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ABSTRACT: 

 

This paper presents a method for filament extraction as a step in Shotcrete 3D printing (SC3DP) for quality control using Terrestrial 

Laser Scanning (TLS) after the printing process. The proposed approach involves comparing a Point Cloud (PC) generated from 

TLS data with the original design model using Cloud-to-Model (C2M) distance to obtain a coloured deviation map. This deviation 

map is then rasterized into an image with the same size as the object, with each pixel's colour representing the C2M distance. The 

method incorporates denoising techniques, such as bilateral filtering, and applies Canny edge detection to identify the filaments’ 

contour. Morphological operations are used to extract only the horizontal edges relevant to the planned printing path. To connect 

isolated edges, an algorithm based on the M-estimator sample consensus (MSAC) algorithm is employed to fit lines accurately. The 

proposed method achieves an average precision score of 76% in detecting printing filaments of a shotcrete wall. The results 

demonstrate a reliable quality control capability and the potential for early identification of manufacturing-related issues. 

 

 

1. INTRODUCTION 

To meet the demand for sustainable and efficient design and 

construction in the built environment, the architecture, 

engineering, and construction (AEC) industry is constantly 

evolving. One of the most exciting breakthroughs in this digital 

transformation is 3D printing (Wolfs et al., 2021). Over the past 

15 years, large-scale additive manufacturing technologies have 

been developed specifically for the construction industry (Xu et 

al., 2020). However, the Shotcrete 3D printing (SC3DP) 

method sets itself apart from traditional concrete 3D printing by 

spraying the material under pressure rather than extruding it in 

strands (Hack and Kloft, 2020). 

 

A critical step in the 3D printing process is quality control, and 

integrating automated quality control into the production cycle 

can enhance productivity (Slepicka et al., 2022). As 3D 

concrete printing (3DCP) enables rapid construction, 

maintaining high standards becomes even more important. This 

necessitates the development of innovative approaches and 

concepts to replace time-consuming manual quality control 

processes. Additionally, methods need to be developed to assess 

the structural characteristics of 3D-printed objects, ensuring that 

design requirements are met and any potential flaws are 

identified (Mechtcherine et al., 2022). 

 

The filament plays a critical role in the 3D printing process as 

its shape can be influenced by various factors including 

material mix, nozzle distance and diameter, extrusion rate, 

pumping pressure, robot speed, and airflow pressure, affect its 

shape (Kloft et al., 2020). In a study by Slepicka et al. (2022), 

different types of quality inspections were categorized and their 

application and importance were discussed based on the stage 

of the printing process. The authors identified filament 

extraction as a part of feature-wise inspection, which focuses on 

examining specific features of the printed object.  

 

The term "filament" is adapted from the study conducted by 

Slepicka et al. (2022). It specifically denotes a single strip of 

concrete layer produced through one-line of planned printing 

path (refer to Figure 1a). However, the reason for adopting the 

term "filament" in this paper is to eliminate any confusion with 

the term "layer." In Figure 1(c), the term "layer" refers to the 

additional concrete material added after the printed core. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a): Planned printing path of the simple straight 

wall, (b): Expected print result, (c) Extraction of the 

geometry of filaments and workflow quality inspection from 

printed core to finished surface, (a) &(b) adapted from 

(Slepicka et al., 2022). 
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Figure 1a illustrates the intended printing path, while Figure 1b 

showcases the anticipated filament geometry. In contrast, 

Figure 1c displays the actual state of the filaments after printing 

a simple concrete wall with dimensions represented by 

430x1685 mm (width, and height) respectively. To evaluate the 

quality of filament, a comparison was made with manually 

segmented counterparts. Analysing the filament geometry 

allows for the application of various inspection methods, 

providing valuable insights into the different parameters 

involved in path planning. Furthermore, an additional concrete 

layer can be applied over the printed core to address any 

inconsistencies between the as-printed object and the as-

designed model, ensuring the desired finished surface is 

achieved. 

 

This paper focuses on post-printing quality control for filament 

extraction using Terrestrial Laser Scanning (TLS). Section 2 

provides an overview of the current state of the art in filament 

extraction in additive manufacturing (AM). In Section 3, we 

present our proposed methodology for filament extraction. The 

algorithm's results are discussed in Section 4, followed by a 

comprehensive analysis of the findings in Section 5. Finally, in 

Section 6, we summarize the paper and outline its key 

contributions. 

2. RELATED WORK 

Quality inspection (QI) plays a vital role in ensuring the 

geometry and surface quality of objects produced in various 

manufacturing processes. In the context of 3D printing, several 

studies have investigated the impact of extrusion printing 

parameters on filament characteristics. Wolfs et al. (2021)  

examined tearing and buckling of filaments. Tearing occurs 

when the layer width decreases in the direction of the nozzle, 

while buckling happens when the filament width increases in 

the same direction as the nozzle. Quah et al. (2023) conducted a 

comprehensive survey on technical parameters and their effects 

on filaments, categorizing them into process, environmental, 

and material parameters.  

 

Davtalab et al. (2020) employed image processing techniques 

for filaments detection in 3D printing extrusion. Their method 

involved edge detection, orientation estimation using the Hough 

transform, and defect detection based on unexpected 

orientations. The algorithm showed promising results. 

However, the algorithm's robustness is uncertain as the images 

were limited to number of filaments and was tested on clean 

extrusion 3d printing technique rather than shotcrete. 

 

On the other hand, Senthilnathan and Raphael (2022) proposed 

a computer vision-based methodology for quantifying textural 

variations on the surface of concrete 3D-printed filaments. 

Their approach involved texture analysis using a 2D camera, 

enabling continuous monitoring and identification of quality 

issues. Nevertheless, their texture analysis is based on already 

manual segmented filaments. Rill-García et al. (2022) utilized a 

camera-based sensor and deep learning architecture to 

automatically segment filaments for printed objects. The 

segmentation was based on interlayer line orientation, 

thickness, and geometrical anomalies. The authors achieved a 

high F1 score for segmentation accuracy, indicating the 

effectiveness of deep learning techniques. However, the authors 

utilize isolated images, each displaying only a small portion of 

the object. This approach hinders the analysis of the entire 

filament segment as a whole and may result in issues with 

overlapping areas between images. Additionally, the method 

was tested on extrusion 3d printing rather than shotcrete. 

Wi et al. (2020) employed a structured light scanner (SLS) to 

assess the printing quality of 3D-printed clay objects. Their 

method measured various parameters to evaluate printing 

quality, but it did not provide an automatic inspection approach. 

Mendřický and Keller (2023) validated a method for quality 

control in 3D printing using SLS. Their approach involved 

comparing scans of printed wall segments at different time 

intervals and analysing deviations from a reference model. 

While the study did not offer an automatic inspection method, it 

highlighted time-dependent shrinkage as an important factor 

affecting accuracy. Furthermore, assessing the quality of the 

filaments using a digital calliper necessitates expertise. 

 

In the analysis of filaments in 3D printing, various conclusions 

can be drawn. Excessive velocity occurs when the extrusion 

nozzle's velocity exceeds the extrusion rate, leading to 

discontinuous filaments or longitudinal tearing. Over-pressing 

happens when the pressure from the extruded filament surpasses 

the strength of the previous one, resulting in staggered filament 

patterns and a loss of control over filament width and thickness. 

Flow-out occurs when the material's yield stress is insufficient 

to support its own weight, causing a poor material deposition as 

the distance between the printed piece and the extrusion nozzle 

increases (Rill-García et al., 2022). 

 

Extrudability is an important property for 3D-printing concrete, 

referring to its ability to pass through a rigid nozzle with high 

shear and maintain a liquid behaviour. Pumpability, on the 

other hand, is the concrete mix's ability to be pumped through 

pipes and flow under pressure without significant changes in its 

initial properties. Buildability relates to the concrete filament's 

capacity to withstand the weight of successive filaments 

without deformations. Inadequate yield stress in the bottom 

filaments of 3D-printed concrete elements can lead to a 

reduction in filament thickness or flow away under the weight 

of accumulated filaments (Senthilnathan and Raphael, 2022). 

 

Overall, these studies demonstrate the importance of quality 

control and inspection in the 3D printing process to ensure that 

the final product meets the desired specifications. Computer 

vision techniques have the potential to automate the QI process, 

reducing the need for skilled workers and saving time and 

money. Despite these contributions, there is still a need for 

more research, particularly in the areas of filament extraction 

and the utilization of TLS sensors in 3D printing, specifically 

for SC3DP, which is the primary focus of this study. 

 

We have chosen to use TLS since our goal is to capture the 

complete object and accurately represent the entire filament and 

its boundaries simultaneously. While it is also possible to 

achieve this using single, overlapping images and employing a 

Structure-from-Motion (SfM) process, including dense image 

matching and potentially orthoprojection, it would require 

additional processing time. This could potentially interfere with 

our objective of achieving near-real-time processing. Moreover, 

we have a pre-established setup that enables direct co-

registration of the point cloud and the model, which is 

illustrated in our previous paper (Mawas et al., 2022). 

 

3. METHODOLOGY  

Methodology (Figure 2): TLS data capture for Point Cloud 

(PC); C2M distance for deviation map; aliasing effect 

considered; bilateral filter for noise reduction; Canny edge 

detection and horizontal edge extraction; RANSAC-based 

algorithm for line detection in sliding windows.
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Figure 2. Flowchart of Our Methodology 

 

 
(a) 

 
(b) 

Figure 3. Effect of bilateral filter on Canny edge detection results in shotcrete wall overlaying with grayscale 

image. (a) Without bilateral filter. (b) With bilateral filter. 
 

 

To employ the C2M algorithm between the as-printed 

specimen (point cloud) and the as-designed model, an 

alignment method is required. For detailed information on 

our registration method, please refer to our previous paper 

(Mawas et al., 2022). For rasterization, an important 

requirement is to ensure that the point density is sufficient to 

satisfy the sampling theorem. Therefore, in order to generate 

an image of the area of interest from the point cloud, it is 

crucial to consider the aliasing effect and preserve edge 

details, particularly the contours of the filaments. Also, the 

generated image size is equal to the wall dimension to avoid 

any distortion. Additionally, the pixel values are derived 

from the C2M distance results, and if any data is missing due 

to rasterization, denoising using an interpolator such as 

nearest neighbour or linear interpolator might be necessary. 

 

The bilateral filter is applied to the image afterwards to 

reduce noise while preserving edge features. It considers the 

spatial proximity and similarity in photometric values of 

pixels to determine their closeness. Afterwards, Canny edge 

detection is employed to identify the edges in the image. The 

bilateral filter has two fundamental parameters: the range 

parameter and the spatial parameter. Increasing the range 

parameter makes the bilateral filter behave more like a 

Gaussian blur, while increasing the spatial parameter results 

in smoother and more prominent features (Tomasi and 

Manduchi, 1998). 

 

Figure 3 illustrates the effect of the bilateral filter on the 

Canny edge detection results. Figure 3a shows the edges 

without the bilateral filter, while Figure 3b shows the 

obtained edges after applying the bilateral filter. It is 

important to note that the path planning for layers in 

shotcrete 3D printing is only horizontal (see Figure 1). 

However, Canny's edge detection captures not only 

horizontal edges but also isolated islands within the filaments 

(see Figure 3b). These topological islands arise from the non-

smoothness of filaments in shotcrete 3D printing and also 

from the C2M distance colour map. As a result, certain 

regions within a filament may not be homogeneous. 

Therefore, minimizing the effect of edges between filaments 

is desirable. To extract only the horizontal edges, a 

morphological operation involving erosion followed by 

dilation is applied using a horizontal kernel of size 1x3 with 

all elements set to one. 

Nevertheless, the edges obtained through Canny edge 

detection algorithm appear isolated and unconnected. To 

overcome this limitation and go beyond detecting only 

straight lines with the Hough transform, we propose utilizing 

the RANSAC-based algorithm for polynomial fitting. Unlike 
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the Hough transform, RANSAC can fit any desired 

polynomials of varying degrees, enabling the detection of 

shapes beyond straight lines. This flexibility allows for future 

adaptability in different path planning scenarios. 

 

In our specific case of path planning, which involves 

exclusively straight lines, we utilize the M-estimator sample 

consensus (MSAC) algorithm (Torr and Zisserman, 2000) for 

connecting the pixels along the filament's edge. MSAC is an 

extension of the RANSAC algorithm that introduces robust 

M-estimation techniques. Unlike treating all inliers equally, 

MSAC assigns weights to the inliers based on their residuals, 

which improves the accuracy of model estimation by 

reducing the impact of outliers. Through the line-fitting 

process, we identify the inlier points extracted from the 

Canny edges’ algorithm. This enables us to obtain edges that 

precisely follow the contour of the filament, surpassing the 

limitations of a simple straight-line representation. 

 

4. RESULTS 

The line detection algorithm is applied to every image patch 

through a sliding window approach across the entire image. 

The window size should match the defined layer height for 

the planned printing path to ensure that the pixels grouped in 

each window belong to a single filament's edge with a width 

that matches the wall width. 

 

 
Figure 4. Results of our Methodology. (a) Extracted horizontal lines from the Canny filter. (b) Inlier points from line detection using 

the MSAC algorithm. (c) Extracted edges for every detected filament. 

 

 
(a) 

 
(b) 

Figure 5. Comparison of Manual Labelling vs. Our Algorithm. (a) Filaments labelled manually. (b) Filaments extracted by the 

proposed algorithm. 

 
 

 

Figure 4 presents the results of our methodology. Figure 4a 

displays the extracted horizontal lines obtained from the 

Canny filter. In Figure 4b, the inlier points from the line 

detection using the MSAC algorithm are depicted. Finally, 

Figure 4c shows the extracted edges of the filaments after 

connecting the points that belong to one fitted line. 

The results of comparing the segmented filaments from the 

images with the manually labelled data are presented in 
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Figure 5. Figure 5a shows the filaments labelled manually, 

while Figure 5b displays the filaments extracted by our 

proposed algorithm. The manual labelling process involved 

creating a polygon for each filament with a unique label 

using CVAT.1 

 

From the manual labelling, we obtained a total of 29 

filaments, while our method detected 28 filaments. To assign 

the correct labels to the detected filaments, we computed the 

Intersection over Union (IoU) score between the different 

layers. The IoU score measures the degree of overlap 

between two layers, with a score of 1 indicating a perfect 

match. 

 

Label Algorithm IoU 

1 1 0.7 

2 2 0.67 

3 3 | 4 0.59 | 0.23 

4 4 | 5 0.27 | 0.4 

5 5 | 6 0.26 | 0.49 

6 7 0.62 

7 8 0.67 

8 9 0.71 

9 10 0.70 

10 11 0.74 

11 12 0.64 

12 13 0.67 

13 14 0.67 

14 15 0.65 

15 16 0.67 

16 17 0.62 

17 18 0.62 

18 19 0.36 

19 19 0.40 

20 20 0.60 

21 21 0.59 

22 22 0.54 

23 23 0.56 

24 24 0.51 

25 24 | 25 0.25 | 0.25 

26 25 0.56 

27 26 0.68 

28 27 0.62 

29 28 0.67 

Table 1. IoU score between the different layers. 

Table 1 presents the IoU scores between the algorithm's 

detected filaments and the manually labelled ones. We 

observe some critical matches, indicated by lower IoU 

scores. To determine the correct matches, we select the 

highest IoU score among the matches. For example, 

manually labelled filament 3 has a higher IoU score with 

algorithm filament 3 compared to algorithm filament 4, so 

the match with the highest score is considered. Also, from 

the table, we found that filament 4 from the algorithm is an 

outlier since it has no high score. Also, there are two missing 

matches for the manual filaments 18 and 25.  

 

The precision, recall, and F1-score for the different filaments 

were computed to further analyse the algorithm's 

performance, as shown in Figure 6. TN, TP, FP, and FN 

represent true negative, true positive, false positive, and false 

                                                                 
1 https://www.cvat.ai, Accessed May 29, 2023. 

negative, respectively. Precision measures the proportion of 

correctly predicted filament (true positives) out of all the 

detected filaments by the algorithm (true positives + false 

positives). It indicates how well the algorithm captures the 

true filaments and avoids falsely labelling non-filaments. 

Recall, also known as sensitivity or true positive rate, 

measures the proportion of correctly predicted filaments (true 

positives) out of all the filaments in the manual labelling 

(true positives + false negatives). It indicates the algorithm's 

ability to detect all the filaments present in the manual 

labelling. F1-score is the harmonic mean of precision and 

recall, providing a single measure that combines both 

metrics. It gives equal importance to both precision and 

recall. A higher F1-score indicates a better balance between 

precision and recall. 

 

In this case, precision is particularly relevant because the 

filaments in the image are thin but have the same width as 

the entire image. A high precision score would indicate that 

the algorithm effectively extracts the true positive filaments 

without falsely labelling other parts of the image as 

filaments. 

 

5. DISCUSSION 

The method aims to detect filaments for a whole component 

printed object using the 3D shotcrete method to perform 

post-print quality inspection. The studied wall has a width 

and height of 430x1685 mm. The results achieve a maximum 

precision score of 92%. However, it is evident from the data 

that when one filament is missed by the algorithm, the 

accuracy of neighbouring filaments is dramatically affected. 

This limitation arises from the use of a fixed sliding window 

height. In future research, it is crucial to adapt the sliding 

window based on the structure of the filament. Also, the 

issue with the fixed-height sliding window becomes 

particularly evident at the beginning and end of the filament, 

where the material bulking effect is most pronounced (refer 

to Figure 6 and Figure 7). One approach to achieve this goal 

is by taking vertical profiles from different parts of the 

image. The peaks and troughs of the profiles represent the 

edges of the filaments. Thus, the sliding height and width can 

be adaptively determined based on the distances between one 

vertical line and its neighbour. The height can be defined as 

the distance between the trough and its next trough from the 

vertical profile. However, it is important to note that the used 

holistic extraction of one filament will affect the result of the 

neighbouring extraction, as illustrated. If these effected 

filaments are not eliminated, the mean precision score reach 

up to 76%. 

 

One challenging situation for the algorithm is when the 

layers are not continuous, as shown in Figure 7. The best 

solution to overcome this phenomenon might be to use a 

deep neural network model for filament detection. However, 

it is worth mentioning that even for humans, detecting this 

phenomenon is a challenging task as well. Overall, the 

current method demonstrates promising results in filament 

detection, but further refinements and adaptations are 

necessary to improve its robustness and generalization to 

different filament structures and non-continuous filament 

patterns. Incorporating advanced techniques like deep 

learning could potentially enhance the algorithm's 

performance in handling complex scenarios.
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Figure 6. The results score for the different layers between the proposed algorithm and manual labelling 

 

 
Figure 7. Discontinuous Filament example of F17. 
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6. CONCLUSION 

The results demonstrate the successful detection of printing 

filaments in the shotcrete wall, achieving an average 

precision rate of 76%. Our proposed approach outperforms 

manual methods by enabling nearly real-time quality control 

during production. The identification of filaments plays a 

crucial role in promptly identifying flaws and resolving 

manufacturing-related issues. Integrating our approach with 

Building Information Model (BIM) or Fabrication 

Information Model (FIM) models allows for valuable 

feedback into the intended model, resulting in a more 

efficient and environmentally friendly additive 

manufacturing process while ensuring the accuracy and high 

quality of the final product. 

 

Further investigations are needed to improve the results, such 

as enhancing the sliding window approach to make the 

algorithm adaptive to the current shape of the filaments 

rather than using a fixed-shape window. Additionally, 

employing a deep neural network could be an option for 

extracting filaments and obtaining more generalized results 

to overcome the discontinuous effect. 

 

Due to the digital transformation in the Architecture, 

Engineering, and Construction (AEC) sector, 3D concrete 

printing has emerged as a promising and rapidly evolving 

innovation. To ensure the precision of the production 

process, quality control is crucial. In this regard, the 

proposed methodology can be utilized to monitor quality 

throughout the manufacturing process. The method will be 

tested on additional specimens, and further research will be 

conducted to enhance the process and extend its applicability 

to different types of additive manufacturing techniques. 
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