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ABSTRACT:

Creating virtual duplicates of the real world has garnered significant attention due to its applications in areas such as autonomous
driving, urban planning, and urban mapping. One of the critical tasks in the computer vision community is semantic segmentation of
outdoor collected point clouds. The development and research of robust semantic segmentation algorithms heavily rely on precise
and comprehensive benchmark datasets. In this paper, we present the York University Teledyne Optech 3D Semantic Segmentation
Dataset (YUTO Semantic), a multi-mission large-scale aerial LiDAR dataset specifically designed for 3D point cloud semantic
segmentation. The dataset comprises approximately 738 million points, covering an area of 9.46 square kilometers, which results
in a high point density of 100 points per square meter. Each point in the dataset is annotated with one of nine semantic classes.
Additionally, we conducted performance tests of state-of-the-art algorithms to evaluate their effectiveness in semantic segmentation
tasks. The YUTO Semantic dataset serves as a valuable resource for advancing research in 3D point cloud semantic segmentation
and contributes to the development of more accurate and robust algorithms for real-world applications. The dataset is available at
https://github.com/Yacovitch/YUTO_Semantic.

1. INTRODUCTION

The growing significance of the accuracy and robustness of
datasets, particularly for the creation of large-scale virtual du-
plicates of outdoor environments, lead to the adoption of Air-
borne Laser Scanning (ALS) as a prominent remote sensing
technique. ALS harnesses the power of laser technology to
measure the three-dimensional structure of outdoor scenes from
aerial vehicles, thereby providing invaluable insights into the
spatial characteristics of our surroundings.

In recent years, remarkable advancements in LiDAR and drone
technologies revolutionized the field, enabling the development
of more precise and large virtual duplicates of the real world.
Notable examples of these LiDAR datasets include Sensat-
Urban (Hu et al., 2021), DALES (Varney et al., 2020), and
DublinCity (Zolanvari et al., 2019), which emerged as leading
benchmark datasets for testing algorithms. These benchmark
datasets played a pivotal role in the research and development
of 3D spatial data analysis and visualization.

One critical aspect of processing LiDAR datasets is semantic
segmentation, a fundamental task that involves assigning a se-
mantic class to each point in a point cloud. This task was
traditionally executed manually. It was laborious and time-
consuming, with the result of demanding extensive human ef-
fort and expertise. Consequently, there is a growing interest
in exploring automated approaches instead. Particularly, utiliz-
ing deep learning-based 3D semantic segmentation algorithms
such as PointNet (Qi et al., 2017a), RandLA (Hu et al., 2020),
KPConv (Thomas et al., 2019), and EyeNet (Yoo et al., 2023),
demonstrated promising results in simplifying point cloud la-
beling.

In this context, we present the York University Teledyne Op-
tech 3D Semantic Segmentation Dataset (YUTO Semantic) as
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Figure 1. The YUTO dataset visualization

a comprehensive aerial LiDAR dataset specifically designed
for semantic segmentation purposes. YUTO Semantic en-
compasses a vast area of 9.46 square kilometers, covering the
sprawling York University Campus situated in Toronto, Canada.
This extensive dataset was acquired using an ALS system de-
ployed on multiple missions, ensuring comprehensive coverage
and capturing diverse environmental characteristics.

YUTO Semantic comprises astounding 738 million points, res-
ulting in an average point density of 100 points per square
meter. Each point in the dataset has been meticulously labelled
with one of nine semantic classes, including ground, traffic
road, sidewalk, water, and various others. The careful and de-
tailed annotation of these points enables researchers and prac-
titioners to leverage YUTO Semantic for various applications
ranging from urban planning and infrastructure development to
autonomous navigation systems and environmental analysis.
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Category Datasets Year Data Type Spatial Size/ Length Classes Points Point Density Type of Sensors

Oakland 3D (Munoz et al., 2009) 2009 Point Cloud 1.5 km 5 1.6M – MLS
Paris-rue-Madame (Serna et al., 2014) 2014 Point Cloud 0.16 km 17 20M – MLS

Outdoor Semantic3D (Hackel et al., 2017) 2017 Point Cloud – 8 4000M – TLS
Ground-Level Paris-Lille-3D (Roynard et al., 2018) 2018 Point Cloud 1.94 km 9 143M – MLS

SemanticKITTI (Behley et al., 2019) 2019 Point Cloud 39.2 km 25 4549M – MLS
Toronto-3D (Tan et al., 2020) 2020 Point Cloud 1.0 km 8 78.3M – MLS

ISPRS (Rottensteiner et al., 2012) 2012 Point Cloud 0.1 km2 9 1.2M 1.52ppm2 ALS
DublinCity (Zolanvari et al., 2019) 2019 Point Cloud 2 km2 11 260M 105.25ppm2 ALS

DALES (Varney et al., 2020) 2020 Point Cloud 10 km2 8 505M 42.83ppm2 ALS
Outdoor LASDU (Yusheng Xu, 2020) 2020 Point Cloud 1.02 km2 5 3M 3.45ppm2 ALS
Airborne Campus3D (Li et al., 2020) 2020 Mesh 1.58 km2 14 937M 65.34ppm2* Photogrammetry

SensatUrban (Hu et al., 2021) 2021 Point Cloud 6 km2 13 2847M 261.54ppm2 Photogrammetry
SUM (Gao et al., 2021) 2021 Mesh 4 km2 6 19M 458.13ppm2* Photogrammetry

YUTO(Ours) 2023 Point Cloud 9.46 km2 9 738M 100ppm2 ALS

Table 1. Benchmark Dataset Comparison. * indicates that the point density is based on point cloud that is generated through the mesh.

By introducing YUTO Semantic, we aim to contribute to
the growing body of research on semantic segmentation of
LiDAR datasets, providing a valuable resource for benchmark-
ing. YUTO Semantic highlights the remarkable progress in
ALS technology, revolutionizing geospatial data analysis. By
providing an extensive and meticulously annotated dataset, we
anticipate an acceleration of research efforts, promoting innov-
ation and advancements in 3D semantic segmentation and its
various applications.

2. RELATED WORK

Creating reliable and comprehensive benchmark datasets for
3D point cloud semantic segmentation is a challenging task that
requires significant human effort and careful planning. How-
ever, it provides valuable opportunities for the field of 3D se-
mantic segmentation algorithms. Existing benchmark datasets
for 3D point cloud semantic segmentation can be categorized
into three main types.

The first category is the Indoor 3D Point Cloud Dataset,
which focuses on understanding indoor scenes for semantic seg-
mentation. These datasets are typically collected by the sta-
tionary survey LiDAR or depth sensors combined with RGB
image data. Examples of datasets in this category include
SUN RGB-D (Song et al., 2015), S3DIS (Armeni et al., 2016),
SceneNN (Hua et al., 2016), and ScanNet (Dai et al., 2017).

The second category is the Outdoor Ground-Level 3D Point
Cloud Dataset, which is primarily collected for the ap-
plications such as autonomous driving. These datasets in-
volve the use of LiDAR and RGB sensors, while the cen-
sors are typically mounted on a stationary platform or a mov-
ing vehicle. They often obtain the point cloud data through
short scan-by-scan acquisitions, and the data would be paired
with RGB images later. Examples of datasets in this cat-
egory include OakLand3D (Munoz et al., 2009), KITTI (Gei-
ger et al., 2013), Paris-rue-Madame (Serna et al., 2014), Se-
mantic3D (Hackel et al., 2017), ParisLille-3D (Roynard et al.,
2018), SemanticKitti (Behley et al., 2019), Toronto3D (Tan et
al., 2020), and nuScenes (Caesar et al., 2020).

The third category is the Outdoor Airborne 3D Point Cloud
Dataset, which aims to understand urban-level scenes for 3D
semantic segmentation. These datasets involve the use of ex-
pensive airborne LiDAR systems mounted on drones or air-
planes. Earlier datasets in this category ordinarily lacked RGB

information. However, recent advancements enabled the in-
clusion of RGB data. Additionally, one distinguishing char-
acteristic of datasets in this category is their coverage of large
areas. These datasets are often collected by conducting sweep-
ing flights over extensive regions. Notable examples of data-
sets in this category include ISPRS (Rottensteiner et al., 2012),
DublinCity (Zolanvari et al., 2019), DALES (Varney et al.,
2020), LASDU (Yusheng Xu, 2020), SensatUrban (Hu et al.,
2021), SAM (Gao et al., 2021), and Campus3D (Li et al., 2020).
Comparisons between existing datasets and ours are shown in
Table 1

3. THE YUTO SEMANTIC DATASET

3.1 Multi Mission Data Collection

The data collection through multiple missions conducted in dif-
ferent seasons is what differentiates our dataset from the oth-
ers. Originally, the first dataset was collected on September
23, 2018, utilizing an ALS system, Teledyne Optech Galaxy
Prime Airborne Lidar Terrain Mapper, mounted on an airplane.
The initial flight covered an approximate area of 22 square kilo-
meters. On top of initial data collection with the Galaxy Prime
sensor, we carried out two more flights over the York University
Campus in December 2019 and May 2021, covering an approx-
imate area of 23 and 47 square kilometers, respectively. These
flights encompassed both on-campus and off-campus regions.

During the flight missions, the ALS system maintained an aver-
age flight altitude of 1871 meters. To maximize coverage area
and point density, multiple individual strips were acquired. The
collected data was projected using the UTM zone 17N coordin-
ate system, with the horizontal datum of NAD83. To ensure
the accuracy of trajectory information, the PP-RTX base sta-
tion was utilized. Finally, the trajectory information was extrac-
ted by the Applenix POSPac software. After boresight calibra-
tion, 80% of the data was found to maintain a height difference
within 5cm, while 93% of the data was within 10cm from the
boresight calibration.

3.2 Data Description

During the data collection phase, our main focus was specific-
ally on the on-campus areas, which cover 9.46 square kilomet-
ers. The collected point cloud dataset comprised a total of 738
million points, resulting in a point density of 100 points per
square meter. To facilitate data processing and analysis more
efficiently, we divided the point cloud into 600-meter by 600-
meter squares tiles, generating a total of 41 tiles. Among them,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-209-2023 | © Author(s) 2023. CC BY 4.0 License.

 
210



we selected 32 tiles for training purposes and reserved 9 tiles for
testing our algorithms. They were processed in .ply file format,
which is the most universal LiDAR data file format. Each point
of the dataset was associated with the following attributes:

• x, y, z: The position coordinates of each point recorded in
UTM zone 17N using the NAD83 horizontal datum.

• Intensity: The normalized LiDAR intensity value of each
point, ranging from 0 to 255.

• Number of Return: The number of times the laser pulse
was reflected back.

• GPS time: The GPS time of each point, providing tem-
poral information about the data acquisition.

• Scan Angle: The scan angle of each point, indicating the
angle at which the laser beam hit the target.

• Class: The label assigned to each point, representing the
semantic class or category of the object or surface the point
belongs to.
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Figure 2. Schematic diagram for data annotation..

3.3 Data Annotation

In our study, we assigned labels to the point cloud dataset based
on nine semantic classes. The assigned labels were as follows:

• Ground: This class includes unpaved surfaces, grass, and
natural terrain.

• Vegetation: This class encompasses trees, bushes, and
other forms of vegetation.

• Building: This class represents both commercial and res-
idential buildings.

• Water: This class includes bodies of water such as lakes
and rivers.

• Car: This class includes all types of vehicles except for
commercial trucks.

• Truck: This class specifically represents commercial
trucks.

• Traffic Road: This class corresponds to vehicle roads.

• Sidewalk: This class represents pedestrian walkways.

• Parking: This class represents parking lots.

For the initial data that was collected in 2018, the annotation
process involved the use of two software tools: LAStools (rap-
idlasso GmbH, 2023) and TerraScan (Accurics, 2023). The
schematic diagram of this process is depicted in Figure 2. Ini-
tially, noise removal was performed automatically by LAStools.
Subsequently, the LAStools software was employed as an auto-
matic labeling tool to annotate specific classes such as ground,
vegetation, and building. The remaining classes were manually
classified utilizing TerraScan. During this step, a manual cross-
checking step was conducted as well to ensure the quality and
consistency of the annotations.

For the data collected in 2019 and 2021, a proximity-based
method was utilized for automatic labeling. The closest dis-
tance between the point cloud and a reference point cloud (from
2018, which was manually labelled) was determined, and the
classification code from the reference point cloud was copied
over to assign labels. It is important to note that the automatic
transfer of labels was limited to specific classes, namely ground,
vegetation, building, water, traffic road, sidewalk, and park-
ing. The car and truck classes were excluded from this auto-
matic transfer process because the characteristics and points as-
sociated with these objects could vary between different years.
Therefore, manual labeling was deemed necessary to accurately
classify car and truck points in each specific year.

To provide visual insights into the dataset, Figure 1 showcases
a visualization of the point cloud data. Additionally, the distri-
bution of labels for the 2018 data is displayed in Figure 4.

4. BENCHMARKS

4.1 3D Pointcloud Semantic Segmentation

Recently, 3D point cloud semantic segmentation gains signific-
ant attention due to its wide range of applications. This task in-
volves assigning semantic labels to individual points in a point
cloud, and it is typically approached by extracting features from
points or local neighborhoods and employing machine learning
techniques, such as deep learning, to predict the semantic la-
bels.

Different methods are developed to address this task, in-
cluding voxel-based approaches and point-based approaches.
Voxel-based approaches, exemplified by VoxNet (Maturana and
Scherer, 2015), involve dividing the point cloud space into
smaller volumetric units known as voxels. However, voxel-
based approaches suffer from limitations such as loss of fine-
grained details due to voxelization, limited representation of
objects due to fixed-size voxels, and high computational costs
when processing the entire point cloud.

In contrast, point-based approaches such as PointNet (Qi et al.,
2017a), PointNet++(Qi et al., 2017b), RandLA(Hu et al., 2020),
KPConv (Thomas et al., 2019), and EyeNet (Yoo et al., 2023)
shows promising performance in recent studies. The point-
based approach directly operates on individual points without
the need for voxelization or an explicit grid structure. Each
point is treated as a separate entity, allowing more flexible and
efficient processing.

Point-based approaches have proven to be highly effective in
addressing the challenges associated with 3D point cloud se-
mantic segmentation. These approaches excel in preserving
fine-grained details, capturing local structures, and achieving
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Figure 3. Visualization of the dataset: from top to bottom, the input point cloud with intensity and the point cloud with semantic
labels, assigned with different colors.
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Figure 4. The distributions of labels

efficient computation. Their success in these areas highlights
their potential for driving advancements in the field and en-
abling a wide range of applications that rely on accurate and
robust semantic segmentation of 3D point clouds.

4.2 Baseline Networks

We conducted performance measurement experiments on three
3D semantic segmentation networks: RandLA, KPConv, and
EyeNet.

RandLA (Hu et al., 2020) employs random point sampling as
a simple and efficient method, avoiding the complexity of point
selection techniques. However, random sampling poses a risk
of discarding important features. To address this, RandLA in-
troduces a local feature aggregation module that gradually ex-
pands the receptive field around each 3D point. This approach

effectively preserves geometric details and mitigates the poten-
tial loss of critical information caused by random sampling.

KPConv: (Thomas et al., 2019) directly processes point clouds
without intermediate representations. It utilizes kernel points in
Euclidean space to apply convolutional weights to nearby input
points. This method offers flexibility and adaptability for hand-
ling point clouds. The continuous and learnable kernel point
locations in KPConv enable deformable convolutions, allowing
the network to adapt to local geometry and capture fine-grained
details.

EyeNet: (Yoo et al., 2023) is a novel semantic segmentation
network for point clouds inspired by human peripheral vision.
It addresses the issue of functional coverage area size of in-
puts by introducing a multi-scale input and a parallel processing
network with connection blocks. EyeNet overcomes the lim-
itations of conventional networks and achieves state-of-the-art
performance on the SensatUrban and Toronto3D datasets.

4.3 Evaluation Metrics

To evaluate the performance of these networks, we util-
ized overall accuracy (OA), per-class Intersection-over-Union
(IoUc), and mean Intersection-over-Union (mIoU ) as the eval-
uation metrics. We first defined per-class IoU as:

IoUc =
TPc

TPc + FPc + FNc
(1)

where c, TP , FP , and FN are the class number, true positive,
false positive, and false negative, respectively. Then, mIoU is
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calculated by finding the mean across all classes, which was
defined as:

mIoU =

∑
IoUc

C
(2)

where C is the total number of classes. Lastly, OA was defined
as:

mIoU =

∑
TPc

Totalnumberofpoints
(3)

The performance comparison results are presented in Table 2.

4.4 Experimental Configurations

All three networks—RandLA, KPConv, and EyeNet—were
post-processed for the tests using a 0.2m grid sample. XYZ
coordinates, intensity values, and the quantity of returns were
used as input features throughout the training procedure.

The parameter settings for RandLA and EyeNet were adopted
from the networks tested on the SensatUrban dataset. Simil-
arly, the parameter settings for KPConv were taken from the
network tested on the DALES dataset. It is important to note
that while there was potential for improvement through hyper-
parameter optimizations, the tuning performed did not guaran-
tee a completely fair comparison between the networks. Further
fine-tuning and optimization could potentially yield better res-
ults.

The models were trained and tested using an Nvidia Quadro
RTX 6000 GPU on the Determined AI server. This hardware
setup provides the necessary computational power for efficient
training and evaluation of the 3D semantic segmentation net-
works.

5. RESULTS AND DISCUSSION

5.1 Performances of Baseline Networks

The test results of the baseline networks are presented in Table
2. Additionally, visualization comparisons are provided in Fig-
ure 5.

RandLA (Hu et al., 2020) demonstrated satisfactory perform-
ance across all the classes. However, it showed a tendency to
over-predict the sidewalk class, resulting in the lowest perform-
ance for the ground class among the tested networks. KPConv
(Thomas et al., 2019), on the other hand, achieved the best per-
formance in the ground, vegetation, and car classes. However,
it struggled to predict the water and truck classes and rarely
predicted the sidewalk class. EyeNet achieved the highest over-
all accuracy (OA) and mean Intersection over Union (mIoU )
among the tested baseline networks. It also achieved the highest
performance in the building, water, truck, traffic road, sidewalk,
and parking classes.

5.2 Challenges

Accurately distinguishing terrain classes, including ground, wa-
ter, traffic road, sidewalk, and parking, presents a significant
challenge in the YUTO Semantic dataset. As evidenced in
Table 2 and 5, the evaluated networks encountered difficulties

in accurately predicting these classes. This struggle can be at-
tributed to two main factors: class imbalance and limited fea-
ture availability.

The class imbalance among the terrain classes poses a challenge
for accurate segmentation. These classes have a relatively larger
number of points compared to other classes, which can bias the
predictions and make it difficult to achieve precise segmentation
results.

Furthermore, the limited availability of features compounds the
challenge of distinguishing these terrain classes. The YUTO
Semantic dataset provides only intensity and the number of re-
turns as features, without the inclusion of RGB information.
The absence of RGB features restricts the networks’ ability to
leverage color cues and texture information, which are essen-
tial for effectively differentiating these classes. Consequently,
accurately segmenting these terrain classes becomes inherently
challenging.

Addressing these challenges requires further exploration and in-
vestigation. Strategies to mitigate the class imbalance and in-
novative approaches to leverage the available feature informa-
tion effectively are crucial for enhancing the accurate segment-
ation of these terrain classes in the YUTO Semantic dataset.
Future research efforts should focus on developing techniques
that can compensate for the limited feature set and improve the
distinction of these challenging classes.

6. CONCLUSION

In this study, we introduced YUTO Semantic, a multi-season
large-scale aerial LiDAR dataset for semantic segmentation,
obtained through multiple missions over the York University
Campus using an ALS system. We evaluated three state-of-
the-art 3D semantic segmentation networks: RandLA, KPConv,
and EyeNet. Moving forward, we plan to expand the semantic
classes and release labels for the remaining two missions, fur-
ther enhancing the scope and utility of the YUTO Semantic
dataset.

ACKNOWLEDGMENT

This research project has been supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)’s
Collaborative Research and Development Grant (CRD) - 3D
Mobility Mapping Artificial Intelligence (3DMMAI) and Tele-
dyne Geospatial Inc.

REFERENCES

Accurics, 2023. Terrascan. https://www.accurics.com/

products/terrascan/.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fisc-
her, M., Savarese, S., 2016. 3d semantic parsing of large-scale
indoor spaces. Proceedings of the IEEE International Confer-
ence on Computer Vision and Pattern Recognition.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S.,
Stachniss, C., Gall, J., 2019. Semantickitti: A dataset for se-
mantic scene understanding of lidar sequences. Proceedings
of the IEEE/CVF international conference on computer vision,
9297–9307.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-209-2023 | © Author(s) 2023. CC BY 4.0 License.

 
213

https://www.accurics.com/products/terrascan/
https://www.accurics.com/products/terrascan/


Method OA(%) mIoU(%) ground vegatation building water car truck traffic road sidewalk parking

RandLA (Hu et al., 2020) 84.19 58.37 80.61 94.44 95.39 3.34 74.59 13.87 78.10 23.43 61.56
KPConv (Thomas et al., 2019) 85.22 56.14 86.94 96.25 94.01 0.00 84.02 0.00 79.93 3.26 60.83

EyeNet (Yoo et al., 2023) 87.41 63.44 86.26 95.94 96.78 13.61 83.02 14.26 84.65 31.08 65.34

Table 2. YUTO Semantic Performance Comparison. Results of RandLA and KPConv are taken from internal experiments.
R

an
d
L

A
G

T

Ground Vegetation Building TruckCarWaterTraffic Road Sidewalk Parking

E
y
eN

et
K

P
C

o
n
v

Figure 5. Visualization comparison of tested models: from top to bottom, results of RandLA, EyeNet, KPConv, and ground truth.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O., 2020.
nuscenes: A multimodal dataset for autonomous driving. Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 11621–11631.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T.,
Nießner, M., 2017. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes. Proceedings of the IEEE conference on
computer vision and pattern recognition, 5828–5839.

Gao, W., Nan, L., Boom, B., Ledoux, H., 2021. SUM: A
Benchmark Dataset of Semantic Urban Meshes. ISPRS Journal
of Photogrammetry and Remote Sensing, 179, 108-120. ht-
tps://www.sciencedirect.com/science/article/pii/S0924271621001854.

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets
robotics: The kitti dataset. The International Journal of Robot-
ics Research, 32(11), 1231–1237.

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schind-
ler, K., Pollefeys, M., 2017. Semantic3d. net: A new large-

scale point cloud classification benchmark. arXiv preprint
arXiv:1704.03847.

Hu, Q., Yang, B., Khalid, S., Xiao, W., Trigoni, N., Markham,
A., 2021. Towards semantic segmentation of urban-scale 3d
point clouds: A dataset, benchmarks and challenges. Proceed-
ings of the IEEE/CVF conference on computer vision and pat-
tern recognition, 4977–4987.

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Tri-
goni, N., Markham, A., 2020. Randla-net: Efficient semantic
segmentation of large-scale point clouds. Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, 11108–11117.

Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K., Yu, L.-
F., Yeung, S.-K., 2016. Scenenn: A scene meshes dataset with
annotations. 2016 fourth international conference on 3D vision
(3DV), Ieee, 92–101.

Li, X., Li, C., Tong, Z., Lim, A., Yuan, J., Wu, Y., Tang, J.,
Huang, R., 2020. Campus3d: A photogrammetry point cloud

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-209-2023 | © Author(s) 2023. CC BY 4.0 License.

 
214



benchmark for hierarchical understanding of outdoor scene.
Proceedings of the 28th ACM International Conference on Mul-
timedia, 238–246.

Maturana, D., Scherer, S., 2015. Voxnet: A 3d convolu-
tional neural network for real-time object recognition. 2015
IEEE/RSJ international conference on intelligent robots and
systems (IROS), IEEE, 922–928.

Munoz, D., Bagnell, J. A., Vandapel, N., Hebert, M., 2009.
Contextual classification with functional max-margin markov
networks. 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, IEEE, 975–982.

Qi, C. R., Su, H., Mo, K., Guibas, L. J., 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proceedings of the IEEE conference on computer vision and
pattern recognition, 652–660.

Qi, C. R., Yi, L., Su, H., Guibas, L. J., 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Ad-
vances in neural information processing systems, 30.

rapidlasso GmbH, 2023. Lastools - efficient tools for lidar pro-
cessing. http://lastools.org.

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C.,
Benitez, S., Breitkopf, U., 2012. The ISPRS benchmark on
urban object classification and 3D building reconstruction. IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences I-3 (2012), Nr. 1, 1(1), 293–298.

Roynard, X., Deschaud, J.-E., Goulette, F., 2018. Paris-Lille-
3D: A large and high-quality ground-truth urban point cloud
dataset for automatic segmentation and classification. The In-
ternational Journal of Robotics Research, 37(6), 545–557.

Serna, A., Marcotegui, B., Goulette, F., Deschaud, J.-E., 2014.
Paris-rue-madame database: a 3d mobile laser scanner dataset
for benchmarking urban detection, segmentation and classifica-
tion methods. 4th international conference on pattern recogni-
tion, applications and methods ICPRAM 2014.

Song, S., Lichtenberg, S. P., Xiao, J., 2015. Sun rgb-d: A rgb-d
scene understanding benchmark suite. Proceedings of the IEEE
conference on computer vision and pattern recognition, 567–
576.

Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K.,
Li, J., 2020. Toronto-3d: A large-scale mobile lidar dataset for
semantic segmentation of urban roadways. Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion workshops, 202–203.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., Guibas, L. J., 2019. Kpconv: Flexible and de-
formable convolution for point clouds. Proceedings of the
IEEE/CVF international conference on computer vision, 6411–
6420.

Varney, N., Asari, V. K., Graehling, Q., 2020. Dales: A large-
scale aerial lidar data set for semantic segmentation. Proceed-
ings of the IEEE/CVF conference on computer vision and pat-
tern recognition workshops, 186–187.

Yoo, S., Jeong, Y., Jameela, M., Sohn, G., 2023. Human vis-
ion based 3d point cloud semantic segmentation of large-scale
outdoor scene.

Yusheng Xu, Zhen Ye, R. H. X. L. K. L. X. L. L. H. X. T.
U. S., 2020. LASDU: A Large-scale Aerial LiDAR Dataset for
Semantic Labeling in Dense Urban Areas.

Zolanvari, S., Ruano, S., Rana, A., Cummins, A., da Silva,
R. E., Rahbar, M., Smolic, A., 2019. DublinCity: Annot-
ated LiDAR point cloud and its applications. arXiv preprint
arXiv:1909.03613.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-209-2023 | © Author(s) 2023. CC BY 4.0 License.

 
215


	Introduction
	Related Work
	The YUTO Semantic Dataset
	Multi Mission Data Collection
	Data Description
	Data Annotation

	Benchmarks
	3D Pointcloud Semantic Segmentation
	Baseline Networks
	Evaluation Metrics
	Experimental Configurations

	Results and Discussion
	Performances of Baseline Networks
	Challenges

	Conclusion



