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ABSTRACT: 

User equilibrium (UE) has long been regarded as the cornerstone of transport planning studies. Despite its fundamental importance, 
our understanding of the actual UE state of road networks has remained surprisingly incomplete. Using big datasets of taxi trajectories, 
this study investigates the UE states of road networks in Wuhan. Effective indicators, namely relative gaps, are introduced to quantify 
how actual traffic states deviate from theoretical UE states. Advanced machine learning techniques, including XGBoost and SHAP 
values, are employed to analyze nonlinear relationships between network disequilibrium states and seven influencing factors extracted 
from trajectory data. The results reveal significant gaps between actual traffic states and the theoretical UE states at various times of 
the day during both weekdays and weekends. The XGBoost analysis shows that differences in travel distances, travel speeds, and 
signalized intersection numbers among alternative routes are the primary causes of road network disequilibrium. The results of this 
study could have several important methodological and policy implications for using the UE models in transport applications. 

1. INTRODUCTION

User Equilibrium (UE) theory (Wardrop, 1952) has long been 
regarded as the cornerstone of transport planning studies. It 
assumes that all travelers, given perfect traffic knowledge, select 
their routes for minimal travel times. As a result, travel times of 
all used routes are equal and minimum, and travel times of all 
unused routes are greater than or equal to the travel times of used 
routes. Under UE state, travelers can not reduce the travel time 
by unilaterally changing the route between the origin and 
destination (OD) pair. UE is widely used in various transport 
planning applications, such as transport network designs, 
disaster evacuating planning, etc. (Sheffi, 1985; Yang and Bell, 
1998; Chen et al., 2012; Fu et al., 2022). 

Although UE model is elegant, its two behavioral assumptions 
have been recognized too strong to some extent (Garcia-Sierra 
et al., 2015; Havlícková and Zámecník, 2020; Giannotti et al., 
2011). It is generally difficult for travelers to acquire the 
completed traffic conditions of the road network due to their 
limited spatial knowledge and reasoning abilities. Numerous 
empirical studies using survey data have shown that several 
other criteria could be considered in travelers’ route choice 
decisions, such as shorter travel distance, higher reliability and 
more major roads use. 

In view of this, several traffic assignment models have been 
proposed to model travelers’ fine-grained route-choice 
behaviors by incorporating travel time perception errors, 
psychological and behavioral mechanisms. State-of-the-art 
models include stochastic user equilibrium model (Daganzo and 
Sheffi, 1977; Sheffi and Powell 1982), random utility 
maximization model (Bowman and Ben-Akiva, 2001; Habib 
2011), reliability-based model (Lam et al., 2008; Chen et al., 
2011), regret minimization model (Chorus, 2012), rational 
choice theory model (Mahmassani and Chang, 1987; Han et al., 
2015; Lou et al., 2010; Di and Liu, 2016; González Ramírez et 
al., 2021), prospect theory model (Ben-Elia and Shiftan, 2010; 
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Gao et al., 2010; Xu et al., 2011; Kahneman and Tversky, 1979) 
and stochastic network equilibrium with routing inertia (Xie et 
al. 2014). Despite their sophistication, how well these models 
capture the actual traffic state remains unclear. In practice, the 
UE model still serves as a dominated traffic assignment model 
in various transport applications. 

Technological advancements have made it possible to collect 
abundant vehicle trajectories, particular taxi trajectories 
(Yildirimoglu and Kahraman, 2018; Calabrese et al., 2013; 
Rayle et al., 2016; Chen et al., 2023). Taxi trajectories have 
provided an excellent opportunity to examine real-world route 
choice behaviors in large-scale transport networks. Many 
empirical studies have utilized taxi trajectory data to analyze 
individual-level route choice behaviors and indicated the 
necessity to revisit the basics of how routes are chosen. For 
example, Ma et al. (2020) estimated network disequilibrium 
levels using big trajectory data in Chengdu and Pittsburgh and 
introduced a traffic management strategy for optimal routing 
(Ma et al. 2020). Manley et al., (2015) utilized a large dataset of 
nearly 700,000 taxi routes in London to observe the route choice 
behaviors. They found that travelers prefer to choose anchor-
based routes (i.e., major roads, roads with well-known places, 
and etc.) rather than the shortest distance routes. In addition, a 
study based on the GPS traces of 20,000 taxis collected in 
Shenzhen implied that travelers do not substantially anticipate 
the existing traffic conditions when making their route choice 
decisions (Yildirimoglu and Kahraman, 2018). Through analysis 
of 496 participants recorded 5,535 choices over 41 OD pairs in 
Lyon (González Ramírez et al., 2021), the results confirmed that 
travelers evaluate relative rather than absolute differences in 
travel times of different routes. However, there has been little 
attention in the literature on using taxi trajectory data to 
investigate the collective patterns of individual route choice 
behaviors, i.e., the UE state of road networks. 

The research objectives of this study are twofold: to quantify 
how much the actual traffic states of road networks deviate from 
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the theoretical UE state; and to examine what factors influence 
the disequilibrium states of road networks. To fulfill these 
research objectives, we collect big datasets of one-month taxi 
trajectories in Wuhan, a Chinese mega-city. Using the collected 
dataset, travel times of all used routes by taxis between 
numerous OD pairs are exacted. Effective indicators, namely 
relative gaps, are introduced to quantify the degrees of 
disequilibrium states at two different levels, i.e., the OD level 
and the network level. The evolutions of disequilibrium states at 
different times of the day for both weekdays and weekends are 
examined. Seven key factors affecting disequilibrium states of 
road networks are identified. Advanced machine learning 
techniques, i.e., XGBoost and Shapley value, are employed to 
analyze nonlinear relationships between disequilibrium states 
and seven influencing factors. The results will deepen our 
understandings of UE states in real road networks and provide 
methodological and policy implications in transport applications. 

2. STUDY AREA AND DATA COLLECTION

Wuhan, the largest city in central China, is selected as the study 
areas. Because there are numerous lakes and rivers (e.g., the 
Yangtze River) pass through Wuhan, the road network structure 
is complex with many bridges and tunnels. By the end of 2009, 
the vehicle parc in Wuhan was approximately 0.9 million.  

The taxi trajectory dataset from Wuhan offers a comprehensive 
insight into the city's dynamism and complexity of the urban 
mobility patterns. The characteristics of the dataset in Wuhan are 
summarized in Table 1. 

Table 1. The characteristics of taxi trajectory dataset in Wuhan. 

No. of days 
No. of 
taxis 

No. of GPS 
points 

Average 
sampling time 

29 10,790 380 million 47 seconds 

3. METHOD

3.1. Relative Gap Indicators 

Relative gap was widely used as an indicator of whether the 
traffic assignment model converges to an equilibrium solution 
(Rose et al. 1988, Chen et al. 2011, Patil et al. 2021). In this study, 
the relative gap is introduced to quantify the UE state of a road 
network using trips data extracted from taxi trajectories. 

Let 𝑜  and 𝑑  be the origin and destination nodes respective. 
Between each OD pair, there has a set of alternative routes 
𝑅௢ௗ = ൛… , 𝑟௢ௗ

௜ , … ൟ  used by taxi drivers. Let 𝑡௢ௗ
௜  and 𝑓௢ௗ

௜  be 
average travel time and taxi flows of route 𝑟௢ௗ

௜  during the 𝜏th 
time interval. Both 𝑡௢ௗ

௜  and 𝑓௢ௗ
௜  are directly extracted from taxi 

trajectory datasets. Let 𝑡௢ௗ
௠௜௡ be the least travel time between the 

OD pair during the 𝜏th time interval. It can be calculated in the 
road network by using the shortest path algorithm. The detailed 
procedure for calculating 𝑡௢ௗ

௜ , 𝑓௢ௗ
௜  and 𝑡௢ௗ

௠௜௡  are described in 
Section 3.2.2. Then, the relative gap at the OD level, denoted by 
𝐺𝐴𝑃௢ௗ, describes the relative difference between used routes and 
the least travel time route during the 𝜏th time interval and it can 
be expressed as: 

𝐺𝐴𝑃௢ௗ = ൫∑ 𝑓௢ௗ
௜ ൫𝑡௢ௗ

௜ − 𝑡௢ௗ
௠௜௡൯∀௜ ൯/𝑓௢ௗ𝑡௢ௗ

௠௜௡  (1) 

where 𝑓௢ௗ  is total taxi flows between the OD pair during the 𝜏th 
time interval. It can be calculated by: 

𝑓௢ௗ = ∑ 𝑓௢ௗ
௜

∀௜   (2) 

Given the set of OD pairs, the relative gap for the whole network, 
denoted by 𝐺𝐴𝑃௡௘௧, describes the traffic state deviates from the 
theoretical UE state at snapshot 𝜏 and it can be expressed as 

𝐺𝐴𝑃௡௘௧ = ൫∑ 𝑓௢ௗ𝑡௢ௗ
௠௜௡GAP௢ௗ∀௢ௗ ൯/൫∑ 𝑓௢ௗ𝑡௢ௗ

௠௜௡
∀௢ௗ ൯    (3) 

The value of 𝐺𝐴𝑃௢ௗ  and 𝐺𝐴𝑃௡௘௧   both range in [0, +∞). The 
value equal to 0 indicates the traffic state under the perfect UE 
state: taxi drivers between all OD pairs choose the least travel 
time routes and no taxi driver could improve their travel times 
by switching the routes. A larger value implies that the more 
observed traffic state (i.e., route choice behaviors of all taxi 
drivers) deviates from the theoretical UE state. 

3.2. Data Analysis Procedure 

3.2.1. Step 1: Extracting Representative Routes Used by 
Taxis between OD Pairs 

This process involves two stages. Firstly, taxi trajectory data is 
cleaned: abnormal GPS jumps and erroneous points are removed, 
and a map matching algorithm (Chen et al. 2014) is applied to 
correct positioning errors and reconstruct trajectories. The result 
is a continuous trajectory on the road network. 

The second stage involves identifying commonly used taxi 
routes between origin-destination (OD) pairs. Trajectories are 
divided into OD trips using passenger boarding information. 
Then, representative routes are identified by clustering similar 
trips between the same OD pair using dynamic time warping and 
DBSCAN algorithm (Lima et al., 2016), resulting in valid OD 
pairs, their routes, and corresponding trips, as illustrated in Table 
2. 

Table 2. The characteristics of processed taxi trajectory data. 

No. of OD pairs No. of Routes No. of Trips 

6,253 121,031 1048575 

3.2.2 Step 2: Quantifying User Equilibrium States of Road 
Networks 

This step is to quantify UE states at different time intervals of 
both two road networks using the introduced relative gap 
indicators. Based on the results of Step 1, it performs a two-
phase procedure for each road network during every time 
interval. In this study, one hour is used as time interval Δ for both 
road networks. 

The first phase is to determine route travel time (i.e., 𝑡௢ௗ
௜ ) and 

route taxi flows (i.e., 𝑓௢ௗ
௜ ) for each route 𝑟௢ௗ

௜ ∈ 𝑅௢ௗ between the 
OD pair during the hourly time interval. To determine these 𝑡௢ௗ

௜  
and 𝑓௢ௗ

௜ , we group taxi trips during the same OD pair during the 
same time interval according to their departure times. After this 
phase, we can determine route travel time 𝑡௢ௗ

௜  and route taxi 
flows 𝑓௢ௗ

௜  for all routes ∀𝑟௢ௗ
௜ ∈ 𝑅௢ௗ  between each OD pair 

during the hourly time interval. It is worth noting that we set 

𝑓௢ௗ
௝

= 0 for an unused route 𝑟௢ௗ
௝

∈ 𝑅௢ௗ  and it is not used in the 
relative gap calculation. 

The second phase is to calculate the least travel time (i.e., 𝑡௢ௗ
௠௜௡) 

between every OD pair during the time interval. We firstly 
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utilize map-matched trajectories of all taxis during the hourly 
time interval to estimate traffic conditions of the road network. 
The method of estimating hourly link travel times using taxi 
trajectories can be referred to Shi et al. (2017). We then employ 
the shortest path algorithm (Li et al., 2015) to calculate 𝑡௢ௗ

௠௜௡ for 
each OD pair. After performed this phase, we can calculate the 
UE state of a road network, i.e., 𝐺𝐴𝑃௡௘௧, during the time interval 
using Eqs. (1-3). Consequently, we quantify the UE states of 
Wuhan networks for 540 hourly time intervals during one month, 
i.e., 18 hours/day * 30 days.

3.2.3 Step 3: Analysis of Factors Affecting User 
Equilibrium States of Road Networks 

This step is to utilize the advanced machine learning technique 
to examine factors affecting UE states of road networks by using 
extracted 𝐺𝐴𝑃௡௘௧ for 540 hourly snapshots. First, seven factors 
in terms of OD pairs are extracted from the collected taxi 
trajectories at each snapshot 𝜏 . Afterwards, according to taxi 
flow 𝑓௢ௗ  between each OD, weighted to obtain the average value 
of each factor within the entire network range at each snapshot 
𝜏. The results are (1) average alternative route numbers (denoted 
by 𝑛௢ௗ ); (2) average travel distance (denoted by �̅�௡௘௧ ); (3) 
coefficient of variation (CV) of travel distances (denoted by 
𝑐𝑣௡௘௧

ௗ ); (4) average travel speeds (denoted by �̅�௡௘௧); (5) CV of 
travel speeds (denoted by 𝑐𝑣௡௘௧

௩ ); (6) average signalized 
intersection numbers (denoted by 𝑠𝑔തതത௡௘௧ ); and (7) CV of 
signalized intersection numbers (denoted by 𝑐𝑣௡௘௧

௦௚ ). 

After extracting these factors, we examine their influences on 
𝐺𝐴𝑃௡௘௧ at 540 hourly snapshots as 

 𝐺𝐴𝑃௡௘௧ = 𝐹(𝑋)  (4) 

where X = ൫𝑛௡௘௧, �̅�௡௘௧ , 𝑐𝑣௡௘௧
ௗ , �̅�௡௘௧ , 𝑐𝑣௡௘௧

௩ , 𝑠𝑔തതത௡௘௧ , 𝑐𝑣௡௘௧
௦௚

൯  is the 
set of seven factors. Because these factors could be correlated 
and have nonlinear relationships with 𝐺𝐴𝑃௡௘௧, we cannot simply 
use the traditional multivariable linear regression method but 
utilize a powerful machine learning technique, namely eXtreme 
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016; Ma et 
al., 2017; Li, 2022; Ji et al., 2022). Apart from a high regression 
accuracy, the XGBoost exhibits strong interpretative power by 
integrating with the SHapley Additive exPlanations (SHAP)
(Shapley, 1953). 

To calculate the SHAP relative importance 𝜃௜  of each factor and 
the interaction term as: 

 𝜃௜ = 𝑀𝑒𝑎𝑛(|𝜙௜|) ∑ 𝑀𝑒𝑎𝑛(|𝜙௜|)⁄    (5) 

Where 𝜙௜  is the SHAP value of each factor/interaction term. 
Thus, the value of the relative importance of each 
factor/interaction term is between 0 and 1, and the sum of the 
relative importance of each factor/interaction term is 1. The 
result represents the percentage of marginal contribution of each 
factor/interaction term to the relative gap. 

4. RESULTS

4.1. Disequilibrium States of Road Networks 

This section reports the network equilibrium states of Wuhan. 
We first examined the detailed equilibrium states at the OD level, 
i.e., 𝐺𝐴𝑃௢ௗ, at a selected peak hour, i.e., 18:00-19:00 on the first
Monday out of one month data. As shown in Figure 1, the red
line links represent extreme disequilibrium OD pairs with

𝐺𝐴𝑃௢ௗ > 0.5, the blue line connects moderate disequilibrium 
OD pairs with 𝐺𝐴𝑃௢ௗ ∈ [0.05, 0.5], and the green line indicates 
the equilibrium OD pairs with 𝐺𝐴𝑃௢ௗ < 0.05. It is easy to find 
that OD pairs at extreme and moderate disequilibrium states are 
predominant, while only a few OD pairs are at equilibrium states. 

Figure 1. Network user equilibrium state in Wuhan 

To quantify the 𝐺𝐴𝑃௢ௗ distribution for all OD pairs, we fitted the 
𝐺𝐴𝑃௢ௗ probability density distribution into five pre-given types 
of distributions, including exponential, gamma, beta, lognormal 
and Pareto distributions. The goodness-of-fit of each distribution 
type was evaluated using the K-S test. As shown in Figure 2(b), 
the majority of time periods in Wuhan (82.5%) road networks 
obeyed the exponential distributions. As shown in Figure 2(a), 
during a typical peak hour, 12.3% of OD pairs reached 
equilibrium (i.e., 𝐺𝐴𝑃௢ௗ < 0.05); 28.6% of OD pairs were in 
slightly disequilibrium (𝐺𝐴𝑃௢ௗ ∈ [0.05, 0.2]); 32.3% were in 
moderate disequilibrium (𝐺𝐴𝑃௢ௗ ∈ [0.2, 0.5]); and 26.8% of OD 
pairs were in extreme disequilibrium ( 𝐺𝐴𝑃௢ௗ > 0.5 ). The 
overall relative gap for Wuhan network was 𝐺𝐴𝑃௡௘௧ = 0.34, 
indicating a moderate disequilibrium state. 

Figure 2. Distribution of 𝐺𝐴𝑃௢ௗ in Wuhan 

We then investigated the equilibrium states at the network level 
(i.e., 𝐺𝐴𝑃௡௘௧) during different times of the day. Figure 4 reports 
the temporal patterns of road network for weekdays and 
weekends by calculating the average 𝐺𝐴𝑃௡௘௧ as well as its 95% 
confidence intervals at the same time of the day. As shown in 
Figure 3(a), the 𝐺𝐴𝑃௡௘௧  95% confidence intervals of the road 
network in weekdays ranged from 0.287 to 0.378 and fluctuated 
at different times of the day. The peak of 𝐺𝐴𝑃௡௘௧ value occurred 
at the evening peak hour (17:00-18:00). The  𝐺𝐴𝑃௡௘௧  value 
significantly raised at morning and afternoon. Between these two 
timeslots, the  𝐺𝐴𝑃௡௘௧ was relatively stable. After 18:00, 𝐺𝐴𝑃௡௘௧ 
value kept decreasing until the mid-night. As shown in Figure 
3(b), the 𝐺𝐴𝑃௡௘௧ value of Wuhan road network in weekends had 
a distinct pattern compared to that in weekdays. It ranged at a 
larger range of 95% confidence interval from 0.233 to 0.413. The 
𝐺𝐴𝑃௡௘௧  value gradually increased from the morning until the 
noon, and then fluctuated at a high level of disequilibrium state 
until the mid-night. This result highlights that Wuhan road 
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network kept moderate disequilibrium states at various times of 
the day for both weekdays and weekends. 

Figure 3. The relative gap pattern at different times of the day 
in Wuhan network. 

4.2. Factors Influencing Disequilibrium States of Road 
Networks 

Using XGBoost and SHAP techniques, we then examined how 
seven factors influencing network disequilibrium states. Table 3 
presents the relative importance of seven influencing factors and 
their interaction terms. This relative importance (𝜃௜) represents 
the percentage of a factor’s marginal contribution to 𝐺𝐴𝑃௡௘௧ . 
The higher 𝜃௜  value, the larger contribution to the prediction of 
𝐺𝐴𝑃௡௘௧. 

Overall, the XGBoost performed well for the Wuhan dataset 
with R2 = 0.559. Among all factors and interaction terms in 
Wuhan city, the CV of travel distances 𝑐𝑣௡௘௧

ௗ  made the largest 
contribution with 𝜃௜ = 40.7%. It was followed by the CV of 
travel speeds 𝑐𝑣௡௘௧

௩  with 𝜃௜ = 16.7% , the CV of signalized 
intersection numbers 𝑐𝑣௡௘௧

௦௚  with 𝜃௜ = 11.7% , average 
signalized intersection numbers 𝑠𝑔തതത௡௘௧ with 𝜃௜ = 6.8%, average 
travel speeds �̅�௡௘௧  with 𝜃௜ = 5.9% , average alternative route 
number 𝑛௡௘௧ with 𝜃௜ = 5.5%, and the average travel distances 
�̅�௡௘௧  with 𝜃௜ = 3.3%. All seven influencing factors predicted 
90.6% of 𝐺𝐴𝑃௡௘௧, while other interaction terms predicted only 
the rest 9.4%. 

Table 3. Relative importance of influencing factors and interaction terms to 𝐺𝐴𝑃௡௘௧ 

Features 
Wuhan network 

Relative Importance (%) Ranking 

Influencing factors 90.6 

DistMean (�̅�௡௘௧) 3.3 7 

DistCV (𝑐𝑣௡௘௧
ௗ ) 40.7 1 

SpeedMean (�̅�௡௘௧) 5.9 5 

SpeedCV (𝑐𝑣௡௘௧
௩ ) 16.7 2 

CrossNum (𝑠𝑔തതത௡௘௧) 6.8 4 

CrossCV (𝑐𝑣௡௘௧
௦௚ ) 11.7 3 

RouteNum (𝑛௡௘௧) 5.5 6 

Interaction terms 9.4 

R2 0.559 

𝑛௡௘௧: average alternative route numbers; �̅�௡௘௧: average travel distances; 𝑐𝑣௡௘௧
ௗ : CV of travel distances; �̅�௡௘௧: average travel speeds; 

𝑐𝑣௡௘௧
௩ : CV of travel speeds; 𝑠𝑔തതത௡௘௧: average signalized intersection numbers; 𝑐𝑣௡௘௧

௦௚ : CV of signalized intersection numbers. 

Figure 4 gives SHAP dependence plots to examine detailed 
relationships between influencing factors and 𝐺𝐴𝑃௡௘௧ in Wuhan. 
Top 9 features, including seven factors 
( 𝑛௡௘௧ , �̅�௡௘௧, 𝑐𝑣௡௘௧

ௗ , �̅�௡௘௧ , 𝑐𝑣௡௘௧
௩ , 𝑠𝑔തതത௡௘௧ , 𝑎𝑛𝑑 𝑐𝑣௡௘௧

௦௚ ) and two 
interaction terms (DistCV*SpeedCV and SpeedMean*SpeedCV) 
are plotted, since they accounted for about 93% of total relative 
importance. In each SHAP dependence plot, the x-axis 
represents the corresponding feature value, and the y-axis gives 
the SHAP value indicating how much this feature impacts the 
prediction of 𝐺𝐴𝑃௡௘௧. Each dot represents a feature value of a 
𝐺𝐴𝑃௡௘௧  value. For interaction terms, the color of each dot 
represents the value of the other feature. 

Based on the figure, following observations can be found: 

Figure 4. SHAP dependence plots of top nine features in 
Wuhan network. 
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(a) When CV of travel distances (𝑐𝑣௡௘௧
ௗ ) is below 0.15, its

contribution to 𝐺𝐴𝑃௡௘௧ is negative, but above this threshold it
contributes positively.

(b) The CV of travel speeds ((𝑐𝑣௡௘௧
௩ ) behaves similarly; under

0.15 it reduces 𝐺𝐴𝑃௡௘௧, while above this, it increases it.

(c) The CV of signalized intersection numbers (𝑐𝑣௡௘௧
௦௚ ) negatively 

impacts 𝐺𝐴𝑃௡௘௧ until 0.24, after which it positively affects it. 

(d) The average signalized intersection number ( 𝑠𝑔തതത௡௘௧ )
decreases 𝐺𝐴𝑃௡௘௧ under 21 but increases it beyond.

(e) For average travel speeds (�̅�௡௘௧, under 25 km/h they reduce
GAP_net, while over this speed they increase it, sharply until 27
km/h and then fluctuates at high level.

(f) The average alternative route numbers (𝑛௡௘௧ ) contribute
positively to 𝐺𝐴𝑃௡௘௧  until 2.18, after which they contribute
negatively.

(g) Average travel distance (�̅�௡௘௧) below 7km increases 𝐺𝐴𝑃௡௘௧,
while above 7km it decreases it.

(h) The interaction of 𝑐𝑣௡௘௧
௩  and 𝑐𝑣௡௘௧

ௗ  shows a complex
interplay of similar travel distances and differences in travel
speeds affecting the disequilibrium states.

(i) The influence of  𝑐𝑣௡௘௧
௩  and �̅�௡௘௧ together on 𝐺𝐴𝑃௡௘௧ depends

on whether the average travel speed is less or more than 25 km/h,
with each combination contributing differently to the
disequilibrium states.

5. CONCLUSION AND DISCUSSION

This study investigated user equilibrium states of road networks 
in Wuhan using taxi trajectories. The user equilibrium states 
were explicitly evaluated by relative gap indicators at both 
network and OD levels, i.e., 𝐺𝐴𝑃௡௘௧ and 𝐺𝐴𝑃ை஽. The advanced 
regression techniques, i.e., XGboost and SHAP, were employed 
to investigate the nonlinear relationships between seven factors 
and 𝐺𝐴𝑃௡௘௧  values. Results found that road networks kept 
moderate and extreme disequilibrium states with 𝐺𝐴𝑃௡௘௧ > 0.2 
at various times of the day for weekdays and weekends. Results 
also showed that 𝐺𝐴𝑃௢ௗ obeyed exponential distributions during 
most time periods. Regression analysis found that the nonlinear 
relationships between seven influencing factors and 𝐺𝐴𝑃௡௘௧ 
values can be well established by using the XGBoost method. 
CV factors (𝑐𝑣௡௘௧

௩ , 𝑐𝑣௡௘௧
ௗ , and 𝑐𝑣௡௘௧

௦௚ ) were top three contributors 
to predict 𝐺𝐴𝑃௡௘௧ values. 

The results of network disequilibrium states in Wuhan provided 
several new insights on the route choice behavior field. Firstly, 
taxi trajectory data mining allowed the quantification of UE 
states on road networks. The results from Wuhan suggested that 
road networks tend to maintain moderate or extreme imbalance 
states at various times of the day, with different patterns 
appearing during weekdays and weekends. Therefore, this study 
provided strong empirical evidence to support the previous 
assertion that Wardrop's user equilibrium state is difficult to 
reach in real road networks at various times of the day during 
both weekdays and weekends (Daganzo and Sheffi 1977, Sheffi 
and Powell 1982, Lam et al. 2008). 

Secondly, this work measures user equilibrium states at an 
intricate OD level, i.e., 𝐺𝐴𝑃௢ௗ . The findings show that the 
majority of OD pairs were slightly or moderately imbalanced, 
which resonates with prior studies (Papinski and Scott 2011; Zhu 
and Levinson, 2015; Yildirimoglu Kahraman, 2018). This 
research extends those studies by exploring the distribution 
characteristics of 𝐺𝐴𝑃௢ௗ values. 

Thirdly, we used XGBoost and SHAP to study non-linear 
relationships between seven influencing factors and 𝐺𝐴𝑃௡௘௧ 
values. XGBoost's performance in Wuhan demonstrates the 
impact of these factors and their interaction terms in predicting 
𝐺𝐴𝑃௡௘௧. Interestingly, CV factors (𝑐𝑣௡௘௧

௩ , 𝑐𝑣௡௘௧
ௗ , and 𝑐𝑣௡௘௧

௦௚ ) were 
found to be more influential than mean factors (�̅�௡௘௧, �̅�௡௘௧ and 
𝑠𝑔തതത௡௘௧) in predicting 𝐺𝐴𝑃௡௘௧ (Train and Wilson, 2008; Manley et 
al. 2015; Yang et al., 2017). 

Based on the findings, several methodological and policy 
implications can be derived. Transport planners and 
policymakers should be aware that Wardrop's user equilibrium 
state is hard to achieve in reality. The use of UE-based models 
can lead to significant bias in policy evaluation, especially 
during peak hours. 

Despite the valuable insights, this study, being one of the first to 
investigate actual user imbalance states of road networks using 
taxi trajectory mining techniques, has its limitations. It used 
trajectories from over 10,000 taxis, which only form a small 
fraction of total daily travels. Also, taxi drivers may exhibit 
different driving behavior than other drivers. More data from 
private cars  (Xiao et al. 2020) and ride-hailing services 
(Tirachini 2020) could enhance the evaluation accuracy. 

Several future research directions can be proposed. Extending 
this study to multi-mode transport networks, investigating 
factors contributing to disequilibrium levels in different cities, or 
exploring equilibrium state at the OD pair level using the 
massive data available for individual OD pairs are all valuable 
next steps. Examining the consistency between theoretical 
equilibrium state and actual state from vehicle trajectory data can 
provide a more comprehensive understanding of traffic 
equilibria. 
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