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ABSTRACT: 

 

Pole-like object (PLO) detection and segmentation are important in many applications, such as 3D city modelling, urban planning, 

road assets monitoring, intelligent transportation, road safety, and forest monitoring. Arguably, vehicle-based mobile laser scanning 

(MLS) is the best on-road data acquisition system, because it is fast, precise and non-invasive. As part of that, laser scanning 

georeferenced data (i.e., point clouds) provide detailed structural morphology of the scanned objects. However, point clouds are not 

free from outliers and noise. Critically, many of the object extraction methods that depend on local saliency features (e.g., normals)-

based segmentation use principal component analysis (PCA). PCA can provide the local features but struggle to produce robust results 

in the presence of outliers and noise. To reduce the influence of outliers for saliency features estimation and in segmentation, this paper 

employs Robust distance-based Diagnostic PCA (RD-PCA) coupled with the well-known DBSCAN clustering algorithm. This study 

contributes to a better understanding of object detection and segmentation by (i) exploring the problems of local saliency features 

estimation in the presence of outliers and noise; (ii) understanding problems with PCA and why RD-PCA is important; and (iii) 

introducing a novel method for PLOs detection and segmentation following a robust segmentation approach. The performance of the 

new algorithm is demonstrated through MLS data acquired in an urban road setup.  

 
 

1. INTRODUCTION 

There are many types of objects in urban road environments, 

including buildings, trees, cars and poles. This paper focuses on 

pole-like objects (PLOs). Detection, delineation and 

segmentation of PLOs located in a road environment have great 

importance in roadway inventory (Chen et al., 2022), high 

density (HD) map generation (Plachetka et al., 2021), city 

modelling, urban planning, road infrastructure monitoring (Ha 

and Chaisomphob, 2020), intelligent transportation (Wang et al., 

2021; Nurunnabi et al., 2022), traffic management (Tang et al., 

2020; Li &Cheng., 2022), and most highly road safety inspection 

applications, as well as averting roadside accidents (Cabo et al., 

2014; Wang et al., 2021). Image and video data are common to 

use for PLOs detection (Zhang et al., 2018; Sheweta et al, 2022). 

While two-dimensional (2D) drawings of road furniture may be 

available, three-dimensional (3D) interpretation and advanced 

analysis (Yadov et al., 2022) is not readily achieved.  

 

An alternative is Light Detection and Ranging (LiDAR) 

technology, which integrates laser scanners, global navigation 

satellite systems (GNSS) and inertial measurement units (IMU) 

to provide 3D (x, y, and z; a trio) georeferenced data known as 

point clouds. Point cloud provide detailed 3D geometry and 

spatial information of the scanned objects’ structure. In mobile 

laser scanning (MLS) systems, the scanning sensors are mounted 

on a vehicle, GNSS and IMU systems are also on board. Vehicle-

based MLS systems are fast, precise, non-invasive and, thus, 

reduce hugely manual labour requirements (Lehtomaki et al., 

2015). These point clouds contain a large number of points calls 

for the efficiency of precise mapping of various roadway 

features. Although point clouds can provide more facilities to 

extract geometric detail rather than imagery, processing point 

clouds is extra challenging, because the data are unordered, 

typically partial, locally sparse, have irregular point density and 

do not follow any statistical distribution. Moreover, point clouds 

are not free from outliers and noise (Nurunnabi et al., 2015; 

2019). Critically, the outliers rarely have a pattern or distribution 

(Nurunnabi et al., 2014a) and frequently occur because of line-

of-sight obstruction and multiple reflectance (Sotoodeh, 2006). 

The presence of outliers can negatively impact normal and 

curvature estimation accuracy. The reader is referred to 

Nurunnabi et al. (2012, 2015, 2016b) to know further about the 

issues of outliers and noise in point cloud processing (e.g., 

saliency features estimation and segmentation).   

 

A multitude of methods have been proposed for PLOs detection 

and extraction over the years.  Existing methods can be grouped 

into four major categories based on the techniques/principles 

employed: (i) slicing, (ii) voxelization, (iii) classification or 

segmentation, and (iv) model fitting. An early slicing technique 

was developed by Luo and Wang et al. (2008) for PLOs. In that 

the point cloud is sliced into multiple sections and then “pillars” 

are detected by projective parameters. Subsequently, Yu et al. 

(2015) developed a voxel-based method in which ground points 

are removed using a voxel-based upward growing approach. 

Next, non-ground points were segmented and clustered using 

voxels and normalized cut segmentation. A hierarchical 

classification approach to delineate PLOs was introduced by Liu 

et al. (2020). In that the PLOs were extracted using eigenvalues 

and data directions. Critically, this method has proved unsuitable 

when the data are sparse and outliers are present (Wang et al., 

2021). Recently, Tang et al. (2020) coupled a Euclidean 

distance-based clustering with a minimum cut method to 
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segment the road scene, and combined it with support vector 

machines (Cortes & Vapnik, 1995) to segment and classification 

of pole-like traffic facilities. A lot of work has been done in 

fitting, with RANSAC (Fischler and Bolles, 1981) as the heart of 

many algorithms (Tarsha-Kurdi et al., 2008). Golovinskiy et al. 

(2009) developed a four-step method: locating, segmenting, 

characterizing, and classifying clusters of 3D points. RANSAC-

is useful to get planar patches to remove ground points, and then 

uses classification methods to get PLOs (Tombari et al., 2014). 

In recent years, deep learning (DL) approaches have been used 

in PLOs detection and extraction (Fang et al., 2022; Sheweta et 

al., 2022). Plachetka et al. (2021) developed a PLOs recognition 

algorithm with an end-to-end deep neural network (DNN)-based 

approach using high-density LiDAR point clouds. This method 

learns an optimal feature representation for various, principally 

generic, classes of poles in an end-to-end fashion.  

 

There are many hybrid methods available in the literature that 

use different tasks to get better results. For example, Wang et al. 

(2021) proposed a PLOs segmentation method under geometric 

structural constraints. In that, first the data were voxelized 

excluding the ground points. Then the rod-shaped parts were 

extracted according to the vertical continuity. Next, a regional 

growth was performed based on the voxels to retain the non-rod 

parts. Finally, a random forest (RF; Breiman, 2001) model was 

employed to classify the PLOs using local and global features. 

Unfortunately, most of the existing methods have the problems 

of partial extraction of PLOs and the insufficient recognition 

accuracy (Wang et al., 2021). Nevertheless, the identification of 

PLOs remains a complex and challenging task as poles on the 

roadways have different shapes and sizes, and frequently come 

with a variety of complex attachments (e.g., signposts, traffic 

signs, traffic lights, or lamps). Because of the characteristic thin 

shape of PLOs, detection is negatively impacted by both noise as 

well as occlusions and clutter (Tombari et al., 2014). Thus, 

existing methods are still not sufficient for robust and precise 

results with real world datasets. Today, many of the object 

extraction methods that depend on local saliency features (e.g., 

point normals and curvature)-based segmentation (Lalonde et al., 

2006) use principal component analysis (PCA). PCA can provide 

the local features, but it is evident that PCA-based features are 

unreliable and non-robust in the presence of outliers and noise 

(Nurunnabi et al., 2012; 2015). To reduce the influence of 

outliers for saliency features estimation, clustering and 

segmentation, this paper employs Robust distance based 

Diagnostic PCA (RD-PCA; based on MCMD-Z) introduced in 

(Nurunnabi et al., 2015), and the well-known density-based 

spatial clustering of applications with noise (DBSCAN) 

algorithm (Ester et al., 1996). This paper introduces a novel 

algorithm that combines DL for ground surface removing, spatial 

clustering for object isolation, DBSCAN to get vertical parts, and 

RD-PCA for region-growing-based segmentation to extract 

PLOs. Scientific contributions of this paper are as follows: (i) a 

novel algorithm is proposed that detects and extracts PLOs in a 

road environment, (ii) exploration of problems of local saliency 

feature estimation in the presence of outliers, (iii) demonstration 

of how PCA is influenced by outliers, including why RD-PCA is 

important, and how it produces robust results, and (iv) validation 

of the new algorithm with respect to producing robust results in 

the presence of outliers and/or noise. The performance of the 

algorithm is demonstrated through MLS point clouds. 

 

The remaining paper is presented as: Section 2 briefly presents 

the basic principles and methods used in the proposed algorithm. 

Section 3 proposes the methodology of the new algorithm. 

Section 4 demonstrates the new algorithm using two real-world 

MLS datasets. Section 5 concludes the paper.    

2. RELATED PRINCIPLES AND METHODS  

This section presents a short discussion of related methods and 
principles that are used in the proposed algorithm in Section 3. 
 

2.1 Existing methods for ground surface extraction 

Precise ground surface point extraction and removal them from 

the on-ground objects is important for PLOs extraction, as it 

greatly simplifies the remainder of work, in part by reducing the 

size of the dataset, thus dropping the computational burden. 

Vosselman (2000) developed an algorithm based on 

mathematical morphology, a slope-based approach for ground 

points extraction. Nurunnabi et al. (2016a) proposed a segment-

based approach using robust locally weighted regression to 

remove the ground points. There are many more methods exist 

in the literature including the well-known surface-based (Kraus 

and Pfeifer, 1998) and progressive densification-based 

(Axelsson, 2000) approaches. Recently, DL-based methods are 

frequently applied.  

 

Nurunnabi et al. (2021) introduced a feature-based DL method 

for ground and non-ground points isolation. This method has the 

advantage that does not require transformation of point clouds 

into raster image or any voxel-based regular 3D grids that are 

susceptible to information loss (Qi et al., 2017). The algorithm 

has two primary steps: (i) the first consists of relevant features 

extraction and finding optimum feature space, and (ii) the second 

develops a DL-based binary classifier that classifies points into 

ground and non-ground points. The approach is based on the 

features (e.g., points’ local neighborhood-based covariance 

features, such as linearity, planarity and point normals) that have 

been frequently used for classification and semantic 

segmentation in point clouds. These local saliency features can 

be estimated using Robust distance-based Diagnostic PCA (RD-

PCA; Nurunnabi et al., 2015). A brief discussion about RD-PCA 

is provided in Section 2.3. The feature-based DL algorithm is a 

shallow network follows a basic structure of a neural network. 

The network used rectified linear unit (ReLU) activation 

function for the internal layers, and a Sigmoid function for the 

output layer, where the well-known binary cross entropy is used 

as the loss function with the ADAM optimizer to speed up the 

training process. The reader is referred to (Nurunnabi et al., 

2021) to know detail about the algorithm.  

 

2.2 DBSCAN 

DBSCAN is a non-parametric approach (Ester et al., 1996) and 

one of the most frequently applied clustering algorithms. This 

density-based algorithm groups closely located points in a space 

and marks those further away as outliers that typically lie alone 

or scattered in low-density regions. Two main parameters 𝜀 (the 

distance that defines the neighborhood, i.e., maximum distance 

between the point of interest and its neighbors) and MinPTS 

(least number of points to define a density threshold for a cluster) 

are necessary to implement DBSCAN. DBSCAN starts by 

selecting a random point 𝑝𝑖 from a dataset and allocate it to a 

cluster 𝐶1. Then it counts the number of points (n) within the ε 

distance from 𝑝𝑖, if 𝑛 ≥ MinPTS then 𝑝𝑖 is considered as a core 

point, then it will insert all these neighbors to the same cluster 

𝐶1. Afterwards, each point of cluster 𝐶1 finds their respective 

neighbors with the ε distance. If a point in the cluster 𝐶1 has n or 

more neighbors within ε distance, it will be included in 𝐶1. The 

approach continues to grow 𝐶1, until there are no more points 

within its’ reach. This process then considers another point from 

the dataset that does not belong to any cluster and puts it in 

cluster 𝐶2. This continues until all points are exhausted. Unlike 
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the k-means clustering, DBSCAN does not require pre-

specifying the number of clusters and tends to be more reliable 

results. For example, it can find clusters of arbitrary shapes, and 

discovers a cluster completely surrounded by a different cluster 

without getting any connection (Fig. 1). However, it is highly 

sensitive to the values of 𝜀 and MinPTS, hence the user needs to 

have a clear understanding about the two parameters.  
 

 
 

Figure 1. k-means and DBSCAN clustering results for two 

simulated datasets. k-means produces faulty results.    

 

2.3 PCA and RD-PCA 

PCA is a statistical technique, primarily was used for dimension 
reduction in a dataset. This has been extensively used for local 
saliency features estimation and point cloud processing. It is 
evident that PCA is sensitive to outliers, means that inaccurate in 
fitting plane parameters in the presence of outliers (Mitra et al., 
2003; Nurunnabi et al., 2012). Nurunnabi et al. (2014b, 2015) 
showed that robust and diagnostic PCA can reduce the influence 
of outliers and produce robust saliency features.  PCA transforms 
the original variables to a new set of uncorrelated-orthogonal 
variables, called principal components (PCs). PCs are the linear 
combination of the original variables that are arranged the 
variability in the data through the variance. A covariance matrix 
(Σ) of k points (neighbors) for a point of interest 𝑝𝑖 in a point 
cloud P can be defined as:  
 

Σ3×3 =  
1

𝑘
∑ (𝑝𝑖 − �̅�)𝑘

𝑖=1 (𝑝𝑖 − �̅�)𝑇,                      (1) 

 

where �̅� =  
1

𝑘
∑ 𝑝𝑖

𝑘
𝑖=1 ; 𝑝𝑖 (𝑥, 𝑦, 𝑧) 𝜖 𝑃, and 𝑃 𝜖 𝑅3. To perform 

PCA and to derive PCs, we solve the following eigenvalue 
equation by using the singular value decomposition technique, 
 

𝝀𝑉 = Σ𝑉,                                         (2) 
 

where V is a matrix of eigenvectors (PCs), 𝝀 is a diagonal matrix 
of three eigenvalues (𝜆2 ≥  𝜆1  ≥  𝜆0). Besides, classical PCA 
there are variants of robust PCA [e.g., ROBPCA (Hubert et al., 
2005)] produced robust PCs in the presence of outliers and noise. 
There are many alternatives. One by Nurunnabi et al. (2013; 
2014b) follows principles of diagnostic statistics to find outliers 
and then uses classical PCA to the outlier free dataset.   
 
Robust distance-based Diagnostic PCA (RD-PCA) was 
introduced in Nurunnabi et al. (2015) to find outliers in point 
cloud data and to estimate local saliency features (i.e., point 
normals and curvatures) without outlying data. RD-PCA follows 
the basic principle of diagnostic PCA, as a means for identifying 
outliers in a dataset and then performing PCA to the outlier free 
data. For a point cloud, when RD-PCA produces robust saliency 
features it finds outliers locally in a local neighborhood of a point 

of interest, and then makes a covariance matrix with inliers and 
find PCs by using classical PCA. The standard procedure of 
robust outlier detection is finding outliers by searching for the 
model fitted to the majority of the data, hence it needs to find the 
most consistent set (MCS) of points those are consistent to each 
other. The MCS set was found in a robust way.  This algorithm 
assumes that points in a sufficiently small local neighborhood are 
on a planar surface. Two metrices: point to plane orthogonal 
distance (OD) and the surface points variation (the third 
eigenvalue) along the normal are estimated based on local 
neighbor points of an interest point used to find the outliers. Only 
a subset of h (ℎ = ⌈0.5𝑘⌉, and k is the number of points in a local 
neighborhood) points, the majority of good (inlier) points that 
are homogeneous and reliable, and have the minimum sorted 
ODs are used to fit the plane and calculates respective surface 
point variation.  
 
In order to get the best set of h points, the algorithm begins with 
the minimal number of points, ℎ0 in case of plane fitting ℎ0 = 3. 
An outlier free h-subset can be found after a sufficient number 
of repetitions following the basic principle of RANSAC 
(Fischler and Bolles, 1981), and the h-subset then can produce 
better plane parameters. This h-subset is defined as the MCS. 
Now, a plane is fitted using the MCS set for the local 
neighborhood, and calculate the robust orthogonal distances 
(ODs) for all the points in the neighborhood using point mean 
(�̅�), and estimated normal (�̂�) using Eq. (3), 
 

𝑂𝐷(𝑝𝑖) = (𝑝𝑖 − �̅�). �̂� .                             (3) 
 
Finally, the robust Z (𝑅𝑧𝑖) scores are calculated for the points in 
a local neighborhood,  
 

𝑅𝑧𝑖 =  
[𝑂𝐷𝑖−𝑚𝑒𝑑𝑖𝑎𝑛 (𝑂𝐷𝑖)]

𝑀𝐴𝐷 (𝑂𝐷𝑖)
,                           (4) 

 
and the points with 𝑅𝑧𝑖 values more than 2.5 are considered as 
outliers. The reader is referred to Nurunnabi et al. (2015) for 
detail about RD-PCA.  
 

 

3. METHODOLOGY 

A six-step method for PLOs detection and extraction is proposed 
in this section (workflow is in Fig. 2).  
 
Step 1. Ground surface points elimination  
Laser scanning point clouds typically consist of both ground and 
non-ground points. As PLOs are on-ground objects; ground 
points are removed to reduce the data volume. The feature-based 
light-weight DL algorithm developed in Nurunnabi et al. (2021) 
is used for this task. The authors (Nurunnabi et al., 2021) 
proposed three Models (1, 2, 3) in their paper, we have 
considered the Model 3 as this is better than the others to filter 
out the ground points.  That method has shown a 97% accuracy 
for classifying ground and non-ground points in large-scale 
outdoor point clouds including road scene. We select this method 
to reduce a significant amount of the computational complexity, 
and time when compared to typical end-to-end DL methods (e.g., 
Qi et al., 2017) in point cloud semantic segmentation. 
 
Step 2. Spatial clustering  
Here, on-ground objects are isolated as individual clusters using 
3D Euclidean distance (ED)-based spatial clustering. Spatial 
clustering works as a region growing-based segmentation. It 
starts from a seed point having the lowest z value in the dataset 
then starts growing a region (group) with the points having ED 
less than a predefined threshold, 𝐸𝐷𝑡ℎ. Each point in the group 
works as a subsequent seed point for continuing the group, until 
it finishes to accumulate a complete (or part of) object.     
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Figure 2.     The pipeline of the proposed PLOs extraction method.  
 

A region with more than a minimum number of points (𝑀𝑝) is 

considered as an individual object. This process continues until 
all the points in the data are considered as a seed point.  
 
Step 3. Identification of potential PLOs  
PLOs are typically attached to the ground surface and have more 
than a minimum height and width. Hence, we search for the 
potential PLOs from the results of the spatial clustering is based 
on these three criteria: (i) being attached to or in close proximity 
(within a ground level threshold; 𝐺𝑡ℎ = 0.5) to the ground 
surface, (ii) having spatial extents in the z-direction exceeding 
0.5m, and (iii) possessing horizontal extents (i.e., range of x or 
y) of less than 1m in its lower portion. However, since PLOs such 
as billboards or light-poles are often surrounded by other 
vegetation/bush, these can be wrongly included during the 
clustering.   
 
Step 4. Extraction of the vertical part of a PLO  
Next the DBSCAN clustering algorithm is applied to extract 
vertical parts of the potential PLOs. For this, the 3D (x, y, z) data 
is projected onto a 2D (x-y directions) plane. After density-based 
clustering, DBSCAN can identify most dense parts of an object. 
Projection of the 3D objects in 2D, results in a 2D point density 
in which the vertical part of a PLO is the densest. Resultant 
densest parts are the considered as vertical parts of the PLOs. 
Surrounding objects like leaves of trees can complicate this step.  
  
Step 5. Improvement of vertical parts of PLOs 
As mentioned in Section 2, PCA-based saliency features are 
influenced by outliers and noise but are aided by RD-PCA. Fig 
3(a) shows how PCA based normals failed to discriminate two 
distinct surfaces near an edge of a road curb/boundary, whereas 
RD-PCA-based normals successfully identified them. In this 
algorithm RD-PCA is applied to get robust PCs and eigenvalues. 
Using RD-PCA based saliency features, segmentation is 
achieved following a conventional region growing approach and 
applying Eq. (5). This segmentation obtains precise vertical parts 
that are only with PLOs and correct errors from Step 4. Eq. (5) 
is defined as:  
 

                                  

 (i) N𝑧𝑖
< N𝑧𝑡ℎ

 ,     

(ii) 𝜃𝑖𝑗 < 𝜃𝑡ℎ  ,     

(iii) ED𝑖𝑗 < ED𝑡ℎ

       },                               (5) 

where N𝑧𝑖
 (the value of the normal vector’s z component) can be 

defined as: 
 

Nzi
=  |𝜗0 . 𝑛𝑧 |,                                  (6) 

 
where 𝜗0 is the third eigenvector (i.e., normal), 𝑛𝑧 = (0, 0, 1); 
𝜃𝑖𝑗  and ED𝑖𝑗 is the angle between 𝒑𝒊 and 𝒑𝒋 (jth neighbor of 𝒑𝒊) 

and ED is between 𝒑𝒊 and 𝒑𝒋, respectively. The terms N𝑧𝑡ℎ
, 𝜃𝑡ℎ 

and ED𝑡ℎ are their respective thresholds. The value of the normal 
vector’s 𝑧 component can explain the local surface (that belongs 
to the point 𝑝𝑖) structure (i.e., vertical or horizontal) [as per Liang 
et al., 2012]. Fig. 3(a) shows how PCA based normals struggle 
with edge points, and the N𝑧 values change over the surface 
position (horizontal or vertical). A point on a vertical surface 
reasonably has a significantly less value of Nz than a point on a 
horizontal surface, Fig. 3(b).   
 

 
 
Figure 3. (a) PCA and RD-PCA based normals, PCA normals 
are not successful to discriminate between a horizontal and 
vertical surface near a road edge, but RD-PCA normals are 
successful, (b) Nz values for 𝑝1  (on horizontal surface) and 𝑝2 
(on vertical surface) are significantly different.  
 
Step 6. Removal of non-pole objects  
For the removal of non-pole objects, the criteria of the points 
(within 1m) above the extracted vertical parts are investigated. 
The points’ normal-based angle variation metric is employed to 
define points’ linearity, planarity, or scatteredness to remove 
unwanted non-pole objects that may come from different objects 
surface, e.g., parts of trees. This metric is the standard deviation 
(SD) of 𝜃𝑖𝑗  (angle between two points, Fig. 4), and SD (𝜃𝑖𝑗) can 

be defined as:  
 

SD (𝜃𝑖𝑗) =  √
1

𝑘
∑ (𝜃𝑖𝑗 − �̅�)

2𝑘
𝑗=1  ,                     (7) 

 

where, �̅� is the mean of 𝜃𝑖𝑗; 𝑗 = 1, 2, … , 𝑘. 

 

 
 

Figure 4. Angle (𝜃) between two points (𝑝𝑖 , 𝑝𝑗). 

 
We consider, a point is planar/linear/scatter if it follows Eq. (8).  
 

𝑆𝐷 (𝜃𝑖𝑗)  < 10; 𝑝𝑙𝑎𝑛𝑎𝑟 

10 ≤ 𝑆𝐷 (𝜃𝑖𝑗)  < 100; 𝑙𝑖𝑛𝑒𝑎𝑟

100 ≤ 𝑆𝐷 (𝜃𝑖𝑗) ; 𝑠𝑐𝑎𝑡𝑡𝑒𝑟

}.                      (8) 

 
If majority (more than 80%) of the points are from a non-pole 
object, they are considered scatter. This way, trees (which have 
a pole-like structure, i.e., tree trunk) are avoided. Finally, 
complete objects that have all parts together with the vertical 
portion selected by RD-PCA segmentation and spatial clustering 
are declared as the extracted PLOs. 
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4. EXPERIMENTS, EVALUATION AND DISCUSSION  

In this section, the proposed algorithm is demonstrated through 

experiments on a pair of vehicle-based MLS point cloud datasets. 

  

4.1 Experiment 1  

The first experiment was based on an MLS point cloud acquired 
in urban road site, Warringa, Australia. This dataset (Fig. 5a) 
covers a road scene along the roadway of 48m length with a total 
of 931,497 points. It has 17 PLOs, including 1 utility pole, 6 
traffic signal-light poles, 7 sign poles, 1 long light pole, and 2 
bollards, also gets many non-PLOs such as trees, buildings, and 
cars. The DL-based ground point filtering algorithm (Nurunnabi 
et al., 2021) was applied that separates ground surface (697, 252 
points; gray) and non-ground objects (Fig. 5b). Then the ED-
based clustering (with 𝐸𝐷𝑡ℎ =  0.1𝑚, 𝑀𝑝 = 50) was performed 

on the remaining non-ground points. The results (Fig. 5c) are of 
individual objects or parts of objects (e.g., tree branches or leaves 

having irregular shapes and scattered). A total of 32 potential 
PLOs were obtained (Fig 5d) using the rule-based approach in 
Step 3. The DBSCAN-based clustering was performed to find 
the vertical portion of the PLOs. In Fig. 5e, a sign-plate attached 
to a sign pole (object 14) has found wrong as a vertical part.  Fig. 
5f explores DBSCAN results for a traffic-light pole [object 17, 
plot (i)], and the 2D and 3D cluster results are plotted in (Fig. 5f-
ii) and (Fig. 5f-iii), respectively. The main vertical part (maroon) 
is clearly visible in Fig. 5f(iii). Next PCA and RD-PCA based 
segmentation was done to the DBSCAN results. Results are 
shown for objects 14 and 23 in Fig. 5g. These images illustrate 
the consequences of the presence of outliers and noise on PCA 
and RD-PCA based saliency features estimation (k=30), and 
consequently, on segmentation intended for vertical part 
identification. The PCA-based results for object 14, a sign plate 
attached to the sign pole, were incorrectly identified as a vertical 
part. For object 23, some of the non-vertical points (red) were 
identified as vertical points. The main cause was the smoothing 
which occurs with the PCA normals on edge-like surfaces. 

 

 
 

Figure 5. Pole-like objects (PLOs) extraction: (a) MLS point cloud of a road scene, (b) classification of ground and non-ground points, 

(c) results of ED-based spatial clustering, (d) potential PLOs, (e) DBSCAN results, detection of vertical parts, (f) (i) Object 17, a 3D 

traffic light pole, (ii) 2D projection results, (iii) detected 3D parts (color plot), vertical part is in maroon, (g) PCA and RD-PCA based 

segmentation results: (i) sign pole, and (ii) long light pole, (h) elimination of non-PLOs, and final extracted PLOs. 
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In contrast, the RD-PCA based normals successfully separated 
the planar and vertical surfaces. Linearity, planarity, and 
scatteredness were checked by applying Step 6. The rules in Eq. 
(8) were able to remove the scattered surface points that were 
mostly tree parts (e.g., objects 25, 29 and 30). Finally, all 17 
PLOs were successfully extracted (Fig. 5h). 
 

 4.2. Experiment 2 
 
This second experiment uses a portion of an open access MLS 
point cloud (Fig. 6a) from a road environment in Lille, France. 
This is an open access dataset, Paris-Lille-3D (Roynard et al., 
2018).  
 

 
 

Figure 6. Pole-like objects (PLOs) extraction: (a) MLS point cloud of a road scene, a part of Paris-Lille-3D data, (b) classification of 
ground and non-ground points, (c) results of spatial clustering, (d) potential PLOs, (e) DBSCAN results, vertical parts detection, (f) 
DBSCAN result for object 15: (i) a 3D street light pole, (ii) 2D projection results, (iii) detected 3D parts, segments are in different 
colors, the main vertical part is in red, (g) RD-PCA based segmentation results, (h) results after non-PLOs elimination, extracted PLOs. 
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The selected portion of data covers around 98m of road, has 
5,893,301 points, and includes 38 PLOs (i.e., 10 street-light 
poles, 1 sign pole, 2 circular garbage bins, 4 traffic barriers, 18 
bollards, 3 poles attached with roadside building facades) and 
non-PLOs such as cars, 14 trees, and parts of building facades. 
The DL method for ground point removal eliminated 3,466,844 
points (Fig. 6b). The results of the ED-based spatial clustering 
on the non-ground points are shown in Fig. 6c. They include a 
range of whole and partial objects (e.g., facades, trees) with 52 
potential PLOs, including 14 trees (Fig 6d). Fig. 6(e) shows the 
data after the DBSCAN clustering was applied to get the vertical 
portion of the potential PLOs. Fig. 6(f) shows a close up of some 
of the DBSCAN results for a street-light pole [object 15, plot (i)]. 
The 2D and 3D clusters are seen in 6f(ii) and 6f(iii), respectively. 
The RD-PCA based segmentation on the vertical parts is 
illustrated in Fig. 6(g). Fig. 6(g) shows that many of the vertical 
parts from DBSCAN now make more segments due to the 
unwanted parts that were initially included (mostly from trees). 
For the RD-PCA based additional segmentation results, the 
linearity, planarity and scatteredness are verified. Ultimately all 
trees were successfully removed (e.g., objects 2, 7, 10, 48 and 
50). Finally, we extracted all 38 PLOs (Fig, 6h). Objects 12, 13 
and 32 in Fig. 6(h) are the three poles that are attached to 
surrounding building facades. 
 

Non-ground objects 
DBSCAN 

clusters 

RD-PCA 

segments 

Extracted 

PLOs 

Street-light pole 10 10 10 10 

Sign pole 1 1 1 1 

Circular bin 2 2 2 2 

Traffic barrier 4 4 4 4 

Bollard 18 18 18 18 

Pole 3 3 3 3 

Tree 14 14 14+15 - 

Total 52 52 67 38 

Table 1. Distribution of results from different steps. 

 

5. CONCLUSIONS 

This paper introduces a robust algorithm for PLOs extraction. 

First, we removed the ground points using a feature-based DL 

algorithm that reduces data volume, as well as a computational 

burden. By coupling the DBSCAN clustering algorithm and the 

RD-PCA based robust segmentation approach a robust solution 

is introduced that deals well noise and outliers. The use of 

DBSCAN in 2D and applied in 3D enabled overcoming initial 

errors in clustering and successfully identified vertical parts of 

the potential PLOs. The RD-PCA based segmentation was 

employed to extract the vertical parts and reduced the influence 

of outliers/noise on the local saliency feature (e.g., normals) and 

avoided over and under segmentation errors. The robust 

normals’ z components (Nz) were used to generate a diffusion 

measure to determine PLOs versus non-PLOs. 

The new method was successful for PLOs extraction from a wide 

variety of urban objects appearing along streets (e.g., street-light 

poles, utility poles, sign poles, traffic-light signals, billboards, 

and bollards) taken from two different real-world datasets. The 

experimental results show that the algorithm has high potential 

for tree trunk modeling, as well as highway asset health 

monitoring and additional road object classification. However, 

the new algorithm is semi-automatic and requires a clear 

understanding about the underlying data structure to select the 

necessary parameters used in saliency features estimation and to 

perform the segmentation tasks. Benchmarking of this work 

against existing approaches will be the subject of upcoming 

research. 
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