
 

____________________________________________________________ 

1*  Corresponding author 

DEVELOPMENT OF GOOGLE EARTH ENGINE APPLICATION FOR 
SPATIOTEMPORAL ANALYSIS OF TURBIDITY IN BATAN ESTUARY, AKLAN 

THROUGH THE HARMONIZATION OF LANDSAT AND SENTINEL-2 IMAGERY 
 

C. D. C. Zablan 1 *, A. C. Blanco 1 2 3, Y. H. Primavera-Tirol 4, K. Nadaoka 5 
 

1 Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines - cczablan1@up.edu.ph 
2 Training Center for Applied Geodesy and Photogrammetry, University of the Philippines, Diliman, Quezon City 1101, Philippines 

  3 Philippine Space Agency, Diliman, Quezon City 1101, Philippines 
4 College of Fisheries and Marine Sciences, Aklan State University, New Washington, Philippines 

5 Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan 
 
KEY WORDS: Spatio-temporal analysis, Water Turbidity, Google Earth Engine, Harmonization, App Development 
 
 
ABSTRACT: 
 
Water turbidity poses a threat to marine life and the economy. To address this, regular monitoring is crucial. Field methods are 
commonly employed, but they can be costly and challenging to perform consistently and historically. Luckily, remote sensing satellites 
offer a viable solution by collecting image data from space for Earth observation. Researchers have utilized these satellite images to 
develop indices for analyzing water turbidity and chlorophyll-a content. Leveraging the Google Earth Engine geospatial data computing 
platform, an application has been created to facilitate water quality monitoring. The app harmonizes Landsat and Sentinel-2 Imagery 
to improve temporal resolution and increase historical data availability. These images are then subjected to indices, namely the 
Normalized Difference Turbidity Index (NDTI) and the Normalized Difference Chlorophyll Index (NDCI), to estimate water turbidity 
and chlorophyll-a content, respectively. To evaluate the effectiveness of the app, the Batan Estuary in Aklan was selected as a test site. 
Annual mean water turbidity data from 2000 to 2021 were processed and downloaded through the app and subsequently imported into 
ArcGIS Pro for further analysis. Raster statistics revealed that turbidity and chlorophyll-a content have consistently decreased since 
2000, with already low levels observed. Although the river section exhibited the highest turbidity relative to the estuary, it can still be 
deemed nonpolluted based on US EPA standards. Moreover, ArcGIS's emerging hotspot analysis indicated that the estuary 
predominantly featured cold spots, indicating minimal areas with clusters of turbid water over time. 
 

1. INTRODUCTION 

Turbidity is a parameter of water quality that measures the 
murkiness of the water. This is caused by the matter dissolved in 
water, which scatters light. Such matter may be clay, silt, organic 
matter, plankton, etc. (ASTM International, 2000). Water 
turbidity poses significant risks to various aspects of the 
environment and the economy, which the Minnesota Pollution 
Control Agency (2008) listed. First, it can harm marine life by 
impacting food sources, disrupting spawning beds, and impairing 
gill function. Furthermore, turbidity diminishes the aesthetic 
appeal of water bodies, negatively affecting recreational 
activities and tourism. Lastly, it increases the costs associated 
with producing drinking water and food processing. 

The conventional method of measuring water turbidity typically 
involves physically collecting water samples, which can be a 
time-consuming and labor-intensive process. However, 
advancements in technology have presented a more efficient 
alternative. Remote sensing satellites, such as Sentinel-2, now 
offer the capability to estimate water turbidity without the need 
for physical presence. By utilizing optical imaging sensors 
mounted on satellites, researchers have developed indices that 
can effectively assess water quality. Furthermore, the availability 
of cloud-based archives for satellite images enables 
spatiotemporal analysis of water quality. 
 
While the Sentinel-2 satellite system began operations only in 
2015 and has a revisit time of five days (Spoto et al., 2012), there 
are certain limitations to consider. As an optical sensor, it is 
susceptible to cloud cover, leading to occasional data 
obfuscation. Nevertheless, Nguyen et al. (2020) have proposed a 
solution to address these challenges by harmonizing Sentinel-2 
data with other optical satellite image providers like Landsat-7 
and Landsat-8. The availability of Landsat-7 data since 1999 

allows for the creation of historical datasets, while the 
harmonization process ensures near-daily image data for 
continuous monitoring purposes. 
 
However, it is worth noting that the solution proposed by Nguyen 
et al. (2020) relies on Google Earth Engine (GEE) script-based 
programming, requiring researchers to possess knowledge of 
GEE scripting. Consequently, this study aims to develop a user-
friendly application that enables researchers to easily download 
water turbidity and chlorophyll-a content data, along with their 
corresponding trends over time. By leveraging indices on 
harmonized satellite imagery, this application facilitates 
continuous monitoring of water quality. To validate its 
effectiveness, the app was tested in the Batan Estuary, advocating 
for the implementation of water quality management policies 
based on the findings. 
 
1.1 Study Area 

On the coasts of Aklan, fishing is the basic livelihood. One of the 
coastal areas is Batan Estuary (containing Batan Bay). According 
to the 2012 municipal fisheries profile, the total population of the 
three municipalities enclosing Batan Estuary (i.e., New 
Washington, Batan, and Altavas) was 101,382 where 80% of that 
lived on or near the coasts. Furthermore, 5,369 people worked in 
the fishing industry (as cited in Kamiyama et al., 2015). Thus, 
fishing is an active industry in Batan Estuary with much of its 
population relying on it. 
 
However, Altamirano and Kurokura (2006) studied the 
worsening fishing industry in Batan Estuary (containing Batan 
Bay). They found that the second-most and third-most perceived 
problem fishers have that could have impacted the industry is 
water pollution and shoaling of rivers and lagoons,  which are 
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directly related to water turbidity (Altamirano & Kurokura, 
2010). Thus, water quality monitoring in this area is necessary 
and was chosen as the pilot study area for this research (Figure 
1). 

Figure 1. Batan Estuary Boundary based from Philippine 
Statistis Authority overlaid on ESRI Image. 

 
2. DATA AND METHODS 

2.1 Data 

Water turbidity can be measured from remotely sensed images. 
43 Sentinel-2 (with less than 30% cloud cover) from 2017 to 
2021, 337 Landsat 7, and 353 Tier 1 surface reflectance images 
of Batan Estuary from 2000 to 2021 were used in this study. 
 
2.2 Methodology 

 

 
 

Figure 2. Methodological workflow of this study. SR = Surface 
Reflectance.  

 
Figure 2 shows the workflow of this study. In most of the parts, 
Google Earth Engine (GEE) Javascript Application 
Programming Interface (API) was used. GEE is a cloud-based 
platform for the geospatial processing of large datasets (Gorelick 
et al., 2017). It provides functionality to query the required 
datasets, do geospatial processing capabilities, and develop a web 
application for the public’s use. The study utilized these features 
to achieve its objectives.  
 
The application developed queries images within the geometry of 
choice and will undergo the following processing steps: 
reprojection to WGS 84, resampling to 10m, band adjustment to 

make the different sensors’ bands compatible (Nguyen et al., 
2020), and computation of water turbidity indices.  
 
GEE is not a panacea among geospatial data processing 
technologies. Other Geographic Information System (GIS) 
programs have features that it does not have. However, GEE 
provides an export data function, which allows users to further 
analyze the data in different applications. In this study, the 
exported water turbidity data were imported into ArcGIS Pro and 
underwent emerging hot spot analysis to see spatiotemporal 
clusters of turbid waters in Batan Estuary.  
 
2.2.1 Water Turbidity Indices 
 
This study made use of two (2) indices to measure, in a relative 
manner, water turbidity: Normalized Difference Turbidity Index 
(NDTI) by Lacaux (2007) and the Normalized Difference 
Chlorophyll Index (NDCI) by Mishra and Mishra (2012). NDCI 
is not a turbidity index but it measures chlorophyll-a in water 
bodies that may indicate the number of algae growing in it (US 
Environmental Protection Agency, 2022), which contributes to 
water turbidity. Table 1 shows how to compute these indices 
from various satellite images. 
 
Index Landsat-8 Landsat-7  Sentinel-2  
NDTI (B4 - B3)/(B4 + B3) (B3 - B2)/(B3 + B2) (B4 - B3)/(B4 + B3) 
NDCI (B5 - B4)/(B5 + B4) (B4 - B3)/(B4 +B3) (B5 - B4)/(B5 + B4) 
Table 1. The water turbidity indices and band combinations for 

each satellite in this study. Bi = Reflectance in Band i. 
 
Mishra and Mishra (2012) used the red edge band reflectance of 
MERIS originally for NDCI, instead of NIR. However, Landsat 
does not have this band, unlike Sentinel-2. The NDCI formula for 
the Landsat images in Table 1 was adopted from Buma and Lee 
(2020), which found that replacing the red edge band with NIR 
(B5 for Landsat-8 and B4 for Landsat-7) will still produce 
accurate chlorophyll-a estimation results.     
 
Elhag et al. (2019) collected field water quality data daily for two 
years and tested it to remotely sensed water quality parameters 
such as the NDTI in a dam lake of Wadi Baysh, Saudi Arabia. 
Ground truth water turbidity scored a high correlation with NDTI 
with R2 of 0.94. Similarly high correlation with R2 of 0.84 and 
0.97 and was found at Borabey Lake, Turkey (Kaplan et al., 
2020) and Ukai Reservoir, India (Pompapathi et al., 2022), 
respectively.   
 
On the other hand, Kislik et al. (2022) showed that NDCI 
strongly identifies with chlorophyll-a data from two northern 
California reservoirs between October 2015 and November 2020, 
scoring an R2 of 0.84. Lobo et al. (2021) and Kirtiloğlu and 
Karabörk (2022) agree with this as they got R2 of 0.86 and 0.726 
in select reservoirs in Latin America with field data from August 
2015 to November 2020 and Lake Bafa, Turkey with field data 
on July 2018 and September 2019, respectively. While the NDCI 
in Conopio et al. (2019) correlated relatively lower (r of 0.56) 
with in situ data taken on December 2018 at Laguna de Bay, 
Philippines compared to the other two studies, NDCI still scored 
the highest among other indices in that time.  
 
Overall, there is a good amount of studies across the globe that 
support NDTI and NDCI as valid estimators of turbidity and 
chlorophyll-a content even if they use remotely sensed data. 
Thus, answers the reason why they are used in the development 
of this app as an alternative (or a supplement) to taking field 
measurements.  
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2.2.2 Harmonization of Sentinel-2 and Landsat Imagery 
 
 Landsat-8 Landsat-7 
Band Slope Intercept Slope Intercept 
Blue  1.0946 −0.0107 −0.0139 1.1060 
Green 1.0043 0.0026 0.0041 0.9909 
Red 1.0524 −0.0015 −0.0024 1.0568 
NIR-8 0.8954 0.0033 −0.0076 1.0045 
NIR-8a 1.0283 −0.0021 −0.0140 1.1515 
SWIR1 1.0049 0.0065 0.0041 1.0361 
SWIR2 1.0002 0.0046 0.0086 1.0401 
Table 2. Landsat transformation coefficients to harmonize with 

Sentinel-2 imagery 
 
While Sentinel and Landsat calibration teams are ensuring the 
compatibility of their data with each other, some adjustment is 
still necessary for their harmonized use (Barsi et al., 2017). 
Nguyen et al. (2020) provided a GEE script with the 
transformation coefficients for band adjustment of Landsat 
imagery to harmonize with Sentinel-2. Table 2 shows the slopes 
and intercepts that are to be multiplied and added to the band 
reflectances, respectively 
 

2.2.3 Emerging Hot Spot Analysis 
The emerging hot spot analysis of ArcGIS Pro can detect hot spot 
and cold spot patterns (Esri, 2022). The yearly NDCI and NDTI 

raster of Batan Estuary were converted to point data and 
aggregated to produce a space-time cube dataset. The space-time 
cube was then imported into the emerging hotspot analysis tool. 
The classes (or patterns) produced by this tool are listed in Table 
3.  
 
Pattern Definition 
No Pattern Detected Not a hot spot nor a cold spot. 
New Hot Spot Recently became a hot spot. 
Consecutive Hot Spot Recent hot spot for a while. 
Intensifying Hot Spot A long-time hot spot that is intensifying. 
Persistent Hot Spot A long-time hot spot. 
Diminishing Hot Spot A long-time hot spot that is toning down. 
Sporadic Hot Spot On-and-off hot spot. 
Oscillating Hot Spot Sometimes a hot spot, sometimes a cold spot. 
Historical Hot Spot A hot spot for a long time except recently. 
New Cold Spot Recently became a cold spot. 
Consecutive Cold Spot Recent cold spot for a while. 
Intensifying Cold Spot A long-time cold spot that is intensifying. 
Persistent Cold Spot A long-time cold spot. 
Diminishing Cold Spot A long-time hot spot that is toning down. 
Sporadic Cold Spot On-and-off cold spot.  
Oscillating Cold Spot Sometimes a hot spot, sometimes a cold spot. 
Historical Cold Spot A cold spot for a long time except recently. 

Table 3. ArcGIS Pro’s Emerging Hot Spot Analysis Patterns

 

 
Figure 3. GEE Water Turbidity Explorer App User Interface showing the NDTI of Batan Bay of Batan Estuary. 

 
3. RESULTS AND DISCUSSION 

The developed application provides the capability for users to 
create geometry and set a date range to compute, visualize, and 
export the mean NDTI and NDCI and their time series in that  
area (Figure 3). 
 
Figure 4 shows the annual mean score of the selected water 
turbidity indices of Batan Estuary in this study. Both NDCI and 
NDTI are found to have a downward trend. However, in 2011, it 
can be observed that there is a spike in NDCI. Mishra and Mishra 
(2012) estimate that a value within that range (-0.1 to 0) has an 
estimated chlorophyll-a content of 7.5-16 mg/m3, which is still 
relatively low. Ogawa et al. (2021) found that the organic matter 
“pollution” is not caused by aquaculture pond operations but 
more by mangrove litter (that has stored carbon) that remained 
even after massive deforestation several decades ago. Thus, the 

reduced turbidity must be from other matter that does not have 
any benefits, unlike mangrove litter.  
 

 
Figure 4. Yearly Mean Score of NDCI and NDTI in Batan 

Estuary 
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Figure 5 shows the scatter plot of the annual percentage change 
in NDTI and NDCI. The computed correlation coefficient is 
0.3268, which implies that the linear relationship between 
chlorophyll-a present in Batan Estuary and turbidity is weak but 
positive.  
 

 
Figure 5. Correlation between the annual mean time series of 

NDCI and NDTI. 
 

Figure 6 displays the ratio of NDCI values over NDTI in a time 
series. The ratio has an upward trend implying that chlorophyll-
a's contribution to turbidity is increasing over time.  Figures 2 and 
4 mean that chlorophyll-a is not a strong cause for turbidity in 
Batan Estuary but is gradually becoming a bigger part of it 
through time. 
 

 
Figure 6. Ratio between NDCI and NDTI through time 

 
Figure 7. Decadal mean NDCI for years (a) 2000, (b) 2010, (c) 2020. Relatively higher NDCI zones can be found in the Tinagong 

Dagat (channel) and in portions of Batan Bay. 
 

 
Figure 8. Decadal mean NDTI for years (a) 2000, (b) 2010, (c) 2020. Tinagongdagat Bay and the northernmost river zone generally 

have higher NDTI compared to other parts of the Batan Bay Estuary. 
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Figure 9. Emerging Hot Spot Analysis of (a) NDCI and (b) NDTI from 2000-2021 in Batan Estuary.  

 
Figure 7 shows how NDCI has changed throughout time in Batan 
Estuary. It can be noticed that the NDCI was strong in Batan Bay 
and the river zone in 2000 but generally becomes lower (in 
agreement with Figure 4) and more homogenous throughout 
time. On the other hand, turbidity was higher in the 
Tinagongdagat Bay and river zone in the 2000s (Figure 8) and 
remained so until 2020, but overall became lower and slightly 
more homogenous as well. This is consistent with Ogawa et al. 
(2021) as both the Tinagongdagat Bay and river zone are found 
to accumulate mangrove litter and microphytobenthos (a type of 
microalgae). Nevertheless, albeit having relatively higher 
turbidity in 2020, the river area is considered non-polluted by US 
Environmental Protection Agency’s (US EPA) standard (Nillos 
et al., 2020). 
  
The researchers performed the emerging hot spot analysis of 
NDCI and NDTI scores in Batan Estuary from 2000-2020 
(Figure 9). In Tinagongdagat Bay, the area predominantly 
became new cold spots in terms of chlorophyll-a content. 
Meanwhile, its turbidity has oscillating intensity yet is still low. 
Except for Tinagongdagat Bay's edges as it is historically turbid. 
Around the same part has a history of being a hot spot for NDCI, 
which implies that its turbidity may be caused by chlorophyll-a.  
 
Moving to the Bay zone, we can see that turbidity has 
consistently gone down in the area as denoted by the New Cold 
Spot pattern dominating its body. The bay's chlorophyll-a content 
is also low but oscillates to hot spots at certain times, denoted by 
the oscillating cold spot patterns. Overall, the Bay Zone does not 
show much turbidity and algal bloom problems throughout the 
two decades.  
 
Lastly, the River Zone is dominated by hot spots in terms of 
NDCI and NDTI with notable historical and persistent hot spot 
patterns. However, there are areas whose chlorophyll-a is 
decreasing based on the detected diminishing hot spot pattern, 
but the' turbidity in these areas remains as historical hot spots. 
Thus, this implies that a certain percentage of the river area's 
chlorophyll-a content contributes less and less to its turbidity. 

 
4. CONCLUSION 

Turbidity in water is caused by matter dissolved and the presence 
of algal and non-algal particles in it. In bodies of water where 
marine life exists, water turbidity can pose a problem to their 
lives that may cause reduced food production. Thus, it is 
necessary to regularly monitor the quality of these areas. A 
method to do so is by taking water samples and running them 
through the chemistry lab. The problem with this methodology is 
that it can be time and labor expensive. Fortunately, there are 
satellites that take images from outer space for Earth's 
observation and monitoring, including its water bodies. While 
different satellite image sources provide different image quality 
altogether, they can be harmonized through a model (Nguyen et 
al., 2020). Researchers then created indices to estimate water 
quality from the image datasets. Moreover, the availability of 
older satellite imagery from several years ago makes 
spatiotemporal analyses possible. Thus, the researchers took 
advantage of remote sensing technology to develop an 
application that will help other researchers and stakeholders to 
monitor the turbidity of water bodies all around the world at any 
time (beyond the year 2000).  
 
To develop the app, the researchers utilized Google Earth Engine 
(GEE), a cloud computing platform for geospatial datasets that 
also offers functions for app development. The platform was used 
to query free satellite images from Sentinel-2, Landsat-8, and 
Landsat-7 missions. The images then underwent processing 
including harmonization and index computation. The indices to 
measure the water turbidity in this app are the Normalized 
Difference Turbidity Index (NDTI) by Lacaux (2007) and 
Normalized Difference Chlorophyll Index (NDCI) by Mishra and 
Mishra (2012). The latter is not a water turbidity index but  was 
included to provide insights into how it contributes to turbidity.  
The developed app provides a function to download the produced 
index datasets for further analysis. The researchers selected 
Batan Estuary, Aklan as a study site to test the app. The produced 
NDCI and NDTI yearly rasters from 2000 to 2021 covering Batan 
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Estuary were downloaded and underwent raster statistics and 
Emerging Hotsp Spot Analysis in ArcGIS Pro to see the 
spatiotemporal patterns and changes of its water turbidity.  
 
It was found in this research that turbidity and chlorophyll-a are 
generally decreasing in Batan Estuary. While there is a weak but 
positive correlation between NDCI and NDTI for this estuary, it 
was also found that chlorophyll-a is contributing more to 
turbidity throughout time. Overall, Batan Estuary does not have 
a big water turbidity problem as most of the area is filled with 
cold spots in terms of turbidity and chlorophyll-a presence. 
However, the river area is found to be more turbid relatively and 
should be monitored.  
 

RECOMMENDATIONS  
 

The app’s product is not validated by field methods. The 
proponents recommend testing its results and correlating them 
with turbidity and chlorophyll-a measured in situ using a multi-
parameter water quality sensor. 
 
Google Earth Engine has limited analytical tools and UI 
capabilities. However, for those who are also planning to develop 
apps within GEE, it is recommended to explore how GEE can be 
imported as a module to a different base platform instead of using 
it as the base platform for this research project. 
 
Future research could also explore other analyses and other 
indices for more insights into the water turbidity of Batan Estuary 
or other study sites.    
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APPENDIX  
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https://cczablan1.users.earthengine.app/view/water-turbidity  
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