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ABSTRACT: 

Inundation mapping in forest and dense vegetated areas requires the ability to generate well defined Digital Terrain Models (DTM) 

to derive floodwater extent, depth, and duration. Due to the occlusion caused by overlapping leaves and branch structures of forest 

canopies, the ability to extract elevation point clouds through UAV and airborne optical imagery and photogrammetry is 

challenging. LiDAR is an active sensor that acquires direct 3D measurements by transmitting hundreds of thousands of laser 

measurements per second producing incredibly detailed mapping layers of not only the terrain but also forest attributes such as 

crown diameter, tree density and height that can support inundation mapping as well as hydrological models and monitoring of 

floods. 

In this research, we propose a methodology to map the inundated areas under canopies by using photon base Geiger Mode LiDAR 

point cloud dataset and a deep learning model to conduct instance segmentation of tree canopy.  The method is to segment the 

vegetation from water and determine the gap fraction between trees to quantify the penetration through canopy for the detection of 

water pixels in vegetated areas. To conduct the segmentation Masked-attention Mask Transformer (Mask2Former) for universal 

segmentation model was implemented and trained to automate the extraction of tree crown segments from the LiDAR data. 

Furthermore, a semi-automatic experimental approach using a Canopy Height Model and watershed segmentation was applied to 

develop a rapid tree crown annotation strategy.  

1. Introduction

In the hydrological process, forest areas play a vital role in 

retaining and delaying water flow into drainage networks. They 

also absorb excess water and release it back into the atmosphere 

through transpiration. Detection of flood areas by remote 

sensing has used Synthetic Aperture Radar (SAR) backscatter 

properties and multispectral indices such as the Normalized 

Water Difference Index (NWDI) (Gebrehiwot and Hashemi-

Beni, 2020). However, the challenges in acquiring reliable 

mapping of flood area in forests and vegetated areas has been 

associated with spatial resolution, frequency of cloud cover for 

optical imagery, reflectance properties, and the ability to detect 

water pixels through the gap fraction of the canopy (Salem and 

Hashemi-Beni 2021). Airborne LiDAR technology can be used 

to compute tree characteristics that include crown area, 

orientation, and height as well as under canopy terrain that can 

be combined with imagery (Hashemi-Beni et al. 2021). The 

advent of Geiger Mode LiDAR data presents an effective 

solution for forestry applications due to its advantages of high-

density data collection, high resolution, accuracy, and its multi-

look diversity of oblique overlapping frame measurements. By 

integrating Geiger Mode LiDAR data with precise individual 

tree segmentation algorithms, it becomes feasible to accurately 

calculate tree attributes on a large scale and create high-

definition terrain for inundation mapping.  

In the past, tree crown segmentation primarily relied on 

watershed segmentation using a Canopy Height Model (CHM) 

derived from a 3D point cloud (Zhao and Popescu 2007). 

Watershed segmentation is a region-based method that is based 

on mathematical morphology. However, this approach faced 

challenges such as over-segmentation and vulnerability to noise, 

limiting its effectiveness in dense forest areas where crown 

segments boundaries are unclear. Additionally, parameter 

tuning hinders complete automation. In recent years, deep 

learning methods have achieved outstanding results in 

challenging computer vision tasks, including instance 

segmentation. In the context of forestry applications, Individual 

Tree Crown (ITC) segmentation is closely related to instance 

segmentation, which involves the identification and separation 

of individual objects. Both multispectral images and LiDAR 

derived CHMs can effectively be leveraged for this task. In 

terms of ITC detection and segmentation, Convolutional Neural 

Network (CNN) based architectures play a dominant role, 

including YOLO (Jiang et al. 2022) and Mask R-CNN (He et al. 

2017). In recent years, transformer models have shown 

remarkable success in natural language processing tasks, which 

has motivated researchers to explore their application in 

computer vision problems as well. Through the self-attention 

mechanism, vision transformers can model and understand the 

relationship between different patches across the entire image, 

effectively capturing the global context of the scene. With 

respect to instance segmentation and object detection, DETR 

(Carion et al. 2020) was proposed as a transformer-based 

architecture and has been used for tree crown instance 

segmentation (Dersch et al. 2023). Although DETR was initially 

promising, it was still falling behind CNNs in terms of 

performance as it has not yet fully leveraged the potential of 

transformers for image instance segmentation. To address this 

limitation, our research introduces a transformer-based network 

for ITC segmentation, building upon the state-of-the-art 

architecture of Mask2Former (Chen et al. 2022). 

 In our study, we highlight the potential of applying Vision 

Transformer model Mask2Former to Geiger Mode LiDAR data 

to obtain accurate forestry analytics to support flood risk 

mapping. By harnessing the capabilities of Geiger Mode LiDAR 
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data, we can derive precise and valuable insights for various 

environmental applications. 

2. Materials 

2.1 Research data and study area 

Geiger Mode LiDAR data was collected over a portion of 

Payette River, near Crouch Idaho on June 25, 2022, with 

average acquisition height at 3,787 m above ground level. The 

sensor collected data within a hemispherical perimeter swath 

of 27° Field of View using a Palmer Scanner. Data was 

collected with a 50% overlapping flight line. Elevation 

measurements are based on laser flashes illuminating a 

contiguous 2D array Geiger Mode Avalanche Photodiode 

Detector of 4,096 pixels (Figure 1). The Palmer Scanner 

rotates the laser light which flashes at frequency of 50 kHz 

producing overlapping array measurements to collect over 205 

million points per second. Based on the Instantaneous Field of 

View (IFOV) of the individual photodiode detector and the 

elevation above ground, the measurement resolution which is 

analogous to linear LiDAR footprint was 12 cm. The internal 

data processing utilizes a voxel process and produces a 

uniform point cloud distribution of 50 points per meter 

squared. 

 

 
Figure 1. Geiger Mode Palmer Scanner and 2D Geiger Mode 

Avalanche Photodiode Detector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 3D visualization of the study area 

 

2.2 Data preparation  

The LiDAR data was processed to calibrated point cloud data 

and projected into NAD_1983_2011_Idaho_West_ft. Then, a 

classification step was conducted to remove noise and non-

vegetation points. This was followed by a data cleaning 

process and quality review. A 50 cm CHM based on ground 

and vegetation points was created by normalizing the height to 

above ground level using the Digital Terrain Model as shown 

in Figure 3. A total of 4 tiles are used in this study, each of 

which covers approximately 1,500 x 1,500 sq ft (457 m x 457 

m) of area and contains ~ 3,000 trees with over 31 million 

LiDAR points. 

 

 
Figure 3. CHMs of the study area 

3. Methodology 
3.1 Overview 

The research proposes a methodology based on conducting 

ITC segmentation from high-resolution CHM derived from 

Geiger Mode LiDAR data. Figure 4 provides the workflow for 

the processing procedures. The method starts with generating 

a high-resolution CHM from Geiger Mode LiDAR data for the 

study area. Thereafter, data labeling is conducted in a semi-

automated manner. The research uses watershed segmentation 

to generate crown segments and then refined. The CHM and 

tree crown polygons are used to construct an instance 

segmentation dataset and finally, the Mask2Former model is 

implemented for crown instance segmentation. 

 
Figure 4. ITC segmentation based on the Mask2Former model. 
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3.2 Data labeling 

Supervised deep learning models need label or annotated data 

for training and the validation of results. However, manually 

digitizing tree crown segments is time consuming and 

expensive especially in dense forest environments. We 

propose a semi-automated data labeling process incorporating 

local maxima-based tree detection and watershed-based crown 

segmentation. This is coupled with a manual refinement 

process in problematic areas to improve the crown delineation 

quality. Specifically, we first apply a Gaussian filter of 5 x 5 

to smooth the appearance of CHM by minimizing artefact 

noises. Then, a local maxima filter of 7 x 7 is utilized to detect 

individual treetops. In this process, treetops below 5 m are 

removed given the minimum tree height, and two 

neighbouring treetops are merged when their distance is under 

3.5 m. Next, the treetops are used as the markers for watershed 

segmentation, in which the height difference within a specific 

crown should not exceed 0.5 m or they are merged. Lastly, 

these tree crown segments are manually refined to get the final 

ground truth (Figure 5). 

 

 
 

Figure 5. The semi-automated crown segmentation results for 

data labelling. 
 

The study area was then split into training and validation data. 

Table 1 summarizes number of trees for each split. 

 

Parameters Training Validation 

Number of trees 5,705 1,211 

Average crown area (m2) 39.93 41.16 

Table 1 Tree parameters for the training and validation split 

 

3.3 Mask2Former  
Mask2Former is a mask classification architecture (Cheng et 

al. 2021) where pixels are grouped into N segments by 

predicting N binary masks and N class labels. Unlike CNN 

based segmentation models where the model learns to predict 

a class for every pixel, mask classification splits the 

segmentation task into two steps: partitioning the image into N 

segments/regions represented by binary masks and then 

associating each segment as a whole to a semantic class. This 

formulation allows for both semantic and instance 

segmentation.  The Mask2Former model consists of three main 

components: a backbone, a pixel decoder, and a transformer 

decoder (Figure 6). The backbone aims at extracting low 

resolution features from an image. The pixel decoder gradually 

up-samples these features to generate high-resolution per-pixel 

embeddings. Finally, the transformer decoder processes these 

embeddings using learnable object queries to produce binary 

mask predictions. The Mask2Former model uses the masked 

attention operation in the transformer decoder which 

constrains attention only within the foreground region of the 

predicted mask for each object, instead of attending to the full 

feature map (Cheng et al. 2022). Furthermore, instead of using 

use the standard convolution-based ResNet backbones, the 

Swin Transformer model (Liu et al. 2021) is used in this study, 

which is a transformer-based backbone. It builds hierarchical 

feature maps by merging image patches in deeper layers and 

has linear computation complexity to input image size due to 

computation of self-attention only within each local and 

shifted window. This makes it suitable for fine-scale instance 

segmentation from high-resolution images, such as individual 

tree crowns. 

To train the Mask2Former model, a matching is necessary 

between the set of predictions and the set of ground truth 

segments. This is done using a set prediction loss that enforces 

a one-to-one correspondence between predicted and ground 

truth instances. Then, the overall model is trained using a 

cross-entropy classification loss and a binary mask loss. The 

latter is a linear combination of focal loss (Lin et al. 2018) and 

dice loss (Sudre et al. 2017). 

 

 
 

Figure 6. Mask2Former and Transformer decoder 

architectures (Cheng et al. 2022). 

 

 
4. Experiment 

 

4.1 Mask2Former training 

To implement the model training of Mask2Former, the 

OpenMMLab MMDetection toolbox (Chen et al. 2019) is set 

up and used, which is an open-source object detection software 

package based on PyTorch. Since the LiDAR-derived CHMs is 

a single-band float image, we must convert them to 8-bit RGB 

images by duplicating the single band three times. Moreover, 

the entire CHM images are tiled into 224 x 224 with 20% 

overlap for both training and validation datasets. The polygons 

of individual tree crowns should be also converted to MS 

COCO format for instance segmentation model training of 

Mask2Former. Only one class is included in this study, i.e., 

crowns. 

We implement our experiments on a virtual workstation that 

has an Intel(R) Xeon(R) Gold 5218 2.3 GHz CPU, 64 GB 

RAM, and 21 GB GPU memory provided by NVIDIA GRID 

P40-24Q. Due to the limited GPU memory, the batch sizes of 

training and validation are set to 2. The AdamW optimizer, the 

initial learning rate is set at 1e-4 is used in this study, which is 

a stochastic optimization method that modifies the typical 

implementation of weight decay in Adam, by decoupling 

weight decay from the gradient update. The total iteration of 

the training process is set to 68,750 for reaching stable 

validation accuracy. Due to the limited amount of training data 

and to leverage the capabilities of transfer learning, we 

initialize the Swin Transformer backbone using the pretrained 

weights obtained from the imagenet-1k dataset. Figure 7 shows 

the classification and the mask loss throughout the training 

process. We also show in Figure 8, the evolution of the 
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segmentation and detection mean average precision (mAP) on 

the validation set. The mAP is the area under the precision-

recall curve averaged for all classes. 

 

 
Figure 7. Visualization of the classification loss and the mask 

loss on the Training Set. 

 
Figure 8. Validation Set Performance: Segmentation mAP and 

Bounding Box mAP 

4.2 Evaluation 
To validate the accuracy of ITC segmentation, 300 crowns are 

manually digitized in the upper right tile of CHMs 

demonstrated in Figure 3. By visual interpretation, only clearly 

distinguished crowns are digitized in ArcMap (Figure 9). 

Since the Mask2Former segmentation results are tiled images 

with 224 x 224, we restore them back to the original dimension 

of CHM with the same georeference coordinates. To fully 

evaluate the detection and segmentation accuracy of instance 

segmentation, we define two indices below: 

 
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐼𝑇𝐶𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑 𝐼𝑇𝐶𝑠
  (1) 

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝑇𝐶𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐼𝑇𝐶𝑠
 

(2) 

 

Note that the digitized ITC is deemed as correctly detected if it 

intersects any of the detected ITCs. Meanwhile, the detected 

ITC is deemed as correctly segmented if the Intersection over 

Union (IoU) is over 0.5 between the digitized and detected 

ITCs. For further comparison, the watershed segmentation 

results are also quantified by the same indices. 

 

 

 
Figure 9. 300 reference ITCs over CHM. 

 

5. Results 

According to Table 1, we present different accuracy parameters 

for both Mask2Former and Watershed segmentation methods, 

including the number of digitized ITCs, the number of correctly 

detected ITCs, the number of correctly segmented ITCs, the 

rate of correct detection, and the rate of correct segmentation. 

Although the watershed method performs perfectly for the rate 

of correct detection, the Mask2Former method shows 10% 

increase in the rate of correct segmentation. This also 

demonstrates the advantages of deep learning-based instance 

segmentation model in ITC segmentation. 

 

Description Mask2Former  Watershed 

Number of digitized ITCs 300 300 

Number of correctly detected 

ITCs 

261 300 

Number of correctly 

segmented ITCs 

167 162 

Rate of correct detection 0.87 1.00 

Rate of correct segmentation 0.64 0.54 

 

Table 2. Accuracy parameters for ITC segmentation using 

Mask2Foremer and watershed methods. 

Figures 10 and 11 depict an overview of ITC segmentation 

results by Mask2Former and watershed methods.  

 
Figure 10. ITC segmentation results by Mask2Former 
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Figure 11. ITC segmentation results by watershed method. 

 

Figure 12 demonstrates two examples of mask and bounding 

box predictions.  

 

 
(a) 

 

 
(b) 

 

Figure 12. Mask and bounding box predictions of the 

Mask2Former mode. 

 

6. Discussion  

Tree instance segmentation is a challenging task that requires 

detecting and segmenting individual crown segments. Since 

the Mask2Former model is a mask classification architecture, 

it can flexibly generate tree instance masks. Although limited 

training has been applied, the results show that the model can 

achieve a correct detection rate of 87% and a correct 

segmentation rate of 64% on the test set. The correct 

segmentation rate is higher than the watershed baseline which 

shows the potential of Mask2Former in instance segmentation 

for challenging objects like trees. On the other hand, although 

the rate of correct detection is smaller than the watershed, this 

discrepancy is influenced by the pre-processing step applied 

to the point clouds, wherein non-tree objects are 

systematically removed to generate a refined canopy height 

model. Deep learning models like Mask2Former has the 

potential to be more robust when deployed without the pre-

cleaning step. The Mask2Former can also consistently handle 

varying sizes and shapes of trees as shown in Figure 9. 

However, there are still some limitations and challenges that 

need to be addressed in the future. For example, the 

Mask2Former model requires a large amount of training data 

to achieve a good performance, which may not be available 

or feasible for some regions or scenarios. Data quality and 

variety is also crucial to improve the robustness of the model. 

Additionally, the model may benefit from incorporating 

auxiliary information, such as multispectral imagery, to 

enhance its discriminative power. 

 

7. Conclusion 

Drawing from the results outlined above, the novel approach 

utilizing Mask2Former displays a noteworthy enhancement in 

accuracy for ITC segmentation when compared to the 

traditional watershed technique. This demonstrates the 

substantial promise of leveraging state-of-the-art instance 

segmentation models within forestry contexts, notably for 

intricate attribute extraction at a fine scale, facilitated by 

Geiger Mode LiDAR data. However, the constrained 

availability and quality of crown samples, as well as the dense 

forest canopies curtail the full potential of Mask2Former-

based ITC segmentation, underscoring the need for ongoing 

enhancements in forthcoming endeavors. 
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