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ABSTRACT:

The COVID-19 pandemic has strongly impacted the vast majority of countries in the world. As of today (April 12th, 2023),
more than 762 million confirmed cases and nearly 6.9 million deaths are considered widely underestimated. During a pandemic,
detecting clusters of patients is crucial to allocate resources and aiding decision-making better as emergent outbreaks continue to
grow. However, delays in reporting suspected or confirmed cases can affect the detection of clusters in near real-time. This study
aimed to assess whether the delays in reporting COVID-19 in Mexico presented specific Spatiotemporal patterns and whether they
significantly affected the detection of clusters. To do this, we used the daily records of the Mexican Ministry of Health for three
dates at the beginning and during the increase in cases of the fourth wave (January 2022). We compared the clusters obtained
using the data available on the same date and during the following days, including delayed data. We carried out cluster detection
using the flexible spatial scan statistic (FlexScan) on the R platform. The results indicate that the spatial distribution of delays was
heterogeneous and that delays affect cluster detection.

1. INTRODUCTION

In December 2019, a new type of coronavirus called SARS-
CoV-2 (severe acute respiratory syndrome coronavirus 2) was
initially documented in Wuhan, located in China. Subsequently,
the Coronavirus Disease (COVID-19) pandemic has rapidly
disseminated across the world, leading to 763 million con-
firmed cases and approximately 6.9 million recorded fatalities
worldwide, according to the World Health Organization (ht-
tps://covid19.who.int/). America was a highly impacted re-
gion America, particularly the USA, Brazil and Mexico, which
presented the most substantial number of deaths.

According to the Ministry of Health of Mexico records, the
first confirmed cases of COVID-19 in Mexico were reported in
February 2020. COVID-19 has spread throughout the territory,
with about 7,553,646 cumulative confirmed cases and 333,596
deaths. Without an effective treatment or vaccine, the Mexican
Government declared a health emergency and put in place vari-
ous sanitary measures to control the spread of the virus.

These measures encompassed a nationwide campaign to en-
courage social distancing, increased healthcare spending, and
the closure of non-essential economic activities from March 23
to May 30, 2020. Following this lockdown period, a phased
reopening of economic activities commenced and was adjusted
at the state level using color-coded restriction levels (Acuña-
Zegarra et al., 2020). These restrictions were determined based
on hospital occupancy rates, trends, and the incidence of cases
in each state and neighboring areas.

In December 2020, a national vaccination plan against COVID-
19 was initiated, initially prioritizing healthcare workers deal-
ing with COVID-19 from December 2020 to February 2021,
followed by other healthcare workers and older people from

∗ Corresponding author

February to April 2021. As of October 23, 2021, the vaccin-
ation rate had reached 84.5 doses per 100 people, with 40.7%
of the population fully vaccinated and 54.1% receiving at least
one dose. By the end of December 2022, approximately 76%
of the country’s population had received at least one dose of the
vaccine.

The Ministry of Health collected the cases of COVID-19
daily and made them available to the public on an open
data platform (https://www.gob.mx/salud/documentos/datos-
abiertos-152127, accessed September 26, 2023), allowing re-
searchers to use these data.

During an epidemic, it is crucial to carry out spatiotemporal sur-
veillance to identify unusual aggregations of cases in space and
time or ”clusters”. Identifying these clusters allows for prior-
itizing areas for specific interventions and resource allocation.
Spatiotemporal scanning statistics (Kulldorff, 1999) have been
widely used for various diseases (Coleman et al., 2009; Zheng
et al., 2014), including COVID-19 in various countries (Ander-
sen et al., 2021; Ballesteros et al., 2020; Desjardins et al., 2020;
Greene et al., 2021; Hohl et al., 2020; Mas and Pérez-Vega,
2021; Rosillo et al., 2021).

The detection of active outbreaks, which seeks to identify emer-
ging clusters in almost real-time, allows decisions to be made
based on the development of the epidemic, , allowing for a rapid
and focused response (Desjardins et al., 2020). However, it de-
pends on the quality and updating of the records. In particu-
lar, we can assume that spatial biases in the reporting rate and
delays in case confirmation and reporting affect the detection of
clusters.

This study aims to evaluate the reporting delays of confirmed
cases and their impact on the detection of clusters during the
COVID-19 pandemic in Mexico.
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2. MATERIALS

We used both epidemiological and geographical auxiliary data:

• Records of confirmed cases of COVID-19 obtained from
the open data platform of the Ministry of Health. The re-
cords contain information on the date of admission of the
patient to a health unit, the date of confirmation of the case,
and the municipality of residence of the patient, allowing
data aggregation at the municipal level.

• Digital maps of municipality boundaries and mu-
nicipal capital cities from the National Institute
of Geography and Statistics (INEGI), available at
http://en.www.inegi.org.mx/datos/.

• 2020 Population and Housing Census (ht-
tps://censo2020.mx/) (INEGI, 2021).

To construct the records of confirmed cases of COVID-19, in-
formation from each health center or hospital was concentrated
by the Health Secretary and put online. However, there are large
differences between health centers (for instance, between rural
and urban areas) concerning access to the internet, administrat-
ive capacity, etc.) and a delay between the date of admission
of a patient in the hospital, the confirmation of the case and the
integration on the national database (Figure 1).

Figure 1. Collecting and processing of COVID-19 confirmed
cases information.

We carried out all the analyzes using the R program (R Core
Team, 2021), in particular the packages FlexScan (Tango and
Takahashi, 2012), gdistance (van Etten, 2017), rflexscan (Otani
and Takahashi, 2020), sf (Pebesma, 2018), and spdep (Bivand
et al., 2013).

The geographical database relies on the Lambert conformal
conic projection, which is a type of map projection using
two standard parallels to minimize scale distortion within a
specific region. False easting and northing are used to en-
sure that coordinate values are expressed in meters with pos-
itive values. A detailed explanation is presented in Mas
(2021). To support practical reproducibility (Nüst and Pe-
besma, 2021), both the dataset and the associated scripts are
accessible on Mendeley Data (DOI: 10.17632/mc37xdzw74.1,
https://data.mendeley.com/datasets/mc37xdzw74).

3. METHODS

We obtained the daily databases between January 1 and March
31, 2022. Based on these data, we constructed a three-

dimensional array, each dimension representing the municip-
ality, the date of admission of the patient, and the date of regis-
tration in the database, respectively. The number of cases and
the reporting date corresponding to a specific date of admission
can be easily extracted from the array, allowing us to observe
the delay between the date of entry of a patient and the date on
which the case was reported in the records. We analyzed the
admission dates of January 5, 15, and 31, 2002. These dates
correspond to the beginning, midpoint, and peak of Mexico’s
fourth wave of COVID-19 (Figure 2).

Figure 2. Beginning, midpoint, and peak of Mexico’s fourth
wave of COVID-19.

We calculated a delay index DI for each date of admission and
each municipality, which is the sum of the proportion of cases
pd weighted by the number of days of delay d as shown in equa-
tion (1).

DI =

∑n

d=1
d.pd∑n

d=1
d

(1)

where DI is the delay index,
pd is the proportion of cases in the reports,
d is the duration of the delay (number of days).

We examined 1) the relationship between the delay index and
the number of cases to assess whether the delay was related to
the saturation of health services and 2) the relationship between
the delays observed on different dates by calculating the Pear-
son correlation coefficient.

In the next step, the clusters of a specific date were identi-
fied with the data available the next day and subsequent days
to assess whether the delays impacted the detection of clusters
(Figure 3). For this, we used the ”flexibly shaped spatial scan-
ning” (FlexScan) approach proposed by Tango and Takahashi
(2005), which allows the detection of irregularly shaped con-
glomerates (Tango and Takahashi, 2005).

This algorithm can identify irregularly shaped clusters, such as
those resembling linear features like communication network.
In contrast, algorithms relying on circular windows struggle to
identify non-circular clusters accurately. They tend to encom-
pass larger areas than the actual cluster by including surround-
ing regions (Tango and Takahashi, 2005, 2012). In the context
of monitoring epidemics, it is challenging to predict the size of
a cluster in advance, especially when the population at risk is
not evenly distributed. For instance, when considering the null
hypothesis that disease risk is equal inside and outside a cluster,
urban areas are expected to have more cases than similarly sized
rural areas due to higher population density. Analytical solu-
tions for obtaining probabilities in such complex scenarios have
not been found. Therefore, the algorithm utilizes Monte Carlo
hypothesis testing to determine p-values (Kulldorff, 1999).
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Figure 3. Spatio-temporal scanning based on a space-defined by
a cylinder (x and y axis) and time (t axis). The cases inside the
cylinder define a cluster (red points) when they are significantly
more frequent than outside the cylinder. In Flexscan, an irregular

shape is used instead of the ellipse.

The algorithm generates a series of irregularly shaped candid-
ate clusters for each region, such as municipalities, by progress-
ively including connected areas. In essence, it creates numer-
ous distinct but overlapping irregular windows. For each can-
didate cluster, the algorithm compares the observed number of
COVID-19 cases to the expected number. The assumption here
is that COVID-19 cases follow a Poisson distribution, consist-
ent with previous spatial COVID-19 studies that employed the
spatial scan statistic (Andersen et al., 2021; Ballesteros et al.,
2020; Desjardins et al., 2020; Greene et al., 2021; Hohl et al.,
2020; Rosillo et al., 2021).

The null hypothesis posits that the distribution of COVID-19
incidence across space is random, while the alternative hypo-
thesis suggests that incidence increases within the cluster. To
assess the statistical significance of these clusters, the algorithm
estimates the log likelihood ratio (LLR) using Monte Carlo ran-
domization with 999 replications. The p-value is derived by
comparing the rank of LLR values from actual data with those
from randomized data sets. If this rank is denoted as R, then the
p-value can be calculated as equation (2).

p =
R

1 +Ns
(2)

where p is the p-value and,
Ns represents the number of simulations.

Statistically significant clusters that do not overlap are retained
(p ≤ 0.05). The sets of municipalities belonging to detected
clusters were compared with the data available immediately
after the admission date and during the subsequent days. The
comparison was made through the Jaccard index, which allows
the evaluation of the similarity between the elements of two lists
(Real and Vargas, 1996). The index was developed to compare
lists of species at various sampling sites and varies between 0
(no elements in common) and 1 (same elements in both lists).

4. RESULTS

Figure 4 shows the number of cases with entry (admission) date
of January 15th 2022 reported on the following dates for some
municipalities with more than 50 selected cases. We can ob-
serve that the curves saturate before day 60, indicating that all
entries were recorded within this period. However, in some
cases, a significant proportion of the patients take up to 40 days
to be integrated into the database. We observed similar patterns
for the entry dates of January 5th and 31st (Figures 5 and 6).

Figure 4. Number of cases of 1/15/2022 reported during the 60
following days for a set of randomly selected municipalities.

Figure 5. Number of cases of 1/05/2022 reported during the 60
following days for a set of randomly selected municipalities.

Figure 6. Number of cases of 1/31/2022 reported during the 60
following days for a set of randomly selected municipalities.
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Figures 7, 8 and 9 represent the delay index by municipality for
January 5th, 2022, January 15th, 2022 and January 31st, 2022,
respectively.

Figure 7. Delay index (January 5th, 2022)

Figure 8. Delay index (January 15th, 2022)

Figure 9. Delay index (January 31th, 2022)

The delay index shows a Pearson correlation coefficient of 0.14
and 0.11 with the number of cases per municipality for the 15th
and 31st of January 2022, respectively. For the date of Janu-
ary 5th (beginning of the wave) and considering the proportion
of the municipal population infected, the coefficient values are

close to zero. On the other hand, the correlation between the
delay indices observed for the three dates is between 0.29 and
0.41, which shows that the same municipalities tend to present
delays on the three dates.

Date Number of cases Case Proportion
January 5th 0.04 -0.03
January 15th 0.14 0.04
January 31st 0.11 0.00

Table 1. Correlation between the delay index and the number of
cases and the proportion of cases in population.

January 15th January 31s
January 5th 0.41 0.29
January 15th - 0.40

Table 2. Correlation between delay index of different dates.

Finally, we applied the ”flexibly spatial scanning” to the con-
firmed cases reported daily after the studied entry dates to de-
tect clusters. Figure 10 presents the value of the Jaccard index
among the municipalities that were integrated into a cluster us-
ing the complete data (those from the records 60 days after the
date of entry) and those obtained between 1 and 10 days after
the admission date. We can observe that for the three dates, the
Jaccard index reaches 0.8 with data available one week after the
entry date, indicating that the detected clusters are very similar
to those obtained with the complete data.

Figure 10. Similarity (Jaccard index) between the clusters
obtained with the complete data and the data available between 1

and 10 days after the admission date.

5. DISCUSSION

This results shows that the delay in daily confirmed case regis-
trations affects cluster detection in near real-time but this effect
decreases importantly after a five or six days. However, there
are additional limitations that this study does not consider as it
supposes that the data are complete after a delay of 60 days. We
should consider that confirmatory tests are strongly biased to-
wards symptomatic patients. The epidemiological information
about confirmed cases represents only a relatively small pro-
portion of all infections (Pullano et al., 2021; Wu et al., 2020).
Asymptomatic people account for approximately 30 to 45 per
cent of SARS-CoV-2 infections (Oran and Topol, 2020).

When working with aggregated data, an important considera-
tion is the potential impact of aggregation on statistical ana-
lysis. This phenomenon, the Modifiable Area Unit Problem
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(MAUP), is a type of ecological fallacy (Openshaw, 1984). In-
terestingly, it has received minimal attention in studies examin-
ing the spatial aspects of the COVID-19 pandemic (Wang and
Di, 2020). They demonstrated that MAUP could affect the re-
lationship between COVID-19 and atmospheric NO2.

In our current investigation, we have minimized the influence
of MAUP since our primary objective was not to establish cor-
relations between variables, such as the incidence rate versus
risk factors. Nonetheless, it is essential to acknowledge that us-
ing the total population of a municipality simplifies the analysis
and overlooks the population’s distribution within that muni-
cipality. The contagion patterns are likely to differ significantly
between municipalities where most of the population resides in
the capital city and those where the population is spread across
numerous small settlements (Garland et al., 2020).

6. CONCLUSIONS

This study shows that the delay in daily confirmed case regis-
trations affects cluster detection in near real-time but this effect
decreases importantly after a week. However, it would be help-
ful to analyze the historical data further to assess whether using
the unconfirmed cases or the active or weekly cases allows bet-
ter detection of the clusters. In addition, we should consider that
confirmatory tests are strongly biased towards symptomatic pa-
tients. Aggregation at the municipality level is also a limitation
for decision-making, and data aggregated at the neighbourhood
or zip code level would be more appropriate.
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