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ABSTRACT: 

 

Mudslides are powerful and fast-moving mass movements that pose significant risks to human lives, infrastructure, and natural environments. 

They are commonly triggered by intense rainfall and their impact is particularly severe in mountainous regions. Synthetic Aperture Radar 

(SAR) technology can be used to calculate the subsidence of the territory over time by means of a temporal series of SAR images through 

the Persistent Scatterer Interferometry (PSI) technique. In some research Interferometric SAR (InSAR PSI) data were used to train Long 

Short-Term Memory (LSTM) based Artificial Neural Network (ANN) to provide movements forecasting. This paper proposes a new LSTM 

based ANN to forecast future territory movements considering both the past InSAR PSI data, the rain forecasting of the next acquisition and 

the past cumulative amount of rain since the movements of mudslides are strictly dependent to the quantity of rainfall accumulated in the 

terrain. The results of the proposed ANN are shown in terms of Mean Square Error (MSE) and Mean Absolute error (MAE) by comparing 

them with a LSTM-based ANN trained with only the InSAR PSI data. 

 

 

1. INTRODUCTION. 

 

1.1. Motivation 

 

Mudslides are powerful and fast-moving mass movements that pose 

significant risks to human lives, infrastructure, and natural 

environments. These hazardous events are commonly triggered by 

intense rainfall and can travel at high velocities, often exceeding 10 

meters per second (Chen et al., 2017), making them one of the most 

dangerous types of mass movements. Improving the ability to 

forecast mudslide movements can help to minimize the risks 

associated with these destructive mass movements. An example of 

mudslide consequences is shown in Figure Figure 1. 

Rainfall causes changes in surface and groundwater dynamics that 

reduce the slope stability conditions and cause mudslides. 

However, there is not an analytical relationship between the 

quantity of rainfall and the movement of the mudslide risk area. In 

fact, in this work, we are going to focus on the opposite of an 

analytical approach, those are Artificial Neural Networks, which 

are instead black boxes trained with a large dataset to find patterns 

in the data, and to make predictions on future movements. In this 

work we want to  

 

 
 

Figure 1. Example of mudslide in Acquabona locality. 
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1.2. InSAR PSI 

 

InSAR Persistent Scatterer Interferometry (InSAR PSI) is an 

advanced technique used for monitoring and measuring ground 

deformation. This technique exploits the backscattered radar 

signals from persistent scatterers (PS), which are characterized by 

stable and long-lasting reflectivity properties. The InSAR PSI 

technique analyses a time series of SAR images acquired over an 

extended period, typically months to years. By tracking the phase 

evolution of the radar signals from these PS, InSAR PSI enables the 

precise measurement of surface deformation rates with millimeter-

level accuracy (Ferretti et al., 2001). 

 

1.3. State of the art 

 

Some scientific works present the potentiality of statistical and 

machine learning methods to make prediction on future movements 

of the territory (Fiorentini et al., 2020) and (Naghibi et al., 2022). 

Some important studies have explored the possibility to forecast 

InSAR data by means of Long Short-Term Memory Recurrent 

Neural Networks (LSTM RNN) models (Chen et al., 2021), 

(Agrawal, 2022), (Hashemi et al., 2022) and (Hill et al., 2021). The 

LSTM RNN architecture has proven to be highly effective in 

capturing and modeling complex sequential patterns. It can process 

input sequences of varying lengths and can handle both short-term 

and long-term dependencies. 

 

1.4. Objectives 

 

The aim of this work is to evaluate and compare a LSTM RNN 

model for improving predictions of subsidence in mudslides risk 

areas with respect to the traditional LSTM RNN by integrating the 

large geological dependence of mudslides on heavy rainfall in the 

model. The LSTM RNN is designed in such a way to be trained 

considering a fusion of InSAR PSI data and meteorological data. 

The considered meteorological data are both the past cumulative 

amount of rain and the rain forecasting of the next acquisition. 

Then, it is compared with a traditional LSTM RNN trained with 

only InSAR PSI data. The remainder of the paper is structured as 

follows: Section 2 explains the followed methodology; Section 3 

describes the chosen case study and the corresponding used data; in 

Section 4, the results in terms of predictors performance are 

presented; some concluding remarks and future works are discussed 

in Section 5. 

 

 

2. METHODOLOGY 

 

The methodology of this work is divided into the following steps: 

(1) design the two considered LSTM RNN models (i.e., with and 

without inclusion of rainfall data; (2) processing the Single Look 

Complex (SLC) SAR images to obtain the InSAR PSI data; (3) 

processing of the InSAR PSI data to obtain suitable training and test 

sets for the two LSTM RNN; (4) training, test and comparison of 

the two LSTM RNN. 

 

2.1. LSTM RNN design 

 

Two recurrent neural networks based on LSTM layers have been 

designed to make predictions on future movements of the territory 

subject to mudslides risks. The two networks differ from each other 

by the input that is provided to them. In particular, the first neural 

network (LSTM RNN 1) bases its predictions only on the past 

InSAR PSI data. In the second neural network (LSTM RNN 2), the 

strong dependence of the mudslide movements on the amount of 

rainfall is exploited to improve the forecasts. In fact, LSTM RNN 

2 is designed to be trained with a data fusion of InSAR PSI 

displacement data and meteorological rain data taken in the same 

periods in which the InSAR measurements were made and the rain 

forecast of the future measurement to be done. Both LSTM RNN 1 

and LSTM RNN 2 feature a parametric structure with two degrees 

of freedom: the number of LSTM layers and the number of units 

for each of these layers. A LSTM layer is an RNN layer that learns 

long-term dependencies between time steps in time series and 

sequence of data. The LSTM layer consists of LSTM cells equal to 

the size of the considered data time series window. Figure 2 shows 

the LSTM layer considered in this work, which contains 6 LSTM 

cells, since the data time series window comprises 6 consecutive 

measurements (i.e., the past five [InSAR data, Rain] pairs and the 

next acquisition rain forecasting). 

 

 
 

Figure 2. LSTM layer composed of six LSTM cells 

 

Each of the LSTM cells are initialized with a cell state 𝑐𝑡 and a 

hidden state ℎ𝑡, ∀ 𝑡 ∈ [0,6]. Iteratively, the observation 𝑥𝑡, the 

previous hidden state ℎ𝑡−1 and the cell state 𝑐𝑡 are combined 

through the operations shown in Figure 3. 

 

 
 

Figure 3. LSTM cell and operations in which  𝒙𝒕,  𝒉𝒕−𝟏, 𝒄𝒕  are 

involved 

 

In TensorFlow, the parameter indicates the dimension of the hidden 

state vector is called “units”. By tuning the number of LSTM layers 

and the number of units, the optimization of the models, in terms of 

Mean Square Error (MSE, Section 2.4.1) and Mean Absolute Error 

(MAE, Section 2.4.2) is reached. 
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2.2. InSAR PSI processing 

 

In this step, the InSAR PSI data is calculated by using the two 

software libraries called snap2stamps (Blasco and Foumelis, 2018) 

and StaMPS (Hooper et al., 2018). The snap2stamps library is 

composed of a series of Python scripts that use the SNAP ESA 

software API to perform processing on SAR images to make them 

ready for StaMPS processing, which calculates the movements 

data. Their combined use produces as output millimetric-accurate 

measurements on some points called Persistent Scatterers (PS), by 

receiving as input a time series of at least 15 SAR images. 

 

2.3. InSAR PSI post-processing 

 

In this step, the Persistent Scatterers generated in the previous one 

are processed through automated Python scripts that perform the 

following functions: 

 

• For each PS: 

•  

o A normalization of the displacement measurements with 

respect to the initial instant of time is performed. 

o A moving average over 5 consecutive measurements, 

which are acquired with a rate of 6 days. Thus, each 

measure is the mean movement of the last 30 days (6 

days/measurament * 5 measuraments = 30 days ) is 

performed in such a way to reduce the uncertainty of the 

displacement measurements to +-3 mm with respect to 8 

mm of uncertainty on the single measurement 

(Marinkovic et al., 2007). 

o For the periods of time covered by the SAR acquisitions, 

the rain meteorological data (ARPAV, ARPAV website) 

are considered. A moving average of the amount of 

accumulated rain over 30 consecutive days is performed 

in such a way to have the same measurement rate 

calculated for the InSAR PSI data. 

o Finally, for each of the two considered LSTM RNN the 

training and test sets are prepared. The pair (features, 

label) used to form the dataset of the LSTM RNN 1 has 

the following structure: 

 
([𝐴−4, 𝐴−3, 𝐴−2, 𝐴−1, 𝐴0], [𝐴1]) 

 

The pair (features, label) used to form the dataset of the 

LSTM RNN 2 add the rainfall information to the 

structure: 

 

([
[𝐴−4, 𝑅−4 ], [𝐴−3, 𝑅−3 ], [𝐴−2, 𝑅−2, ], [𝐴−1, 𝑅−1, ],

[𝐴0, 𝑅0, ], [𝑅1]
] , [𝐴1]) 

 

Where, 𝐴𝑖  ∀𝑖 ∈ [−4, 1] is the InSAR PSI measurement at 

acquisition time 𝑖. 𝑅𝑖  , ∀𝑖 ∈ [−4, 1] is the rain measurement at 

acquisition time 𝑖. Note: acquisition time 𝑖 = 1 represents the future 

time at which both the InSAR PSI data has to be predicted by the 

model and the rain forecasting is provided to the model.  

 

2.4. Train and evaluation of LSTM RNN performances 

 

The previously designed LSTM RNN 1 and 2 are designed with two 

degrees of freedom: the number of LSTM layers and the number of 

units for each of these layers. These parameters are tuned to find an 

optimum model in terms of MSE and MAE. The evaluation of each 

model is done with both the training set (i.e., 2000 samples) and a 

test set (i.e., 500 samples) containing new data never seen by the 

model. 

In the following, the indexes used to evaluate our predictors (i.e., 

the designed neural networks) are described. 

 

2.4.1. Mean Square Error (MSE) 

 

In statistics, the mean squared error (MSE) of a predictor measures 

the average of the squares of the errors—that is, the average squared 

difference between the predicted values and the actual values (1). 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑘 − �̂�𝑘)

2
        (1)

𝑛

𝑘=0

 

 

Where, 𝑌𝑘 is the observed measurement and �̂�𝑘 is the predicted 

measurement. 

 

2.4.2. Mean Absolute Error (MAE) 

 

The MAE is defined as: 

 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑌𝑘 − �̂�𝑘)

𝑛

𝑘=0

        (2) 

 

Where, 𝑌𝑘 is the observed measurement and �̂�𝑘 is the predicted 

measurement. 

 

 

3. CASE STUDY 

 

3.1. Area of Interest 

 

In this paper, a case study in Acquabona, in the heart of the Belluno 

Dolomites in northern Italy, is presented, which is considered a 

mudslides high risk area. In fact, several mudslides have already 

caused extensive damage in terms of infrastructure but above all 

human lives. Figure 4 shows the area taken into consideration in 

this research during the period from 30/04/2015 to 13/05/2017. 
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Figure 4. Area of interests subject to mudslides in in Acquabona 

(Belluno, Italy) 

 

3.2. SAR data 

 

The Single Look Complex (SLC) SAR data are the input of the first 

step described in Section 2.2, in which the InSAR PSI data are 

calculated. Considering the selected area of interest, the 

corresponding Sentinel-1 SLC SAR images in the period from 

30/04/2015 to 13/05/2017 have been downloaded from the 

Copernicus ESA Open Access Hub website. 

 

3.3. Meteorological data 

 

The LSTM RNN 2 model considers both InSAR PSI displacement 

data and the meteorological rainfall data, which were downloaded 

from the Regional Agency for Environmental Prevention and 

Protection of the Veneto (ARPAV) website. 

 

 

4. RESULTS 

 

The data presented in Section 3 – Case Study are the input of the 

proposed workflow presented in Section 2 - Methodology. 

Therefore, the raw SAR data is transformed into InSAR PSI 

measurements with snap2stamps and StaMPS procedure obtaining 

the PS of the area of interest, which is circled in red in Figure 4. 

 
 

Figure 5. Persistent scatterers (PS) obtained after the snap2stamps 

+ stamps workflow in Acquabona site. The PS time series within 

the red circled area are used in the proposed workflow 

 

After this, during the InSAR PSI post-processing step the data are 

prepared (i.e., normalization, noise removal, data structure 

handling) to be suitable for the train and test of the LSTM RNN 1 

and LSTM RNN 2, which is performed. 

As said, the two neural networks models are designed in parametric 

way, thus they can be trained and test by tuning two degrees of 

freedom parameters: the number of LSTM layers and units for each 

of these layers. For each LSTM RNN (i.e., 1 and 2) and for each 

combination of parameters (i.e., LSTM layer = {1, 2}; units per 

layer = {16, 32, 64}) training and test procedure of the neural 

networks are performed. To globally evaluate the several neural 

networks, the average performance of the predictions in terms of 

MSE and MAE in both training and test sets were calculated and 

reported in Table 1 and Table 2. 

 

LSTM RNN 1 

(trained with only 

InSAR data) 

Evaluation with 

training set 

[MSE, MAE] 

Evaluation with 

test set 

[MSE, MAE] 

LSTM layers = 1 

Units = 16 
8.5, 2.4 7.2, 2.2 

LSTM layers = 1 

Units = 32 
7.5, 2.2 5, 1.8 

LSTM layers = 1 

Units = 64 
7.3, 2.2 7.7, 2.3 

LSTM layers = 2 

Units = 16 
8.5, 2.4 6.5, 2 

LSTM layers = 2 

Units = 32 
7.3, 2.2 8.1, 2.2 

LSTM layers = 2 

Units = 64 
6.7, 2 7.6, 2.2 

 

Table 1. Evaluation performances on training set and test set of 

the LSTM RNN 1 (trained with only InSAR data) in terms of 

mean square error (MSE) and mean absolute error (MAE) by 

varying the number of units and the number of LSTM layers. 
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LSTM RNN 2 

(trained with 

InSAR + Rain 

data) 

Evaluation with 

training set 

[MSE, MAE] 

Evaluation with 

test set 

[MSE, MAE] 

LSTM layers = 1 

Units = 16 
2.4, 0.9 9.7, 1.9 

LSTM layers = 1 

Units = 32 
2.1, 0.8 9.7, 1.8 

LSTM layers = 1 

Units = 64 
1.8, 0.7 9.9, 1.9 

LSTM layers = 2 

Units = 16 
2.6, 0.9 6.8, 2.4 

LSTM layers = 2 

Units = 32 
1.8, 0.7 8, 1.6 

LSTM layers = 2 

Units = 64 
2, 0.7 4.4, 1.3 

 

Table 2. Evaluation performances on training set and test set of 

the LSTM RNN 2 (trained with InSAR + Rain data) in terms of 

mean square error (MSE) and mean absolute error (MAE) by 

varying the number of units and the number of LSTM layers. 

 

By looking at Table 1 and Table 2 some noticeable results of this 

work are listed: 

 

• The best performances for the LSTM RNN 1 tested with 

new data are obtained when the network has one LSTM 

layer formed by 32 units. In this case the (MSE, MAE) 

pair is equal to (5 mm2, 1.8 mm), which is within the 

uncertainty range of the InSAR PSI measure (9 mm2, 

3mm). 

• The best performances for the LSTM RNN 2 tested with 

new data are obtained when the network has two LSTM 

layers each formed by 64 units. In this case the (MSE, 

MAE) pair is equal to (4.4 mm2, 1.3 mm), which is within 

the uncertainty range of the InSAR PSI measure (9mm2, 

3mm). 

• Considering the two proposed neural network with the 

best choice of parameters: 

o LSTM RNN 1 (layers=1, units=32) 

o LSTM RNN 2 (layers=2, units=64) 

The proposed LSTM RNN 2 model trained with the data 

fusion of InSAR PSI and meteorological data improves 

the forecast performances of the 12% in terms of MSE 

and of the 27% in terms of MAE with respect to the 

traditional LSTM RNN 1 trained with only InSAR PSI 

data. 

 

 

Figure 6 shows an example of predictions comparison between the 

two proposed models for a specific PS over the area of interest.  

 

 
 

Figure 6. Predictions comparison between LSTM RNN 1 and 

LSTM RNN 2 models 

 

The orange dot is the prediction provided by the LSTM RNN 1 

model, based on the previous five InSAR PSI observation (i.e., 

yellow dots at times [-4, 0]). The grey dot is the prediction provided 

by LSTM RNN 2 model, based on the previous five InSAR PSI 

observation (i.e., yellow dots at times [-4, 0]), the past rain data (i.e., 

blue dots at time [-4, 0]) and the rain forecasting (i.e., blue dot at 

time 1). 

 

 

5. CONCLUSIONS 

 

This paper presented a comparison between two LSTM RNN. A 

traditional LSTM RNN 1 trained with InSAR data and able to 

predict future movements has been reproduced and used as term of 

comparison to evaluate the new approach proposed for LSTM RNN 

2; the latter, was designed to combine InSAR data with 

meteorological data of the area of interest in the same period 

considered for the SAR acquisitions and the rain forecasting for the 

next acquisition. The paper applied this methodology to forecast the 

displacements of areas at risk of mudslides, which are triggered by 

large rainfalls. After training and testing of some parametric 

versions of the two proposed LSTM RNN, they were compared in 

terms of ability to predict future ground motion through MSE and 

MAE indices. The results show how the fusion of meteorological 

and InSAR PSI data improves the forecasting capacity of the 

measurement compared to the only usage of InSAR PSI data of 

LSTM RNN 1. Improvement is expressed in terms of reduction of 

both MSE and MAE indicators. 

One of the possible future works is to understand the sensibility of 

the InSAR PSI predictions with respect to the variation of the 

forecasting rain data. Moreover, though the rain data are available 

daily, the InSAR PSI data remains with a quite small acquisition 

rate, new incoming big SAR constellations could be open to the 

possibility to improve the results of this work. Another future 

development consists in the adaptation of the proposed method to 

other applications than mudslides, by choosing the most suitable 

data to merge with the InSAR data to improve the predictions of 

InSAR PSI measurements. An example is the movements of road 

infrastructure, in which the InSAR PSI data can be used together 
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with traffic data for improving the ability of the LSTM RNN of 

making predictions. 
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