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ABSTRACT: 
 
Air quality acts as an important factor that human may consider as they make decisions on when and where they would go. In order to 
access how much the air quality affects human mobility patterns, the air quality was measured using air quality index (AQI) and human 
mobility patterns were measured by travel volume and travel distance of shared bikes. Their correlation that presents on weekdays and 
weekends as well as in different administrative districts were investigated using Spearman correlation analysis method. A case study 
was conducted in Beijing, China using bike sharing data and air quality data ranging from May 10 to 16, 2017. The results show that 
travel distance is more sensitive to air quality on weekdays such as Changping District (-0.20), Haidian District (-0.13), Shunyi District 
(-0.12). The travel volume on weekdays is less sensitive to air quality due to commuting. The travel volume has a negative relationship 
with AQI on weekends. Fengtai District, Huairou District, Pinggu District are more susceptible to severe air quality, leading to a 
reduction in bike traveling distance. This work sheds light on understanding human-environment coupling mechanism and promoting 
urban sustainable development.  
 

1. INTRODUCTION 
 

 
 

Understanding human mobility patterns plays a key role in a 
wide range of fields, such as urban planning (Kang et al., 2012; 
Liu et al., 2012), traffic forecasting (Peng et al., 2012), disease 
spreading (Bagrow et al., 2012), location-based recommendation 
systems (Cheng et al., 2011), and so on. Air quality is a concern 
for all countries, as severe air pollution has adverse effects on 
human health. It is reported that only one percent of 500 cities in 
China satisfy air quality standard set by the World Health 
Organization (WHO)(Peng et al., 2014). Some students were 
absent from school and workers stopped working due to the 
deteriorating air conditions (Ma et al., 2019). To minimize the 
risks of diseases caused by severe air pollution, people are likely 
to consider air quality when engaging in outdoor activities. For 
example, if there is no hazardous alert for a week or more days, 
the good air condition has little impact on human movement. In 
contrast, if the bad air pollution frequently happens, people are 
more likely to participate in indoor activities instead of going 
outside for exercise or entertainment. Therefore, air quality can 
be considered as one of the factors influencing human mobility 
patterns, especially in cities with severe air pollution. 
 
Some existing studies explore the influence of external factors 
(e.g., weather) on human mobility patterns using logistic 
regression models (e.g., Logit model) based on the questionary 
data, which is time consuming and inefficient (Campbell et al., 
2016). With the development of mobile phone and Internet 
technologies, a number of existing studies have investigated the 
impact of air quality on human mobility patterns using social 
media check-ins (Yan et al., 2019), social sensor data (Sagl et 
al., 2012), public transportation smart card data (Ma et al., 2017), 
subway passenger data (Wu et al., 2020), taxi data (Kang et al., 
2019), mobile positioning records (Xu et al., 2021) and docked 
bike sharing data (Cao et al., 2019; Gebhart et al., 2014), where 
dockless bike sharing data was seldom used for such purpose. 

 
* Corresponding author 

Comparing with the docked bike sharing data, the dockless bike 
sharing data is able to record the time and location indicating the 
travel origin and destination in a more accurate way, providing 
valuable information for modelling human mobility patterns in 
urban systems (Yuan et al., 2012).  
 
In order to understand how much air quality affects human 
mobility patterns, the air quality was measured using air quality 
index (AQI) and human mobility patterns were measured by 
travel volume and travel distance of shared bikes, the corelation 
between which was quantitatively computed by the Spearman 
Correlation Coefficient (SCC). A case study was conducted in 
Beijing, China to investigate the impact of air quality on human 
mobility patterns from spatial and temporal perspectives.  
 
The rest of the paper is organized as follows. Section 2 
introduces the study area and data used in this study. In Section 
3, the main methods used are presented. Section 4 analyzes and 
discusses the results and some conclusions are drawn in Section 
5. 
 

2. STUDY AREA AND DATA 
 
2.1 Study Area 
 
Beijing, as the first city in China where shared bicycles appeared, 
started the bike-sharing program in 2014. By 2017, there were 
15 shared bicycle companies operating in Beijing, with the peak 
number of bicycles reaching 2.35 million and the number of 
registered users reaching 11 million (Li, 2018). As shown in 
Figure 1, a total of 16 administrative districts are located in 
Beijing, i.e., Dongcheng District, Xicheng District, Chaoyang 
District,  Fengtai District, Shijingshan District, Haidian 
District, Shunyi District, Tongzhou District, Daxing District, 
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Fangshan District, Mentougou District, Changping District, 
Pinggu District, Miyun District, Huairou District and Yanqing 
District. In this study, we did not include the Yanqing District as 
the study area because there is limited data that is not enough for 
analysis. 
 
2.2 Data 
 
2.2.1 Bike sharing data 
 
The bike sharing data used in this study was obtained from the 
2017 Mobike algorithm challenge (1). The data ranging from May 
10 to May 16, 2017 was collected, including 1.8 million records, 
430,000 bicycles, and 310,000 users. It includes the fields such 
as order ID, user ID, bicycle ID, bicycle type, start time, start 
location, and destination location (see Table 1), providing useful 
information for the spatiotemporal analysis of human mobility 
patterns. The start location and destination location are originally 
encoded using Geohash, which can be converted to latitude and 
longitude in an automatic manner. More details regarding such 
conversion process are elaborated in Section 3.1. The kernel 
density of the travel volume was calculated and visualized in 
Figure 1, showing a tendency to spread from the central area to 
the rural area. The darker the region, the more the bike-sharing 
orders. Fengtai District, Chaoyang District, Haidian District, 
Dongcheng District, and Xicheng District are central areas 
where dense human movement occurs and have higher travel 
volume. 
 
2.2.2 Air quality data 
 
There are 35 monitoring stations across Beijing, which are 
divided into 12 urban environmental monitoring stations, 11 
suburban environmental monitoring stations, 7 control and 
regional stations, and 5 traffic pollution monitoring points. In 

this study, the spatial join function was used to map the 
monitoring stations to each district. There are one or two 
monitoring stations located in each district (i.e., the red points in 
Figure 1). The stations distribute in various districts, to monitor 
the air quality condition in each district. The air quality data was 
collected from the Beijing Air Quality Historical Data website(2) 
including the name of monitoring stations, a pair of coordinates, 
hourly concentrations of PM2.5, PM10, SO2, NO2, O3, and AQI. 
As AQI is determined by the concentration value and sub-index 
of various pollutants, we selected AQI as the indicator of air 
quality in this study. AQI ranging from 0 to 50 represents good 
air quality with little or no health impact. AQI ranging from 51 
to 100 represents moderate air quality with acceptable health 
impact for most people. AQI ranging from 101 to 150 represents 
unhealthy air quality for the sensitive groups such as children, 
the elderly, and people with respiratory diseases. AQI ranging 
from 151 to 200 represents unhealthy air quality for everyone, 
and everyone may begin to experience some adverse health 
problems. AQI ranging from 201 to 300 represents very 
unhealthy air quality, and everyone may experience more serious 
disease. AQI over 300 represents hazardous air quality, and 
everyone should avoid all outdoor activities. 
 

3. METHODOLOGY 
 
In this study, the travel volume and travel distance were 
calculated to indicate the human mobility patterns, and the 
average hourly AQI value of the monitoring stations within the 
district was used to represent the hourly air quality of the district. 
In order to explore how air quality affects human mobility 
patterns, a quantitative correlation analysis was conducted 
between AQI and travel volume as well as travel distance 
through computing the SCC. 
 

 

 
Figure 1. The study area of Beijing with the density distribution of travel volume. 

 
Table 1. Samples of bike sharing data. 

 
Orderid Userid Bikeid Biketype Starttime Geohashed_Start_Loc Geohashed_End_Loc 

372218 538740 51570 1 2017/5/13 0:00 wx4eqez wx4eqsy 
193508 407216 27516 1 2017/5/13 10:11 wx4f4xd wx4f4y3 

2926825 974477 306899 1 2017/5/13 10:11 wx4fbjs wx4dzvj 
620336 595204 83778 1 2017/5/13 10:11 wx4g6yb wx4g6wt 

1536192 458250 176462 2 2017/5/13 10:11 wx4f9m2 wx4f9hf 

 
(1) https://www.biendata.xyz/competition/mobike/data/ 
(2) https://quotsoft.net/air/ 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-369-2023 | © Author(s) 2023. CC BY 4.0 License.

 
370



 
 
3.1 Measuring human mobility patterns 
 
As indicated above, the human mobility patterns can be 
measured by travel volume and travel distance. The travel 
volume was computed by counting the number of orders that 
take place within a certain space and time. In order to investigate 
the actual location of bike sharing orders, the start location and 
destination location with geohash code as shown in Table 1 were 
all converted to pairs of longitude and latitude using the 
"geohash_decode" function that is embedded in the Python 
package of Transbigdata(1). With regard to computing the travel 
distance, the longitude and latitude are further concerted to X 
and Y in meters using the “get_distance” function embedded in 
the Transbigdata Python package. The travel distance can be 
then computed using the returned coordinates as follows,  
 

Dis = �(𝑋𝑋𝑜𝑜 − 𝑋𝑋𝑑𝑑)2 + (𝑌𝑌𝑜𝑜 − 𝑌𝑌𝑑𝑑)2 (1) 
  
where (𝑋𝑋𝑜𝑜, 𝑌𝑌𝑜𝑜) is the coordinate of the start location, and (𝑋𝑋𝑑𝑑, 
𝑌𝑌𝑑𝑑) is the coordinate of the destination location. The air quality 
was measured by AQI value, which is usually used as a 
comprehensive indicator with consideration of various 
pollutants.  
 
3.2 Measuring air quality  
 
The hourly air quality of a certain district was measured by 
averaging the AQI values collected by the monitoring stations 
within in this district. Assume there are M monitoring stations 
within the district D, the air quality within this hour and district 
𝐴𝐴𝐷𝐷 can be computed as follows,  
 

𝐴𝐴𝐷𝐷 =
𝐴𝐴1 + 𝐴𝐴2 + ⋯+ 𝐴𝐴𝑀𝑀

𝑀𝑀  (2) 

 
where 𝐴𝐴1 ,𝐴𝐴2, … ,𝐴𝐴𝑀𝑀  are the AQI values collected by the 1th, 
2th, …, Mth monitoring station, respectively.  
 
3.3 Computing SCC for spatiotemporal correlation analysis 
 
The hourly travel volume and hourly travel distance were used 
as independent variables, and the AQI was used as dependent 
variables to quantitatively investigate the correlation between 
them based on computing the SCC. SCC is a popular indicator 
for correlation analysis, which is a non-parametric measure of 
the dependence of two or more variables. It can also usually be 
represented by 𝜌𝜌 , they are identical and its value ranges from -
1 to 1, where 1 means that the two variables are perfectly 
positively correlated, -1 means that the two variables are 
perfectly negatively correlated and 0 means that there is no 
correlation between the two variables. The SCC was calculated 
based on the rank order of the original variables. Rank order 
refers to the position of the variables after sorting them from low 
to high. It is calculated as follows, 
 

𝜌𝜌 =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖𝑖𝑖
 (3) 

  
where 𝑥𝑥𝑖𝑖 is the rank order of variable 𝑥𝑥 (i.e., travel distance 
and travel volume), 𝑦𝑦𝑖𝑖 is the rank order of variable 𝑦𝑦 (i.e., AQI 
values), �̅�𝑥 and  𝑦𝑦� are the mean of 𝑥𝑥 and 𝑦𝑦, respectively. 𝜌𝜌 is 
the correlation coefficient between variable 𝑥𝑥 and variable 𝑦𝑦. 

 
(1) https://transbigdata.readthedocs.io/ 

 
In this work, we use equation 2 to calculate the SCC and to better 
identify the difference between weekdays and weekends, we use 
equation 3 to calculate the SCC for weekdays and weekends. It 
is calculated as follows, 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆𝑆𝑆3 ⋯+ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 𝑁𝑁⁄  (4) 
  

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 represents the SCC value of the ith day and N is the 
number of days. The N equals to five and two with regard to 
weekdays and weekends, respectively. 
 

4. RESULTS AND DISCUSSION 

4.1 Spatiotemporal human mobility patterns 
In this section, we analyzed human mobility patterns using the 
bike sharing data from spatial and temporal perspectives. With 
regard to the travel distance, we first made a statistic analysis in 
Figure 2 to illustrate the overall distribution of travel distance of 
all orders. It shows that the majority of the travel distance is 
within 5,000 meters. Additionally, the data was divided into 
weekdays and weekends to reflect the different spatiotemporal 
human mobility patterns during different time periods. 
 
The hourly travel volume and hourly travel distance on 
weekdays and weekends are summarized using histograms in 
Figure 3. According to Figure 3 (a), it reveals that the travel 
volume is very low from 11pm to 5am on weekdays, which is 
due to people resting during these hours. The travel volume 
rapidly increases during 7am and 8am and 5pm and 6pm, 
aligning with the morning and evening peak hours. At noon, 
there is a local peak hour at 12pm, which is potentially related to 
the fact that people go out for lunch or leisure activities. The 
peak-hour patterns do not exist on weekends when the overall 
travel volume is significantly lower than weekdays, which 
indicates that bicycle travel largely serves workday commuting 
activities. With regard to the travel distance on weekdays and 
weekends that are shown in Figure 3 (b). there is no significant 
difference among other hours except there exist two peaks from 
7am to 8am and from 5pm to 6pm on weekdays, which co-occurs 
with the higher travel volume. This is consistent with the time of 
going to work and off work. 
 
Furthermore, we investigated the heterogeneity of human 
mobility patterns in space during morning peak hours (i.e., 7am 
to 9am on weekdays), evening peak hours (i.e., 5pm to 8pm on 
weekdays) and non-peak hours. The kernel density of travel 
volume and travel distance were computed and visualized in 
Figure 4. It shows that the travel volume density keeps high in 
the central districts including Chaoyang District, Haidian 
District, Xicheng District, Dongcheng District, and Fengtai 
District (see Figure 4 (a), (b) and (c)).  
 

 
Figure 2. Statistics of travel distance. 
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(a) Hourly travel volume 

 
(b) Hourly travel distance 

 
Figure 3. Hourly travel volume and travel distance on 

weekdays and weekends. 
 
As shown in Figure 4 (d), (e) and (f), most of the travel distance 
of the central districts are less than two kilometers, which 
reflects the bike sharing system provides a solution to the "first 
and last mile" problem. Longer travel distance during the 
morning peak hours appears in Daxing District and Tongzhou 
District with an average distance of 3,374 meters. However, 
during the evening peak hours, the districts with longer travel 
distance drift to Chaoyang District and Haidian District, with an 
average distance of 3,402 meters which is slightly more than that 
in the morning.  
 

4.2 Air quality 
 
Following the methodology in section 3.2, we visualized the air 
quality measured by the average AQI values by districts in 
Figure 5. It reveals that Tongzhou District, Daxing District, 
Fangshan District, Fengtai District and Xicheng District own 
higher AQI and poorer air quality during the morning peak hours 
on weekdays. During the evening peak hours on weekdays, the 
AQI is higher in Fangshan District and Mentougou District. 
During the non-peak hours, the AQI is the highest in Fangshan 
District. Overall, the air quality in Fangshan District is the 
poorest, regardless of the time periods. 
 
4.3 Correlation between spatiotemporal travel patterns and 
air quality  
 
Through computing the SCC values, we quantitatively analyzed 
the correlation between air quality and travel volume as well as 
travel distance from spatial and temporal perspectives. The 
results are summarized in Table 2. It shows that on weekdays, 
the travel distance was negatively affected by air quality in areas 
such as Changping District (-0.20), Haidian District (-0.13), 
Shunyi District (-0.12), Chaoyang District (-0.10), Fangshan 
District (-0.10) and Tongzhou District (-0.05). Most of these 
areas have a high demand for shared bikes. However, the travel 
volume on weekdays shows randomly correlates with air quality 
among all administrative districts of Beijing. This is because   
people have to go to work regardless of the air quality on 
weekdays. 
 
The travel volume has a negative relationship with AQI on 
weekends. The districts most affected by air quality on weekends 
are Changping District, Daxing District, Tongzhou District, 
Xicheng District, Chaoyang District, and Shijingshan District, 
with SCC values of -0.66, -0.58, -0.54, -0.42, -0.39, and -0.39, 
respectively. The negative correlation between air quality and 
travel volume may be due to people's reluctance to engage in 
outdoor activities during poor air quality. The Huairou District 
and Pinggu District, which are the two popular tourist attractions 
in Beijing that people tend to ride in spring, most align with the 
afore-mentioned patterns, with the SCC of -0.17, -0.16, 
respectively. 
 

 
 

Figure 4. Distribution of travel volume density (a-c) and travel distance (d-f) during different time intervals. 
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Figure 5. Distribution of AQI during different time intervals. 
 

Table 2. SCC measuring the air quality impact on travel distance and travel volume. 
 

SCC 
 
District 

Weekdays Weekends 

Air quality impact 
on travel volume  

Air quality impact 
on travel distance 

Air quality impact 
on travel volume 

Air quality impact 
on travel distance 

Changping 0.38  -0.20  -0.66  0.09  
Chaoyang 0.37  -0.10  -0.39  0.27  
Daxing 0.49  0.08  -0.58  0.11  
Dongcheng 0.39  0.01  -0.28  0.10  
Fangshan 0.48  -0.10  -0.37  0.02  
Fengtai 0.50  0.04  -0.21  -0.13  
Haidian 0.51  -0.13  -0.18  0.10  
Huairou 0.22  0.17  -0.16  -0.17  
Mentougou 0.46  0.09  -0.19  0.01  
Miyun 0.08  0.08  0.07  0.08  
Pinggu 0.31  0.31  -0.15  -0.16  
Shijingshan 0.39  0.06  -0.39  -0.03  
Shunyi 0.40  -0.12  -0.31  0.16  
Tongzhou 0.48  -0.05  -0.54  0.00  
Xicheng 0.31  0.15  -0.42  -0.08  

 
In a word, the quantitatively correlation analysis results prove 
that air quality indeed influences the people activity patterns. As 
the air quality is worse with a higher AQI value, the travel 
volume is less and the travel distance is shorter, where people 
tend to shorten their traveling by bike or keep away from going 
outside. 
 

5. CONCLUSIONS 
 
The travel distance and travel volume retrieved from bike 
sharing data were used for modelling human mobility patterns, 
and the AQI values were used for generating the air quality of a 
certain district during a specific time period. The SCC were 
further computed to quantitatively analyze the impact of air 
quality on human mobility patterns across different 
administrative districts of Beijing on weekdays and weekends. 
The results show that on weekdays, the air quality has less effect 
on the travel volume but worse air quality usually leads to shorter 
travel distance. This is because people have to follow the daily 
routes due to the commuting demand. On weekends, it is more 
flexible for people to choose their travel modes. Thus, the air 
quality significantly affects the travel volume and travel 
distance, especially in those rural districts, e.g., Changping 
District and Huairou District. This work helps understand 
human-environment coupling mechanism, promoting the 
harmonious development of urban systems. In the future, 
multiple types of crowd-sourcing data (e.g., social media and 
taxi data) can be fused to shape human mobility patterns and a 
longer series of data can be analyzed to the improve the 
performance.  
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