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ABSTRACT: 
 
The emergence of micromobility, exemplified by bike sharing and e-bike sharing systems, has ushered in a low-carbon, 
environmentally friendly, and sustainable revolution in urban transportation. This transformative shift addresses the "first and last 
mile" challenge and holds immense potential for urban mobility enhancement. Nevertheless, the existing literature predominantly 
investigates the spatiotemporal travel patterns and influencing factors of bike sharing and e-bike sharing systems in isolation, 
overlooking comparative analyses grounded in quantitative methodologies.  In order to fill this gap, this study first compares and 
analysis their spatiotemporal travel patterns, which are measured by travel distance, travel time, and travel volume. A Multiscale 
Geoweighted Regression (MGWR) model was constructed using various data sources, such as Point of Interest (POI) data, metro 
station data, and bus stop data, to conduct a spatiotemporal correlation analysis of land use and public transport factors with the travel 
volume of the shared system.  Our study centers on Manhattan, New York City, utilizing data from May 2022 for both bike sharing 
and e-bike sharing systems. The study analysis reveals that hourly trip volumes are higher for bike sharing than for e-bike sharing, 
exhibiting substantial spatial variation across different regions within the city. The MGWR model's findings suggest that educational 
facilities exert a negative influence on bike sharing in the northeast and on e-bike sharing trips in the central region, with this impact 
being more pronounced on weekends. Similarly, cultural facilities negatively affect the Central region's bike sharing system and the 
citywide e-bike sharing system, with a milder effect during weekends. Moreover, bus stops exhibit a significant negative impact on 
bike sharing and e-bike sharing at Chelsea Waterside Park (only weekdays), while displaying a positive influence on both systems 
during weekends. To validate the MGWR model's efficacy, we conducted a comparative analysis with a Geographically Weighted 
Regression (GWR) model. The results demonstrate that MGWR can be more effective in correlating and quantitatively explaining the 
effects of different factors on spatiotemporal travel patterns. In conclusion, this study furnishes valuable insights for optimizing urban 
infrastructure rebalancing strategies and advancing sustainable urban infrastructure development. 
 

1.  INTRODUCTION 
 
In recent years, shared mobility services, especially bike sharing, 
have experienced significant growth, offering convenient and 
sustainable transportation options with low carbon footprints and 
ecological benefits. These services address the "first and last 
mile" challenge in densely populated urban areas by seamlessly 
integrating into public transit networks like buses and subways 
(Molinillo et al., 2020; Böcker et al., 2020). Additionally, they 
have demonstrated their effectiveness in reducing traffic 
congestion and greenhouse gas emissions, thereby alleviating the 
burden on urban transportation systems. As of October 2019, 
bike sharing systems were either operational or in planning stages 
in over 50 countries worldwide. The establishment of bike 
sharing systems has spurred extensive research into the factors 
influencing their utilization. Nair et al. (2013) conducted a study 
on bike sharing and revealed that weekday usage rates 
significantly exceed weekend usage, with peak demand during 
morning and afternoon commuting hours, indicating the 
predominant use of bike sharing for weekday commutes (O’brien 
et al., 2014; Rixey, 2013; Zhang and Mi, 2018). Kaltenbrunner et 
al. (2010) and Jensen et al. (2010) illustrated substantial 
variations in bike sharing usage between weekdays and weekends, 
with usage patterns varying based on proximity to retail, 
educational, and workplace zones. Davis et al. (2012) 
investigated the travel preferences of the younger generation and 
found a preference for shared transportation options over private 
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cars. Li et al. (2022) utilized a Multiscale Geoweighted 
Regression (MGWR) model to investigate the connection 
between the urban built environment and bike sharing usage in 
proximity to subway stations. Their findings highlight that the 
proximity to central business districts (CBD), hotels, and 
residential Points of Interest (POI) exerted the most significant 
influence on bike sharing use, with population density 
particularly impactful during weekends. Chen and Ye (2021) 
explored the nonlinear effects of the built environment on 
mobiles in Chengdu, China, revealing that both population 
density and employment density are key factors affecting bike 
sharing. Shen et al. (2018) studied bike sharing in Singapore and 
identified favorable factors such as diverse land uses, accessible 
public transportation, well-developed bike infrastructure, and 
promotional free rides. Lin et al. (2020) investigated bike sharing 
in Beijing and discovered that transportation infrastructure, 
including metro stations, bus stops, and the length of bike lanes, 
significantly affected bike sharing utilization. Parks were also 
found to have a more pronounced impact on promoting bike 
sharing during weekends and holidays than on weekdays. These 
studies collectively underscore the critical role of the built 
environment, land use diversity, and transportation infrastructure 
in shaping the usage patterns of bike sharing. 
 
Building on the success of traditional bike sharing systems, many 
countries have introduced e-bike sharing systems, which 
incorporate electric bikes into their offerings. For instance, in 
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2011, Germany introduced the Call A Bike system in Stuttgart, 
providing both conventional and e-bikes at 44 stations. This 
system boasts 60 e-bikes and 450 traditional bikes  (Olson et al., 
2015). New York's CitiBike, in 2019, announced plans to expand 
its fleet by adding 4,000 e-bikes. Although e-bike sharing 
systems are still in their early stages, they exhibit significant 
potential for long-distance journeys and hilly terrain. Some 
researchers argue that e-bike sharing holds greater promise for 
the future compared to traditional bike sharing (Dill and Rose, 
2012; Zhou et al., 2023). This optimism stems from the electric 
motors integrated into e-bikes, enabling them to cover greater 
distances while providing increased convenience and comfort. 
Consequently, numerous scholars are actively investigating e-
bike sharing. Ioakimidis et al. (2016) conducted a study at the 
University of Mons (UMONS) in Belgium to explore the 
characteristics and attitudes of students regarding e-bike rentals 
through a sharing network. The study identified specific 
characteristics that influence the shared use of e-bikes. In a 
survey conducted by Mcneil et al. (2017) , it was found that 80% 
of e-bike sharing users utilize e-bikes for various activities, such 
as shopping, socializing, recreation, as well as for connecting 
between public transport and daily commuting. This indicates 
that e-bike sharing is evolving into a practical and dependable 
mode of transportation for both leisure and non-leisure trips. He 
et al. (2019) employed Poisson regression to investigate the 
factors influencing e-bike sharing utilization. Their findings 
revealed that proximity to public transportation hubs, 
recreational centers, and the density of bikeways all positively 
impact e-bike use. As e-bike sharing emerges as a prevalent 
shared service, it is increasingly employed for daily commuting, 
with its use being influenced by factors like the availability of 
dedicated cycle paths and the distance from recreational and 
other facilities. 
 
The above-mentioned studies have primarily focused on 
exploring the spatiotemporal travel patterns and the influencing 
factors of bike sharing and e-bike sharing individually. However, 
to enhance user services and assist operators in fleet allocation 
more efficiently, it is essential to conduct a comparative analysis 
of the spatiotemporal travel patterns and influencing factors 
between bike sharing and e-bike sharing systems. This study aims 
to fill this gap by first comparing and analysis their 
spatiotemporal travel patterns, assessed through metrics such as 
travel distance, travel time, and travel volume. Several potential 
influencing factors, including land use types and public transport 
facilities, have been gathered from multiple data sources. 
Additionally, to pinpoint the factors that exhibit significant 
influence, we employ covariance and spatial autocorrelation 
analysis methods. Subsequently, these identified influential 
factors are incorporated into the MGWR model, enabling a 
quantitative examination of their impact on the spatiotemporal 
travel patterns of both bike sharing and e-bike sharing systems. 
This comparative analysis aims to provide valuable insights that 
can inform service improvements and fleet management 
strategies for both bike sharing and e-bike sharing systems, 
contributing to more efficient and user-friendly shared mobility 
options. 
 
The rest of the paper is organized as follows. Section 2 describes 
the study area and dataset utilized in this study. In Section 3, the 
research methods are presented. Section 4 discusses and analyzes 
the results of the spatiotemporal travel patterns and influencing 
factors for bike sharing and e-bike sharing, and compares the 
performance of the Geographically Weighted Regression (GWR) 
and MGWR models. Section 5 provides a summary of the main 
findings as well as the future work.  

 

2.  STUDY AREA AND DATA 
 
2.1 Study area 
 
This research was conducted within the study area of Manhattan, 
New York City, USA. Manhattan serves as the central district of 
New York City and renowned for its high population density, 
encompassing a total area of 87.5 km2. As of 2019, the resident 
population of Manhattan was estimated to be approximately 1.63 
million, as reported by the U.S. Census Bureau. Manhattan boasts 
a robust and well-developed transportation infrastructure, 
offering a diverse range of transportation modes, including 
private cars, buses, subways, taxis, private bicycles, bike sharing, 
and pedestrian pathways. In a dedicated effort to enhance the 
convenience and overall travel experience for its residents, New 
York City introduced a pioneering shared mobility service 
program named CitiBike in May 2013. CitiBike stands as the 
largest shared mobility program in the United States, featuring an 
extensive network of 658 stations and approximately 6,000 
bicycles strategically distributed throughout the borough of 
Manhattan. 
 
2.2 Study data 
 
The data used in this study was sourced from the CitiBike website 
(https://citibikenyc.com/system-data). The website provides 
access to a comprehensive dataset containing CitiBike ride 
information for each month starting from the launch of operations 
in July 2013. This dataset includes crucial details such as vehicle 
identification number, vehicle type (classic bike or e-bike), ride 
start and end times, origin and destination station information, 
user classification (member or casual rider), station names, and 
the corresponding latitude and longitude coordinates for both the 
starting and ending stations. For the purposes of this research, we 
obtained and utilized the ride data for the month of May 2022 
from the CitiBike website (https://citibikenyc.com/system-data) 
as the primary dataset for our study. To ensure the reliability and 
accuracy of the dataset, the bike sharing and e-bike sharing data 
underwent a series of preprocessing steps, as described below: 
 
1.Orders that start or end outside the study area were deleted. 
2.Orders with a ride time of less than 2 minutes were deleted. 
3.Orders with a ride time greater than 120 minutes were deleted. 
4.Orders with a trip distance of 0 were deleted. 
 
After the pre-processing steps, we obtained 1,852,892 pieces pf 
eligible CitiBike records, which include 1,385,577 bike sharing 
orders and 467,315 e-bike sharing orders. The order data covers 
658 stations in the Manhattan area. 
 
In this study, we conducted an analysis to investigate the factors 
influencing the spatial and temporal travel patterns of both bike 
sharing and e-bike sharing. These factors encompassed two 
categories: land use and public transportation. The land use factor 
was evaluated using POI data, while the public transportation 
factor was assessed using data pertaining to subway stations and 
bus stops. These datasets were acquired from the New York City 
Open Data Platform (https://opendata.cityofnewyork.us/). To 
facilitate our geospatial analysis, we utilized census areas 
obtained from the U.S. Census Bureau 
(https://www.census.gov/). These census areas subdivided the 
Manhattan region into 288 Traffic Analysis Zones (TAZs) based 
on street blocks. The distribution of CitiBike stations and TAZs 
in the Manhattan area of New York, USA, is visually depicted in 
Figure 1. 
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Figure 1. Distribution of CitiBike stations and TAZs in the 
Manhattan area of New York, US. 

 
3. METHODOLOGY 

 
The main aim of this study is to conduct a comparative analysis 
of the spatiotemporal travel patterns and the influencing factors 
of bike sharing and e-bike sharing services. We employ multiple 
covariance and spatial autocorrelation analyses to identify the 
factors that exert a substantial impact on travel volume. 
Subsequently, these influential factors are integrated into the 
MGWR model to quantitatively assess their effects on the 
spatiotemporal travel patterns of both bike sharing and e-bike 
sharing systems. The overall framework of this study is depicted 
in Figure 2. 
 

 
 

Figure 2. An overall framework for conducting this study 
 
3.1 Multicollinearity test 
 
Multicollinearity is a condition where independent variables in a 
multiple regression model exhibit some level of linear 
dependence, potentially introducing bias into the interpretation of 
the significance and effects of other independent variables. This 
can lead to unstable and unreliable analytical results. To address 
and manage the potential issues arising from multicollinearity, 
this study utilized the Variance Inflation Factor (VIF) as a 
diagnostic tool to evaluate the extent of multicollinearity. The 
VIF measures the degree of multicollinearity among independent 
variables in a regression model. Higher VIF values indicate a 
more pronounced degree of multicollinearity among the 
independent variables. By employing the VIF, we can identify 
and quantify the extent to which multicollinearity may be 
affecting our analysis, allowing us to take appropriate corrective 
actions as needed. 
 
3.2 Spatial autocorrelation test 
 
The most commonly used technique for analysing spatial 
variability is the Moran's I test (Ni and Chen, 2020). Before 
building the MGWR model, it evaluates the spatial 

autocorrelation of each independent variable and can help in 
evaluating the strength and type of spatial self-correlation of each 
independent variable, allowing the proper spatial weight matrix 
to be chosen. 
 
Moran's I values range from -1 to 1, where a positive value 
indicates a positive correlation between the variable of interest, 
and larger values imply more significant spatial correlation. 
Conversely, a negative value indicates a negative correlation, and 
smaller values signify greater spatial variability. A value of 0 
implies that the variable of interest is randomly distributed in 
space (Moran, 1950). 
 
3.3 MGWR model 
 
Anselin (1988) discovered that ordinary least square (OLS) 
models were always the starting point of spatial regression 
analysis, but OLS models were unable to disclose the spatial 
relationships between bike sharing and influential factor 
variables. The GWR model was proposed as an extension of the 
global linear regression model, which can investigate the 
heterogeneity of geospatial variables (Brunsdon et al., 1998). The 
GWR model can also be used to investigate non-stationarity, 
where variables vary in relation to one another based on 
geographic location. In addressing the non-stationarity of 
geospatial relationships, GWR models have been demonstrated 
to be preferable to global regression models. 
 
While the GWR model has found extensive application in 
addressing spatial non-stationarity issues, it does have a notable 
limitation. Specifically, it employs a single global average 
bandwidth for all variables to define the range of influence for 
each variable. This approach overlooks the variation in the 
magnitude of influence among different variables, potentially 
introducing bias into the estimation results of the GWR model. 
To overcome this limitation, the MGWR model is introduced, 
offering a superior alternative to the GWR model. The MGWR 
model represents an enhancement and refinement of the GWR 
methodology. Notably, it provides an optimized bandwidth for 
each independent variable. This optimization ensures that the 
model takes into account the unique spatial influence 
characteristics of each variable, leading to more accurate and 
reliable estimation results compared to the GWR model. The 
MGWR model is calculated as follows (Brunsdon et al., 2002), 

    0
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where 𝑦  is the attribute value at position  𝑖 ; 𝛽  is the 
bandwidth of the 𝑗_𝑡ℎ  variable defining the regression 
coefficient; 𝛽 (𝑢 , 𝑣 )  is the central coordinate at position 
𝑖;𝛽 (𝑢 , 𝑣 ) is the regression coefficient of the 𝑗_𝑡ℎ variable at 
position 𝑖; and 𝛽 (𝑢 , 𝑣 ) and 𝜀  are the intercept and error term 
of the model at position 𝑖, respectively. 
 
3.4 Evaluation  
 
In this study, we evaluated the performance of the MGWR model 
by comparing it with the GWR model using two classical metrics: 
the Adjusted R2 and the value of AICc. The Adjusted R2 metric 
eliminates the effect of the number of independent variables on 
the R2, making it possible to compare the goodness of fit of 
different models. The formula to calculate the Adjusted R2 is as 
follows: 
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where 𝑛 denotes the number of samples;𝑘 denotes the number of 
independent variables. In addition to Adjusted R2, AICc is a 
common metric used to evaluate models. A smaller value of 
AICc indicates an optimal choice of model. the formula for 
calculating AICc is as follows: 

    
 

c=2nlog log 2
2e e

n tr SRSS
AIC n n

n n tr S


      
 , (3) 

where 𝑛 is the number of observations, 𝑆 is the influence or hat 
matrix, and 𝑅𝑆𝑆 is the residual sum of square. 
 

4. RESULTS AND DISCUSSION 
 
In this section, we conducted an analysis of the spatiotemporal 
characteristics and factors that influence the usage of bike sharing 
and e-bike sharing systems. In section 4.1.1, we examined and 
analyzed the travel distance and travel time of bike sharing and 
e-bike sharing; In section 4.1.2, we analyzed the spatiotemporal 
travel volume of bike sharing and e-bike sharing. In section 4.2, 
we visualised the correlation coefficients of the independent 
variables for the MGWR model. Finally, the performance of the 
MGWR model and the GWR model were compared. 
 
4.1 Comparison of spatiotemporal travel patterns 
 
4.1.1 Travel distance and travel time 
 
By analysing the orders for bike sharing and e-bike sharing, we 
found that the average travel distance (Manhattan distance (He et 
al., 2018)) and average travel time for bike sharing were 1.790 
kilometres and 13.9 minutes, respectively. For e-bike sharing, the 
average travel distance and travel time were slightly higher, 
namely 2.140 kilometers and 14.2 minutes, respectively. Figure 
3. shows the distribution of travel distances for bike sharing and 
e-bike sharing. The figure shows that 33.45% of bike sharing 
trips and 24.9% of e-bike sharing trips had a travel distance 
between 0-1 kilometeres. For travel distances between 1-2 
kilometers, the distribution for the two types of services was 35.1% 
and 34.79% respectively. However, for travel distance exceeding 
2 kilometres, the proportion of users utilizing e-bikes was 
significantly higher than that of bike sharing. Conversely, the 
proportion of bike sharing was higher than that of e-bike sharing 
for travel distances less than 2 kilometers. This phenomenon can 
be attributed to the popularity of bike sharing for trips within 2 
kilometers, as people can reach their destinations in less than 30 
minutes. As shown in Figure4, 48.26% of bike sharing trips and 
48.74% of e-bike sharing trips had a ride time of less than 10 
minutes. Furthermore, more than 90% of rides in both sharing 
systems were completed within 30 minutes. This pattern can be 
attributed to the pricing policies in place. Bike sharing users are 
allowed a free ride for up to 30 minutes, while e-bike sharing 
users are charged from the beginning of the ride and face higher 
fees for trips lasting longer than 30 minutes. As a result, the 
majority of both bike sharing and e-bike sharing rides fall within 
the 30-minute timeframe. 
 

 
 

Figure 3. Distribution of travel distance of bike sharing and e-
bike sharing systems. 

 

 
 

Figure 4. Distribution of travel time of bike sharing and e-bike 
sharing systems. 

 
4.1.2 Travel volume 
 
Figure 5. show the hourly travel volume of bike sharing and e-
bike sharing during the week. The data reveals that bike sharing 
had the highest travel volume of 28,859 trips per hour, whereas 
e-bike sharing had a lower peak travel volume of 8,737 trips per 
hour. Both bike sharing and e-bike sharing exhibit notable peaks 
in usage on weekdays, with the highest travel volumes occurring 
during the morning and afternoon rush hours. Specifically, the 
peak periods for bike sharing were observed from 7:00 to 9:00, 
while for e-bike sharing, the peak periods were from 17:00 to 
19:00. These findings suggest that these services are primarily 
utilized for commuting purposes during weekdays, aligning with 
previous research (Mateo-Babiano et al., 2016; Shen et al., 2018). 
Additionally, during non-commuting peak hours, the number of 
bike sharing trips exceeded that of e-bike sharing trips, indicating 
that bike sharing serves as not only a commuting mode but also 
plays a significant role in other daily activities (Wang et al., 
2019). On weekends, both bike sharing and e-bike sharing 
experienced peak usage, with Sundays exhibiting significantly 
higher trip volumes compared to Saturdays. 
 

 
 

Figure 5. Distribution of hourly travel volume of bike and e-
bike sharing systems in a week. 

 
The analysis of temporal usage patterns of bike sharing and e-
bike sharing reveals that both systems exhibit the highest travel 
volumes during the morning and evening peak hours on 
weekdays. To further investigate their spatial differences in usage, 
this study focused on the weekday morning and afternoon peak 
hours as the study periods and visualized the average hourly 
travel volume for both systems using Manhattan TAZs data, as 
depicted in Figure 6. The visualization illustrates that bike 
sharing and e-bike sharing trips consistently had higher travel 
volumes in Southwest Manhattan compared to Northeast 
Manhattan. This discrepancy can be attributed to the 
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concentration of commercial and financial facilities in Southwest 
Manhattan, which likely drives the usage of shared services in 
that area. Furthermore, Central Park, a renowned tourist 
destination, exhibits higher travel volumes for both shared 
services during the weekday morning and evening rush hours. 
This can be attributed to the popularity of the Central Park South 
Loop, which is a highly frequented bike riding route in New York 
City and is completely closed to car traffic. These factors 
contribute to the promotion of shared services usage in this area. 
 

 
 

Figure 6. Spatial distribution of hourly travel volumes for bike 
and e-bike sharing in the morning and afternoon peaks. 

 
4.2 MGWR correlation analysis results 
 
In order to investigate the factors that drive the different 
spatiotemporal travel patterns, we first selected 14 independent 
variables, e.g., the number of residential facilities, educational 
facilities, recreational facilities, subway stops, and bus stops, 
which were generated from POIs data, subway station data, and 
bus stop data. Those variables with the VIF-value >10 and P-
value > 0.05 were excluded through computing multiple 
covariance and spatial autocorrelation analysis (Pan et al., 2020; 
Calvo et al., 2019). The remaining variables are presented in 
Table 1. 

 
In this study we selected three variables with lower VIF values, 
namely the number of educational facilities, cultural facilities and 
bus stops, indicating they had more significant impact on the 
spatiotemporal travel patterns. In addition, we further conducted 
a correlation analysis based on the MGWR model and plotted a 
visualisation of the correlation coefficients for each variable. 
Figure 7. shows the impact of educational facilities on the travel 
volume of bike sharing and e-bike sharing systems in each TAZ 
on weekdays and weekends. Educational facilities had a negative 
impact on the travel volume of bike sharing in the North East 
region and e-bike sharing in the Central region, where the 
negative impact was smaller on weekdays than on weekends. The 
reason for this may be that educational facilities are more 
disperse in the North East regions, where people mostly 
travelling by school bus on weekdays but not working on 
weekends, thus have a more pronounced negative impact on the 
shared system. 
 

 
 

Figure 7. The impact of educational facilities on bike sharing 
and e-bike sharing system during weekdays and weekends. 

 
Table 1. Results of VIF and Moran's I. 

 
Variable types  Variable VIF Moran’s I Z-score P-value 

Land use 

 # Residential facilities 1.395 0.174 7.115 0.001 
 # Educational facilities 1.078 0.125 5.131 0.001 
 # Cultural facilities 1.491 0.246 9.992 0.001 
 # Social service facilities 1.475 0.077 3.207 0.005 
 #Transportation facilities 2.087 0.068 2.883 0.011 
 # Commercial facilities 1.727 0.459 18.551 0.001 
 # Government facilities 1.038 0.279 11.326 0.001 
 # Religious institutions 1.090 0.205 8.348 0.001 

Public transport 
 # Subway stations 1.325 0.108 4.453 0.003 
 # Bus stops 1.164 0.109 4.489 0.001 

Note: "#" indicates the number.

Figure 8. shows the impact of cultural facilities on the travel 
volume of bike sharing and e-bike sharing systems in each TAZ 
on weekdays and weekends. Cultural facilities had a negative 
impact on bike sharing in the Central Region and on e-bike 
sharing throughout Manhattan, where the negative impact was 
smaller on weekends than on weekdays. The reasons for this may 
be that cultural facilities are more densely distributed in the 
Midlands, that people can reach any cultural facility without 
relying on shared services, and that people have more time to 
engage in cultural activities on weekends than on weekdays. 
 

Figure 9. shows the impact of bus stops on the travel volume of 
bike sharing and e-bike sharing systems in each TAZ on 
weekdays and weekends. Bus stops had a significant negative 
impact on bike sharing and e-bike sharing at Chelsea Waterside 
Park, which is only present on weekdays. The bus stops showed 
a positive impact on both during the weekends, and a more 
significant positive impact on e-bike sharing than on bike sharing. 
The reason for this may be that on weekdays people are less likely 
to visit Chelsea Waterside Park, which have a negative impact on 
the shared service, while on weekends people have more time to 
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play and will choose the ease and speed of e-bike sharing as a 
means of transport. 
 

 
 

Figure 8. The impact of educational facilities on bike sharing 
and e-bike sharing systems during weekdays and weekends. 

 

 
 

Figure 9. The impact of bus stops on bike sharing and e-bike 
sharing system during weekdays and weekends. 

 

Furthermore, aiming at better evaluating the performance of the 
MGWR model, we conducted a comparison experiment with the 
GWR model using two metrics, i.e., Adjusted R2 and AICc. Table 
2. shows that the MGWR model had a larger Adjusted R2 and a 
smaller AICc than the GWR model, indicating that MGWR is 
more effective for conducting the correlation analysis to 
quantitatively explain the impact of different factors on 
spatiotemporal travel patterns. 
 

5. CONCLUSIONS AND FUTURE WORK  
 
The integration of bike sharing and e-bike sharing systems 
presents an opportunity to enhance sustainable transportation. To 
optimize the provision of shared services, it is essential to 
compare the spatial and temporal travel characteristics and 
influencing factors of both systems. This study pioneers the use 
of multiple sources of data to compare the spatiotemporal travel 
patterns and the influencing factors of bike sharing and e-bike 
sharing. 
 
This paper compares the spatiotemporal travel patterns and the 
influencing factors of bike sharing and e-bike sharing. Firstly, the 
order data of the two systems is compared and analysed for 
measuring the spatiotemporal travel patterns composed by travel 
distance, travel time, and travel volume. Then, the MGWR model 
was constructed to explore the influence of land use and public 
transportation factors on the volume of travel in the two systems, 
and the coefficients of the three selected variables, namely 
educational facilities, cultural facilities and bus stops, were 
visualised and analysed. The study found that for bike sharing, 
educational facilities had a significant negative impact on the 
travel volume of bike sharing, both on weekdays and weekends, 
while the opposite was true for cultural facilities and bus stops. 
For e-bike sharing, bus stops had a significant positive impact on 
e-bike sharing travel volumes, both on weekdays and weekends, 
while cultural facilities reflected a significant negative impact. 
Finally, the MGWR model was compared with the GWR model 
and the results showed that the MGWR model was superior to 
the GWR model with regard to performing correlation analysis 
to quantitatively explain the effect of different factors on 
spatiotemporal travel patterns. 
 

 
Table 2. Comparative results of GWR and MGWR models. 

 
 Bike sharing  E-bike sharing 

Weekday  Weekend  Weekday  Weekend 
Adjusted R2 AICc  Adjusted R2 AICc  Adjusted R2 AICc  Adjusted R2 AICc 

GWR 0.607 623.505  0.639 608.942  0.616 630.954  0.631 615.038 
MGWR 0.624 586.137  0.671 559.427  0.633 607.119  0.637 580.502 

Despite those achievements made in this study, there still exists 
several limitations that can be taken into consideration in the 
future. Different user groups (e.g., gender, age groups, 
commuters and non-commuters) at finer scales (e.g., weekday 
morning rush hours and weekday evening rush hours) as well as 
more factors such as temperature, weather, and socio-
demographic characteristics can be further analyzed to help better 
understand the spatiotemporal travel patterns and the influencing 
factors of bike sharing and e-bike sharing systems.  The study 
sheds light on the urban planning of shared services, optimising 
the allocation of bike sharing and e-bike sharing. 
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