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ABSTRACT: 

 

The quality of landslide susceptibility maps is often assessed using a part of learning data that represents geographical and land use 

characteristics over a quasi-fixed time. However, when validated with multi-temporal landslide inventories, more realistic insights on 

the susceptibility maps can be obtained. In addition, extreme events may trigger landslides in regions which are not considered as 

landslide-prone. The February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6), also known as the disaster of the 

century, triggered numerous landslides. Amanos Mountains located in southern Türkiye were also within the earthquake-affected 

area and had a very small amount of inventory recorded in official databases. The aim of this study was to evaluate the performance 

of the random forest method for producing landslide susceptibility maps. The official inventory of General Directorate of Mineral 

Research and Exploration (MTA) was used for map production. The resulting susceptibility map was assessed using the co-seismic 

landslide inventory produced in the study. The model’s performance evaluated using a part of the learning data yielded high 

accuracy expressed with area under receiver operating characteristics curve (AUC), precision, and recall values and F1 score using 

(AUC = 97%, recall = 97%, precision = 96%, F1 = 98%). However, multi-temporal evaluation with co-seismic landslides showed 

that 80% of the landslide pixels with moderate, high, and very high susceptibility levels could be predicted with the model. The 

results suggest that special attention should be given to features underrepresented in the inventory, such as low altitudes and types of 

lithology. 

 

 

1. INTRODUCTION 

 

Landslides have devastating effects on settlements, 

infrastructure, and other natural and economic resources. 

Identification of landslides requires a high level of expertise in 

geology and topography. High-quality geospatial datasets 

enable the use of data-driven machine learning (ML) methods 

for landslide hazard assessments and reduce the limitations 

derived from field inaccessibility. As a first step in landslide 

disaster management, the question of “where” should be 

answered. Landslide susceptibility mapping aims to answer this 

question. Although novel ML methods and freely available 

geodata provide new opportunities in precision and 

computation cost, the main challenges remain in the availability 

of accurate inventories to be used as learning data and reliable 

quality assessment and validation approaches. 

 

In recent decades, natural hazards, including earthquakes, 

landslides, and avalanches, have exhibited a significant 

influence on the lives of people all over the globe. Landslides 

can be triggered by other natural hazards, including earthquakes 

(Karakas et al., 2021; Shao and Xu, 2022) and heavy rainfalls 

(Kocaman et al., 2020), or anthropogenic activities (Sevgen et 

al., 2019; Yanar et al., 2020). An earthquake can trigger 

landslides in areas with unstable slopes or hills. The shaking 

from an earthquake can destabilize the soil or rock on a slope, 

causing it to fail and slide downhill. The likelihood of a 

landslide occurring during an earthquake depends on several 

factors, such as the slope gradient, the type and properties of the 

soil or rock, the water content of the soil, and the magnitude 

and duration of the earthquake. Slopes with steeper gradients 

are usually more susceptible to sliding during an earthquake, as 

are those with weaker or less cohesive soil or rock types.  

 

Several types of earthquake-induced landslides can be listed, 

such as circular or translational failures, rock falls, rock 

avalanches, debris flows, mudflows, sackung, etc. Besides the 

damages caused by the earthquake event, landslides can lead to 

significant damage to infrastructure and property, as well as 

pose a serious threat to human life. The Kahramanmaras 

earthquakes (Mw 7.7 and Mw 7.6) occurred on 6 February 2023 

triggered numerous landslides of those types. A selection of the 

co-seismic landslides triggered by this event can be seen in 

Figure 1. Almost 3000 co-seismic landslides were identified by 

several research groups, including ours. However, a great 

majority of them was not included in the official databases of 

General Directorate of Mineral Research and Exploration 

(MTA). 

 

Production of accurate and up-to-date susceptibility maps with 

data-driven ML methods requires high-quality inventories. 

However, the inventories may be incomplete for several 

reasons. The requirements of a high level of expertise and site 

inaccessibility are among the two main ones. Karakas et al. 
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(2021) compiled an inventory of landslides triggered after the 

Elazig earthquake (the January 24, 2020, Mw 6.8). A total of 

328 landslides were identified from the 3D models and high 

resolution orthophotos. A volumetric change detection was also 

carried out using aerial photogrammetric datasets in the same 

study, which revealed the importance and usability of pre- and 

post-event data for an in-depth analysis of the landslide 

characteristics (even very small ones).  

 

     
(a)                                                (b) 

    
(c)                                                (d) 

 Figure 1. Examples to co-seismic landslides in the study area; 

(a) rock mass failure, (b) planar failure developed in gentle 

slope topography, and (c) and (d) circular failure. 

 
The landslide susceptibility assessment methods are diverse. 

Shao and Xu (2022) provided a comprehensive review of the 

current state-of-the-art in landslide susceptibility assessment for 

earthquake-induced landslides and highlighted the need for 

continued research and development in this area. This review 

also discussed the challenges and limitations of landslide 

susceptibility assessment, such as the need for accurate and 

comprehensive data, the difficulty of accounting for complex 

geological and topographical factors, and the potential for 

uncertainty in the assessment results.  

 

Carabella et al. (2022) presented a case study on earthquake-

induced landslide susceptibility evaluation in the Abruzzo 

region of Central Italy. The study focused on the use of a 

statistical approach, the logistic regression model, to analyze the 

relationship between landslides and various geological, 

morphological, and land use factors in the study area. He et al. 

2021 conducted a study on the use of the random forest (RF) 

algorithm to assess earthquake-induced landslide susceptibility 

on a global scale. The research aimed to develop a rapid and 

accurate method for landslide susceptibility assessment using 

readily available data. In the study, various factors such as 

geological, topographical, and anthropogenic factors were 

employed to train the model. The RF algorithm proved to be a 

robust tool for the assessment of earthquake-induced landslide 

susceptibility on a global scale. The study results showed that 

the developed model has high prediction accuracy, and its 

outputs are useful for earthquake risk management and 

mitigation. The study highlights the importance of using the ML 

methods for the rapid and accurate assessment of landslide 

susceptibility on a global scale. 

 

Umar et al. (2014) proposed a combined method for two 

statistical methods, frequency ratio (FR) and logistic regression 

(LR), in the production of a landslide susceptibility map in 

West Sumatra Province, Indonesia. A great number of 

landslides were triggered in the region during the West Sumatra 

earthquake (Mw. 7.6). In the study, the susceptibility map was 

generated with the landslide inventory triggered after the 

earthquake. In this region, which is susceptible to landslide 

occurrence, this study was aimed at determining the areas prone 

to landslides and preventing urbanization and development in 

these areas. In another study by Zhou et al. (2019), a landslide 

susceptibility map was produced using the landslides triggered 

by the Lushan earthquake (Mw. 7.0). The performance of 

susceptibility maps produced with different statistical and 

machine learning-based models was compared. Again, in this 

study, landslides triggered after the earthquake were used in the 

model training and testing phases. A machine learning-based 

model provided a more accurate result than models based on 

statistics. 

 

In the literature, landslide susceptibility maps have often been 

produced using a single inventory without consideration of 

seismic events due to a lack of suitable data. Here, unlike most 

studies, the landslide susceptibility map of the region was 

produced using the pre-earthquake landslide inventory and 

tested with the co-seismic landslide inventory that was unseen 

by the model. 

 

Although categorical ML methods such as decision trees have 

proven successful in landslide susceptibility mapping (e.g., see 

Karakas et al., 2020; Can et al., 2021), the validation of the 

results is still a research area as most studies use a part of the 

learning data for this purpose. Even though the unused part is 

not used for model training, the model represents the geological 

and topographical state of the input data and the landslide 

inventory. However, extreme events such as the 

Kahramanmaras earthquakes (6 Feb 2023) push the limit of the 

model results considering unseen data. Thus, the present study 

aimed at validating landslide susceptibility mapping using 

landslides triggered by Kahramanmaras earthquakes (6 Feb 

2023). For this reason, we produced the landslide susceptibility 

map using pre-earthquake landslide inventory with the RF 

algorithm. In this context, fifteen conditioning parameters were 

derived from different input datasets. Model performance 

obtained with the RF algorithm was evaluated with the AUC 

and statistical metrics. Additionally, feature importance analysis 

was used to assess the impact of the conditioning parameters on 

the model. The susceptibility map was also assessed by 

comparing the landslide susceptibility map and the co-seismic 

landslide inventory not seen by the model. The methodology 

(section 2) is explained in the following and the results and 

discussions (section 3) are provided accordingly. Conclusions 

and future work are given in the final.   
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2. METHODOLOGY 

2.1 Study Area  

On 06 February 2023, two destructive earthquakes with 

magnitudes of Mw 7.7 and Mw 7.6 occurred, with epicenters in 

Pazarcik and Elbistan of Kahramanmaras. After the 

earthquakes, many landslides were triggered and have become 

one of the most important secondary disasters. Especially, most 

of these landslides were seen in Amanos Mountains. The study 

area is located in the southern part of Türkiye as a part of the 

Amanos mountains with an area of 4,558.50 km2. Figure 2 

shows the location map of the study area. The area, which is 

part of the East Anatolian Fault Zone (EAFZ), has strong 

seismicity and significant tectonic activity. The altitude of the 

study area varies between 0 and 2,206 m. The slope angles 

range between 0° and 84°. In addition, there are 33 lithological 

units in the study area.  

 

 
 

Figure 2. The location map of the study area. 

. 

 

2.1.1. Geological characteristics 

Amanos region is one of the most complex and problematic 

regions of our country in terms of its stratigraphy, structural 

features and geotectonic location (Yalcin, 1980). The Amanos 

Mountains lie down on the northwestern edge of the Arabian 

plate and the Amanos Mountain region was shaped during the 

evolutional stages of the Southern Neotethys, containing pre-

rift, rift, passive margin, ophiolite formation and emplacement, 

collision, and uplift (Duman et al., 2017). The Amanos 

Mountains, which are between the western border of the SE 

Anatolian Thrust Zone (Emre et al., 2013) and the Karasu-

Hatay Graben (Yalcin, 1980) and include the East Anatolian 

Fault, form the western part of the Eastern Taurus Mountains 

(Usta et al., 2015). The region has high seismicity, and previous 

studies (Gokceoglu, 2022; Can et al., 2022) emphasized this 

character. 

 

The geologic unit in the area was aged from Cambrian to 

Recent according to a geological map prepared by Ulu (2002). 

Sedimentary, dynamo metamorphic, volcanic, and ophiolitic 

rock groups are settled in the region. The stratigraphic series 

starts with Precambrian-aged meta-sandstones and follows 

Cambrian to Silurian-aged shelf facies, including sandstone, 

shale, conglomerates, and carbonate deposits. Shallow water 

platform carbonates accumulated at the Jurassic age in the 

region. On top of these geologic units, Late Cretaceous and 

Miocene-aged ophiolitic rocks were settled. Most of the 

Paleozoic and Mesozoic sedimentary lithological units were 

subjected to metamorphism under greenschist facies conditions 

(Yilmazer and Duman, 1997). It has been stated by Yalcin 

(1980) that the widely spread ophiolitic rocks in the Amanos 

Mountains region represent an ancient oceanic crust. 

 

2.1.2. Pre-earthquake and Co-seismic Landslide Inventories 

The landslide inventory used in the study is multi-temporal. The 

pre-earthquake inventory was obtained from the geosciences 

WebGIS portal of the MTA of Türkiye (MTA, 2023). There 

were 119 landslides as polygons in the pre-earthquake 

inventory. The size of the pre-earthquake landslide area 

coverage ranges from 0.01 km2 to 4.31 km2. The co-seismic 

landslide inventory has a total of 619 landslide polygons and 

was produced in our study by comparing pre-and post-

earthquake orthophotos presented on the HGM Küre platform 

of the General Directorate of Mapping (HGM, 2023). The 

minimum and maximum post-earthquake landslide area values 

were calculated as 0.0001 km2 and 0.90 km2, respectively. Pre-

earthquake and co-seismic landslide inventory data together 

with an altitude map of the study area obtained from the EU-

DEM v1.1 of the Copernicus Programme are illustrated in 

Figure 3. In addition, 3D perspective views of a number of co-

seismic landslides are shown on pre- and post-event aerial 

orthophotos and the pre-event digital elevation model (DEM) in 

Figure 4. 

 

 

 
 

Figure 3. The DEM of the study area with sub-regions selected 

for further visualization, and parts of the pre-earthquake (green 

polygon) and co-seismic (red polygon) landslide inventories. 
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Figure 4. Examples of the co-seismic landslides shown on (a, c) 

pre-earthquake and (b, d) post-earthquake orthophotos (image 

credit: HGM Küre). 

 

 

2.2 Landslide Conditioning Parameters 

The study employed 15 conditioning parameters in total. EU-

DEM v1.1 was used to acquire topographic characteristics such 

as altitude, slope, aspect, plan and profile curvatures, 

topographic wetness index (TWI), stream power index (SPI), 

strahler order, channel network, and catchment area. These 

features were frequently used in the literature (e.g., see 

Gokceoglu and Ercanoglu, 2001; Nefeslioglu et al., 2012; 

Sevgen et al., 2019; Karakas et al., 2020; Can et al., 2021). EU-

DEM stands for “European Digital Elevation Model”. It is a 

high-resolution DEM that covers the entire European continent 

and provides topographic information on the Earth’s surface. 

EU-DEM was developed by the European Environment Agency 

(EEA) in collaboration with the European Space Agency (ESA) 

and several European National Mapping Agencies. It is based 

on the Shuttle Radar Topography Mission (SRTM) DEM and 

was processed and enhanced to improve its accuracy and 

quality. EU-DEM is widely used in various applications, 

including landslide susceptibility mapping, hydrological 

modeling, and environmental monitoring. 

 

In addition, the distance to roads, rivers, faults, lithological 

units, and the ESA WorldCover map (ESA-WorldCover, 2020) 

were used as conditioning factors. The input characteristics and 

their respective data sources are summarized in Table 1. 

 

 

Datasets Data 

Format 

Source Scale 

Resolution 

EU-DEM 

v1.1 

Grid The Copernicus 

Programme 

25 m 

WorldCover Grid ESA 10 m 

Lithology Polygon MTA 1/100,000 

Faults Polyline MTA 1/250.000 

Roads Polyline HGM 1/25.000 

Rivers Polyline HGM 1/25.000 

 

Table 1. The input features as landslide conditioning factors 

and their data sources used in the study. 

2.3 Landslide Susceptibility Mapping 

The RF developed by Breiman (2001) is a popular ML 

algorithm that has been used in many fields, including 

geosciences, to predict the likelihood of landslide occurrences. 

The algorithm works by constructing multiple decision trees 

based on different subsets of the input data, features, and then 

combining their predictions to obtain a more accurate and 

robust model. 

 

In this study, the RF was chosen as a ML algorithm because it 

has several advantages over the other techniques, such as higher 

accuracy, robustness to noise and missing data, and the ability 

to handle high dimensionality with many input variables. It also 

reduces the risk of overfitting, which is a common problem with 

decision trees. Additionally, the RF provides flexibility in 

handling both regression and classification tasks with a high 

degree of accuracy, and it is effective in feature selection, which 

can help identify the most important predictors of landslide 

susceptibility. The RF algorithm was applied here by using the 

scikit-learn library (Scikit-learn, 2023) in Python. 

 

The pre-earthquake landslide inventory shown in Figure 3 was 

used for model training and validation. For model training and 

validation, a total of 7,981 pixels (25 m resolution) available in 

the landslide inventory were used. 6,384 of those (80%) were 

used as training data, and the remaining 1597 pixels were used 

as test data. A total of 11,971 pixels were randomly selected 

from areas without landslides (50% greater than the inventory). 

The model’s predictive performance was evaluated with the area 

under the receiver operatic characteristic curve (AUC), 

precision, recall and F1 Score values. An external validation 

was performed by using a co-seismic landslide inventory in the 

study area. This inventory was never used for model training. 

For external validation, the susceptibility map and the co-

seismic landslide inventory were overlayed and the class values 

of the pixels under these intersection areas were compared. 

 

The Mean Decrease in Impurity (MDI) method was used to 

calculate the importance of each predictor variable in the model. 

The contribution of the predictor variables to the model is taken 

into account in proportion to the calculated value. The higher 

the calculated value, the more the parameter contributes to the 

model.  

 

3. RESULTS AND DISCUSSIONS 

In the following, the predictor parameters obtained from the 

input dataset, the landslide susceptibility map (LSM) produced 

with the RF algorithm and predictive performance results, and 

the validation of LSM with co-seismic landslide inventory were 

assessed and discussed. 

 

3.1 The Predictor Parameters Results 

The predictor parameters obtained from the input dataset were 

classified as topographical (altitude, slope, aspect, plan and 

profile curvature, catchment area, channel networks and 

Strahler order), geological (lithology, distance to faults), 

environmental (LULC, distance to roads), and hydrological 

(SPI, TWI and distance to rivers). The predictor parameters 

result of the sub-parts indicated in the blue square in Figure 3 

are shown in Figure A1 in the Appendix for visual inspection. 

 

(a) (b) 

(c) (d) 
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3.2 The LSM, Predictive Performance and Feature 

Importance Results  

Here, the LSM produced with the RF algorithm using fifteen 

predictor parameters is presented in Figure 5. The result map 

was classified into five categories (very low, low, moderate, 

high and very high) using the natural breaks algorithm (Jenks 

1967). Table 2 shows the distribution and percentages of 

landslide probabilities for five categories. These results indicate 

that more than half of the region is in fact susceptible to 

landslides. 

 

 
 

Figure 5. Landslide susceptibility map result using the RF 

method. 

 

 

Class Probability 

(%) 

Size 

(km2) 

Percentage 

(%) 

Very High 61-100 373.36 8.2 

High 44-61 898.64 19.7 

Moderate 29-44 1225.52 26.9 

Low 12-29 925.68 20.3 

Very Low 0-12 1135.29 24.9 

 

Table 2. The landslide probability distributions and percentages 

obtained from the RF algorithm. 

 

The predictive performance results of the RF algorithm were 

evaluated according to ROC Curve (AUC value) and statistical 

measures (F-1 score, precision and overall accuracy value). The 

ROC Curve obtained from the RF and the statistical metrics 

results are presented in Figure 6 and Table 3, respectively.  

 
Figure 6. The ROC curve obtained from RF results. 

 

 

Class Precision Recall F1 Score 

Non-landslide 0.98 0.98 0.98 

Landslide 0.96 0.97 0.98 

 

Table 3. Overall statistical metrics of the RF algorithm 

 

The importance analysis results of the predictor parameters are 

given in Figure 7. Slope is the most predictive parameter, 

followed by lithology, distance to faults, altitude and LULC in 

the study. 

 

 
Figure 7. Feature importance results obtained from the RF 

algorithm. 

 

 

3.3 Validation of the LSM with Co-seismic Landslides 

In this part, the validation of the landslide susceptibility map 

produced using the RF algorithm was tested using the 

earthquake-triggered landslide inventory (co-seismic 

landslides). The test accuracy of the produced landslide 

susceptibility map has an overall accuracy of 80%. In addition, 

the results were evaluated visually. In Figure 8, the result of the 

landslide susceptibility map for some areas is shown together 

with the co-seismic inventory. It was observed that the 

landslides triggered after the earthquakes are generally in high-

susceptibility areas in the study area. 
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(a) 

  
(b) 

  
© 

  
(d) 

 
 

Figure 8. Comparison of the landslide susceptibility map result 

with the co-seismic landslide inventory (test data) in sub-areas. 

 

 

4. CONCLUSIONS 

In the present study, the validation of RF-based landslide 

susceptibility mapping was evaluated in a part of the Amanos 

Mountains. For this evaluation, the landslide inventory 

triggered after the Kahramanmaras earthquakes was used. The 

landslide susceptibility map was produced using the pre-

earthquake landslide inventory. The prediction performance of 

the model evaluated with the AUC value is 97%. The result 

shows the high classification performance of the RF model for 

landslide susceptibility and risk assessments. The predictor 

parameters employed for the landslide susceptibility map were 

also found suitable for modeling. On the other hand, a co-

seismic landslide inventory was used to test the produced 

landslide susceptibility map. This inventory was never used in 

the model training phase. The test accuracy result was 

calculated at 80%.  

 

As can be seen from the pre-earthquake landslide inventory, 

especially the south part of the Amanos region is free from 

landslides. However, during the last major earthquakes, several 

landslides were triggered. This interesting situation shows the 

importance of regional landslide mapping studies.  

 

The statistically and visually evaluated results show that the 

produced landslide susceptibility map can contribute to studies 

such as site selection, sustainable land use planning and future 

disaster mitigation efforts.  

 

The relationship between pre-earthquake landslide 

susceptibility analyses and landslides that occur after an 

earthquake is essential for both pre-disaster planning and post-

disaster recovery efforts. Therefore, improving landslide 

susceptibility maps and studying landslides that occur after an 

earthquake will be important steps in disaster management. 
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Figure A1. The landslide conditioning parameters used in the 

study. 
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