained network by 

backpropagation forms the third phase. Spectral features 

generated from this pre-training perform better than the 

traditional information extraction strategies (Kong & Yan, 2019).  

 

The primary drawback of autoencoders is that their training is 

time-consuming and highly dependent upon the number of data 

 
2https://github.com/laserlight-cell/denoising-simple-and-deep-

autoencoder-for-dimensionality-reduction 

points in the dataset, the number of iterations and the number of 

weights. An increment in any of these factors results in increased 

training time as well as occupying increased memory space. 

Another point to remember when constructing an autoencoder is 

its discernment of the input dataset. Multiple varieties of 

autoencoders aiming to ameliorate the generalization and 

arrangement of source types have been introduced, such as 

variational (Liu et al., 2021), convolutional (Chen et al., 2017), 

denoising (Vincent et al., 2010), sparse (Shao et al., 2019) and 

adversarial autoencoders (Bao et al., 2021). 

 

Again, the authors have developed a MATLAB script2 for both 

simple and deep denoising autoencoders following the functions 

and syntax in the toolboxes: 'Open Source MATLAB 

Hyperspectral Toolbox' (Gerg, 2006) and 'MATLAB Toolbox for 

Dimensionality Reduction' (Van Der Maaten et al., 2009). The 

maximum number of iterations is 50, and noise level and 𝜏 have 

been assigned a default value of 0 for a fair comparison. As 

specified in sub-section 4.4.1, the dimensionally reduced 

representation has been stored in ENVI standard format for easy 

visualization in ENVI. 

 

4.5 Quality Evaluation of Dimensionally Reduced Outputs 

Visual examination of the reduced components or assessing their 

statistics to decide on the number of components to be retained 

in the dimensionally reduced output is a subjective way of 

establishing the efficiency of a spectral reduction technique. 

Moreover, if it is taken as the reference, a direct comparison with 

the original dataset does not make sense due to its high 

dimensional nature. Therefore, there is a need to develop 

measures to judge the low dimensional encoding’s quality and 

assess the performance of the dimensionality reduction 

approaches. 

 

Recently, rank measures based on the topology retention 

principle: agreement rate metric, trustworthiness and continuity 

and average relative rank errors have been suggested (Anowar et 

al., 2021; Gracia et al., 2014). This principle considers the 

geometric structure viewpoint, implying that neighbourhood 

points in a high-dimensional space should have their 

corresponding mappings in the low-dimensional space and the 

other way around. Introduced by Lee & Verleysen (2009), the 

quality metric grounded in the co-ranking matrix concept has 

been used here to evaluate the performance of low-dimensional 

representations generated by PCT and autoencoders. Several case 

studies across disciplines (Griparis et al., 2016; Silhan et al., 

2019) deploy this metric for assessing dimensionality reduction 

by autoencoders. Ordinal distance changes are effectively 

encapsulated in a co-ranking matrix, substituting the column 

distances by their ranks. The rank comparison in the high and low 

dimensional expanses is done systematically. In an ideal 

scenario, non-zero elements are only available in diagonal places. 

The presence of a majority of non-zero elements in the upper 

triangle means that closely spaced points are far away. On the 

other hand, the lower triangle space filled with many non-zero 

elements indicates that faraway points are brought close to each 

other in the dimensionality reduction process. 

 

Consider Α = {𝑎1, 𝑎2, … , 𝑎𝑛} ∈ ℝ𝛽 and Α̂ = {�̂�1, �̂�2, … , �̂�𝑛} ∈

ℝ𝛼 where ℝ𝛽 and ℝ𝛼 are high and low-dimensional spaces such 

that 𝛼 < 𝛽. If Δ𝑖𝑗 is the distance between 𝑎𝑖 and 𝑎𝑗  in ℝ𝛽 and Λ𝑖𝑗  
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is the distance between �̂�𝑖 and �̂�𝑗  in ℝ𝛼, then rank 𝜍𝑖𝑗  of 𝑎𝑗  

concerning 𝑎𝑖in ℝ𝛽 is  

𝜍𝑖𝑗 = |{Κ|Δ𝑖𝑘 < Δ𝑖𝑗 𝑜𝑟 (Δ𝑖𝑘 = ∆𝑖𝑗 𝑎𝑛𝑑 1 ≤ Κ < j ≤ N)}|        (6) 

Likewise, rank 𝜐𝑖𝑗 of �̂�𝑗  concerning �̂�𝑖 in ℝ𝛼 is 

𝜐𝑖𝑗 = |{Κ|Λ𝑖𝑘 < Λ𝑖𝑗  𝑜𝑟 (Λ𝑖𝑘 = Λ𝑖𝑗  𝑎𝑛𝑑 1 ≤ Κ < j ≤ N)}|      (7) 

  ∴  Ψ𝑖𝑗 = 𝜐𝑖𝑗 − 𝜍𝑖𝑗     (8) 

where, Ψ𝑖𝑗 is the rank miscalculation. The histogram of rank 

miscalculations is the co-ranking matrix Φ given by 

 Φ𝑘𝑙 = |{(𝑖, 𝑗)|𝜍𝑖𝑗 = Κ 𝑎𝑛𝑑 𝜐𝑖𝑗 = 1}|              (9) 

Point pairs whose rank changes from ℝ𝛽 to ℝ𝛼 are rank 

miscalculations and thus form non-zero elements in the upper or 

lower triangle of Φ. If 𝜍𝑖𝑗 > 𝜐𝑖𝑗 for �̂�𝑗  then �̂�𝑗  is an intrusion, and 

vice-versa is called an extrusion. Φ can include several blocks 

corresponding to rank miscalculations, extrusions and intrusions. 

Mokbel et al. (2013) establish the Φ′s unweighted sum as a 

quality metric 𝑄𝑁𝑋, which for 𝑃 neighbourhood points is 

 𝑄𝑁𝑋(𝑃) = 1
𝑃𝑁⁄ ∑ ∑ Φ𝑘𝑙

𝑃
𝑙=1

𝑃
𝑘=1   (10) 

 

Subtracting the quality metric value from 1 can be utilized to 

understand the loss of the input data's geometrical structure 

during dimensionality reduction (Gracia et al., 2014). Computed 

over a pre-defined dimensional range, loss of quality is  

 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 = 1 − 𝑄𝑁𝑋(𝑃)  (11) 

The domain of values falls between 0 and 1, with 0 denoting 

complete loss of geometrical structure and 1 meaning perfect 

retention. Hence, a smaller quality loss figure represents better 

preservation of geometry in the encoding. 

 

The authors have developed a MATLAB script3 for the quality 

evaluation of dimensionally reduced outputs following Lee & 

Verleysen (2009) and Mokbel et al. (2013). 

 

5. RESULTS AND DISCUSSION 

MLE gave the intrinsic dimensionality as 11, implying that the 

low-dimensional feature space will have 11 dimensions. 

Therefore, keeping the spatial dimension identical, the encoding 

in 11 spectral dimensions is compared with the original 112 

spectral dimensions using 𝑄𝑁𝑋. It is noteworthy that even if the 

spatial resolution increases, the computation time for 

determining 𝑄𝑁𝑋 remains almost constant, ranging between 13.6 

to 14.7 seconds, depending upon the dataset. This is because the 

spatial dimension remains constant, consisting of 209 scan lines 

and 209 samples, irrespective of the increase in the spatial 

resolution. In the case of 15 m spatial resolution datasets, the 

central portion consisting of all possible distinct information 

classes in the scene has been spatially subsetted for computing 

𝑄𝑁𝑋 and 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠. The entire quality evaluation process 

takes about 1000 to 1100 seconds on average, irrespective of the 

dimensionality reduction algorithm, with the determination of the 

co-ranking matrix (about 693 – 705 seconds) taking double the 

amount of time than the determination of the ranking matrix (346 

– 353 seconds).  

 

Figure 2 a-c shows 𝑄𝑁𝑋 for different values of 𝐾 neighbouring 

points for PCT and autoencoder-based dimensionality reduction 

of PRISMA and its super-resolved outputs, respectively. Figure 

2 d-f shows 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 in a similar manner. For PRISMA data, 

the quality measure is higher at higher 𝐾 values, rising to above 

0.9 at values > 40000 for SVD-based PCT and autoencoder-

based reductions. Their values remain almost identical. In 

contrast, EVD-based PCT values are above 0.95 for 𝐾 = 500 and 

 
3https://github.com/laserlight-cell/quality-evaluation-of-

dimensionally-reduced-output 

rise to above 0.99 with an increase in 𝐾, implying that SVD-

based PCT of covariance or correlation matrix and deep and 

simple autoencoders give a better dimensionality reduction than 

EVD-based PCT for PRISMA. IBP and SIS-based super-

resolved products show similar patterns as the original PRISMA 

data for PCT and autoencoders. 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 figures  also echo 

similar trends as  𝑄𝑁𝑋, indicating topology preservation at lower 

values of 𝐾 for each method for PRISMA and the super-resolved 

outputs. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 2. 𝐐𝐍𝐗 and 𝐐𝐮𝐚𝐥𝐢𝐭𝐲 𝐥𝐨𝐬𝐬, respectively, for PRISMA (a 

and d), IBP-based super-resolved product (b and e) and SIS-

based super-resolved product (c and f) for K = 500 to 40000.  

 

With little difference between PCT and autoencoder 

representations, the only distinguishing factor is the computation 

time. Both SVD and EVD-based PCT happen within a fraction 

of a second for the original PRISMA data. For super-resolved 

outputs, the amount of information increases the computation 

time to about 1.5 seconds. On the contrary, simple and deep 

autoencoders are computationally expensive, with the simple 

autoencoder taking about 127 seconds to learn the latent 

representation in a single run of 50 iterations and reducing the 

mean squared error from 0.45 to 0.0012 on average and the deep 

autoencoder taking roughly 2000 seconds for learning the latent 

representation in three runs of 50 iterations and reducing the 

mean squared error within identical limits. These times increase 

proportionately with the increase in scale factor corresponding to 

above 400 and 5000 seconds, although the network size remains 

constant, with the input layer having 140 nodes and the output 

layer having 11 nodes. 

 

6. CONCLUSION 

The current research evaluates SVD and EVD-based PCT and 

simple and deep autoencoder-based dimensionality reduction of 

PRISMA and its super-resolved products. Comparisons based on 

label-independent co-ranking matrix-based quality metric, 

quality loss concept and computation time reveal almost identical 

patterns for all approaches in the super-resolved outputs. 

Excellent topology preservation is apparent at 𝐾< 500, except in 

EVD-based PCT for the original PRISMA data. However, both 

the quality evaluation and autoencoder-based dimensionality 

reduction remain computationally expensive, raising doubts 
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about the applicability of such processes when dealing with huge 

amounts of data and limited computation power. Moreover, the 

scale factor does not have any role to play in the autoencoder 

network size or the latent representation learnt from the input, 

indicating that super-resolved products can be treated similarly 

to the original HS data, albeit at a higher spatial scale.  

 

Future work will look at the applicability of kernel-PCT, 

independent component analyses and MNF of the super-resolved 

outputs at higher scale factors and then proceed to automated 

endmember extraction. 
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