
A COMPARISON STUDY ON DEEP LEARNING MODELS FOR BUILDING ROOFTOP 

CLASSIFICATION 

Angel Spasov  1 *, Dessislava Petrova-Antonova 1, 2, Emil Hristov 1 

1 GATE Institute, Sofia University, Sofia, Bulgaria – (angel.spasov, dessislava.petrova, emil.hristov)@gate-ai.eu 
2 Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria – d.petrova@fmi.uni-sofia.bg 

KEY WORDS: Rooftop Classification, Convolutional Neural Networks, 3D City Models. 

ABSTRACT: 

The availability of semantic information about a cityscape is essential for understanding and analysing urban processes. Automatic 

gathering of such information is important due to the enormous amount of data. A great number of building features could be gained 

solely by visual inspections. Therefore, it is meaningful to utilize recent advancements in automatic image recognition technologies to 

extract these properties automatically.  

This paper proposes an optimized solution for the classification of rooftops from aerial imagery based on a deep learning model using 

Convolutional Neural Networks (CNNs). It describes the architecture of the network, the training procedure and important 

hypermeters. A model analysis using advanced interpretability and explainability tools is conducted. The model’s superiority is 

demonstrated by comparing its performance against several state-of-the-art image classification architectures, including CNN-based 

ones such as Xception and Efficientnet, pure Visual Transformers (ViTs) based architectures such as BEiT, and hybrid architectures. 

1. INTRODUCTION

Automatic image recognition plays a crucial role in 

understanding and analysing urban processes, particularly in the 

context of the built environment. By harnessing recent 

advancements in deep learning and Convolutional Neural 

Networks (CNNs), it becomes possible to automatically extract 

valuable information from urban imagery, facilitating effective 

decision-making and urban analysis. In this regard, building 

rooftop classification holds significant importance as it provides 

essential semantic information about the cityscape. 

Accurate modelling of buildings and their rooftops is essential 

for various applications, including infrastructure and service 

planning, solar potential estimation, green roof analysis, and 

social space assessment. 3D city models and City Digital Twins 

(CDTs) in general replicate the physical environment of a city 

and enable comprehensive analysis of urban processes. Proper 

modelling of buildings at different levels of detail (LOD) is 

crucial for generating detailed 3D city models and functional 

CDTs. Rooftop modelling, classified at LOD2 or LOD3, 

enhances the visual perception of 3D city models and facilitates 

various urban analyses (Biljecki et al., 2015; Julin et al., 2018; 

Suszanowicz, 2019; Shao et al., 2021; Pomeroy, 2012). 

To achieve accurate rooftop modelling, access to high-quality 

data is vital, including aerial imagery and semantic information. 

The latter can be extracted through automatic image recognition 

methods. Recent research has focused on developing optimized 

deep-learning models for automatic rooftop classification, 

leveraging the capabilities of CNNs. These models can 

efficiently extract building features solely through visual 

inspection, thereby improving the modelling process within 

CDTs (Spasov, 2021; Castagno, 2018; Cai et al., 2021). 

This paper proposes an enhanced approach for categorizing 

rooftops from aerial images, utilizing a CNN deep learning 

model. It outlines the network's structure, the training process, 
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and significant hyperparameters. The fine-tuned model weights 

trained on images of Sofia (Bulgaria) are shared on GitHub 

(2023). Advanced tools are employed for model analysis to 

ensure model interpretability and explainability. Moreover, the 

performance of the proposed model is compared against several 

state-of-the-art image classification architectures, including 

CNN-based models like Xception and Efficientnet, pure Visual 

Transformers (ViTs) such as BEiT, and hybrid architectures. 

The rest of the paper is organised as follows. Section 2 presents 

the methodology applied in the study. Section 3 shows the results 

obtained from the proposed fine-tuned model compared to other 

state-of-the-art image classification models. Finally, Section 4 

concludes the paper and outlines future work. 

2. METHODOLOGY

This section describes the methodology followed for the rooftop 

classification, including data preparation and labelling, model 

selection and optimisation and its performance evaluation. 

2.1 Data Preparation 

The classification models utilised in this study have deep learning 

architectures and are trained using a supervised learning 

approach. Depending on the problem to be solved, i.e., the object 

to be identified and classified, supervised models could require a 

substantial amount of data to achieve high (classification) 

performance. For example, the high optical variability of objects 

belonging to the same class (intra-class variability) and the high 

visual similarity of objects containing different classes make the 

classification task more difficult to solve. Other factors are image 

quality (such as resolution, noise and illumination) and the 

proportion of objects of interest to the area of the entire image. In 

addition, the unambiguity of the objects to be classified, as well 

as the presents of a single object of interest on an image, are 

prerequisites for a single-class prediction. Considering these 
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factors, the data definition, collection and all preprocessing steps 

applied in this study are carefully selected and performed. 

 

A dataset consisting of 3,517 rooftop images encompassing the 

district "Lozenets" of Sofia was employed for the study (Hristov, 

2023). It is derived from a solitary orthophoto, made available in 

TIFF format and represented in the RGB colour space. The 

orthophoto was acquired in 2020 using aerial photography 

techniques, employing an ultra-wide range digital camera. The 

acquisition process involved a longitudinal overlap of 60% and a 

transverse overlap of 30% to ensure comprehensive coverage and 

accurate representation of the district. Notably, the orthophoto's 

Ground Sampling Distance (GSD) was 10 cm, which is 

considered highly detailed and distinctive for an urban 

environment like the city of Sofia. 

 

The preparation of the dataset involved a meticulous process 

executed in multiple steps to support the classification models. 

Initially, a QGIS plugin named Mapflow is used to localise the 

buildings from the orthoimage. This automated procedure helped 

to identify the approximate outlines of the buildings based on the 

available data. Subsequently, a manual adjustment is performed 

to refine the inferred buildings' outlines. Third, the orthoimage is 

tiled based on the resulting outlines from the previous step aiming 

to extract each building in a separate image. Specifically, the 

applied tiling rule produces images containing detected building 

boundaries with an additional outer buffer of 2 meters (see Figure 

1). This buffer ensures that the extracted images encompass the 

whole outlines of each building, separating neighbouring 

structures in another tile. 

 

 

Figure 1. Generated 2 m. buffer (orange outlines) by the roof 

outlines (purple). 

By following this procedure, the resulting dataset was optimally 

prepared for a one-class prediction. The combination of 

automated techniques and manual refinement allowed for the 

creation of a comprehensive dataset efficiently. This dataset 

serves as the foundation for training and evaluating the models in 

the current study. 

 

2.2 Data Labelling 

The study area is distinctive for its complex architecture, 

characterised by various roof shapes. Therefore, a careful 

selection labelling strategy is essential to balance intra-class 

variability and inter-class similarity, which is also advantageous 

for the purpose of the model. Based on this consideration, the 

single rooftop images are classified into three main classes, 

namely “pitched”, “flat”, and “complex”. An additional helper 

class, “no_roof”, is introduced to cover cases where the image 

doesn’t represent a roof. Figure 2 shows examples from the four 

classes. 

 

 
 

(a) flat roof (b) pitched roof 

  
(c) complex roof (d) “no_rooof” 

Figure 2. Sample roof classes. 

The “flat” roof class encompasses completely flat roofs with a 

minimal slope (see Figure 2a). Key identifying features typically 

include a simple rectangular shape, perpendicular angles, 

uniformity in terms of pixels, colours, and the absence of distinct 

planes. It is important to note that buildings with flat roofs 

spanning multiple levels are also included in this category, which 

may lead to potential overlap with the complex roof category. 

 

The „pitched” roof class includes all sloped roof types, including 

hip and gable roofs, and their various configurations (see Figure 

2b). Roofs are considered part of this class regardless of the 

number of planes they comprise, as long as they possess a sloping 

structure. The criteria and key features utilised for the 

classification of a roof as pitched include the presence of hips and 

ridges, which form clear demarcation lines between the planes. 

An identifiable diagonal hip line and darker or shaded planes on 

the opposite side of the ridge serve as indicators for a pitched 

roof. 

 

The “complex” roof class covers roofs that incorporate a 

combination of pitched and flat geometry. Additional criteria for 

inclusion in this category include roofs with multiple levels and 

terraces, roofs with intricate shapes featuring numerous slopes, 

and roofs with oval or spherical forms. A roof is classified as 

complex when multiple buildings with distinct roof types and 

varying shapes share walls, giving the appearance of a unified 

roof area or building. 

 

The “no_ruf” class incorporates images that do not illustrate 

buildings, including construction sites, unclear or blurry images, 

extremely small sections of roofs, or shapes that are inherently 

unidentifiable to the human eye. 

 

The above considerations aim to minimise ambiguity among the 

images and overlap between the classes and act as annotation 

rules. Furthermore, following them consistently while annotating 

is important, since the inconsistency would provide contradictive 

examples for the models to learn from. Consequently, the 

classification performance is affected due to the relative amount 

of such cases to the size of the dataset and the respective classes. 
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Given the extensive range of roof architectures, however, a 

certain level of subjectivity and partial overlap are inevitable. 

 

2.3 Model Selection and Optimisation 

For the current classification task, a widely used ResNet 

architecture is selected. This type of architecture has been 

successfully utilised as a feature extractor and serves as a 

backbone for various image recognition tasks such as 

classification, detection and segmentation. The ResNet 

architectures contain residual functions, so-called “identity 

blocks”, which effectively tackle the problem of vanishing 

gradients. This problem refers to the fact that the gradients of 

deep neural networks become increasingly small as they 

propagate backwards. As a result, the network is unable to update 

its parameters effectively. The ResNet architectures provide an 

effective solution for this phenomenon by incorporating an 

additional connection called a skip connection or residual 

connection in the network. It allows the network to “choose” 

whether to use a learned transformation or to simply propagate 

its input to the next layer if this is the optimal solution. 

  

Several experiments are conducted using different model sizes, 

namely ResNet18, ResNet50 and ResNet101. All three CNNs 

consist of similar building blocks, composed of convolutional 

layers, pooling layers, normalisation layers and Rectified Linear 

Unit (ReLU) activations. The main difference between the 

networks is in the number of building blocks, presented in 

brackets in Table 1, and consequently, the number of learnable 

parameters (He, 2016). ResNet18 is the smallest network with ca. 

11.7 million parameters and ResNet101 with ca. 44.5 million 

parameters. The output of these networks for an image is a 512 

or 2048-dimensional feature vector, which is a dense 

representation of the image. Based on these feature vectors a fully 

connected layer assigns a “score-value” to each of the classes. 

 
Layer 

name 
Conv1 Conv2_x Conv3_x Conv4_x Conv5_x 

ResNet
18 

7
x
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3
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[
3𝑥3, 64
3𝑥3, 64

] × 2 [
3𝑥3, 128
3𝑥3, 128

] × 2 [
3𝑥3, 256
3𝑥3, 256

] × 2 [
3𝑥3, 512
3𝑥3, 512

] × 2 

ResNet 
34 [

3𝑥3, 64
3𝑥3, 64

] × 3 [
3𝑥3, 128
3𝑥3, 128

] × 4 [
3𝑥3, 256
3𝑥3, 256

] × 6 [
3𝑥3, 512
3𝑥3, 512

] × 3 

ResNet 
50 [

1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

] × 3 [
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

] × 4 [
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

] × 6 [
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

] × 3 

ResNet  

101 [
1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

] × 3 [
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

] × 4 [
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

] × 23 [
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

] × 3 

ResNet  
152 [

1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

] × 3 [
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

] × 8 [
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

] × 36 [
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

] × 3 

Output 
size 

112x112 56x56 28x28 14X14 7x7 

Table 1. Architectures for ImageNet (He, 2016). 

ResNet101 showed slightly better performance. Even though the 

training time was around 30% slower for the same number of 

epochs compared to ResNet50 and around 50% slower than 

ResNet18. Nevertheless, the larger network is selected due to the 

still relatively short training time (under 3 minutes for 15 epochs 

with early stopping rules on a single RTX 3080 NVIDIA GPU 

with 16GB RAM) and the prioritised performance. 

 

The network is initialised with parameters (weights) pre-trained 

on the ImageNet database. ImageNet is a large dataset consisting 

of images with diverse objects and backgrounds. Its 

characteristics make it particularly suitable for Transfer Learning 

where knowledge obtained from one domain is applied to a new 

domain. The parameters could be used without finetuning in the 

convolutional blocks or at initialisation. In the latter case, models 

pre-trained on this dataset show faster convergence and often 

better performance than those without using pre-trained weights. 

In CNNs, earlier layers of the networks extract more general low-

level features, whereas deeper layers extract more domain-

specific high-level features. Therefore, finetuning the deeper 

layers solely is often advantageous when there is a specific 

domain and initial weights trained on a large, diverse dataset are 

available. This is the case in the current study. Since ImageNet 

does not contain areal imagery, finetuning of the deeper 

convolutional layers should lead to better performance. 

Experiments are conducted with and without finetuning the 

ResNet backbone. However, finetuning the last convolutional 

block increased the performance significantly; thuss, the next 

iterations in the hyperparameter tuning processes are conducted 

with finetuning of this block. Figure 3 illustrates the ResNet101 

architecture with the finetuned blocks. 

 

Figure 3. ResNet101 architecture with the finetuned blocks. 

An extensive hyperparameter tuning is performed, experimenting 

with elements such as loss function, regularisation techniques, 

data augmentation and optimisation strategies. Selected values in 

the experiments were based on common practices and the results 

of the previous iterations in a semi-manual manner utilising grid 

search optimization strategies as well. In the following, the main 

elements of the optimized training design are presented. 

 

2.3.1 Optimisation Loss: The network is optimized using a 

Negative Log Loss in combination with the Log of Softmax, 

which minimising is equivalent to maximising the entropy of the 

classification.  The following implementation of the loss is used: 

 

∑ 𝑙𝑛
𝑁
𝑛=1 , 𝑙𝑛 = −𝑤𝑦𝑛𝑙𝑜𝑔

exp(𝑥𝑛,𝑦𝑛)

∑ exp(𝑥𝑛,𝑐)
𝐶
𝑐=1

    (1) 

 

where  x is the input 

 y is the target 

 w is the weight 

 C is the number of classes 

 N spans the minibatch dimension. 

 

2.3.2 Optimiser: The Stochastic Gradient Descent (SGD) and 

Adam optimizer are tested with different initial learning rates and 

learning rate scheduling tactics, including annealing techniques 

such as stepwise, cosine and warm restart cosine annealing. With 

neglectable impact on performance, the final model used 

“reduced on plateau” scheduling with 3e-4 initial learning rate. 

 

2.3.3 Data Augmentation: The network is trained with the 

stated details for 100 epochs with and without data augmentation. 

The vertical and horizontal flip is applied and in addition, random 

rotation, augmentation of brightness, contrast, saturation and hue 

of the images is performed. With augmentation, the training loss 

converged similarly as in the case where no augmentation was 

applied. However, the variance was significantly reduced with 

the application of the augmentation techniques. 
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2.4 Performance Evaluation 

The open-source machine learning platform Mlflow is used for 

tracking model performance during the research and 

development phase (Gundersen, 2022). The system allows for 

logging experiments and better comparison of different versions 

of models and datasets. The overall performance on the dataset 

as well as for each class separately, was assessed using precision, 

recall and F1-score using the following definitions. 

 

• Class-based Precision: How many of the predictions for 

a class were correctly predicted 

𝑃𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝐹𝑃
,  (2) 

 

• Class-based Recall: How many of the examples 

belonging to a certain class were correctly predicted 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,   (3) 

 

• Class-based F1-score: Harmonic mean of Precision and 

Recall 

𝐹1 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁,  (4) 

 

• Dataset-based accuracy: How many of all predictions 

were correct 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝐹𝑃+𝐹𝑁
,  (5) 

 

• Average precision over all classes in the dataset 

 ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑛𝑖 ,   (6) 

 

• Recall and F1-score over all classes in the dataset 

 ∑ 𝐹1𝑛𝑛𝑖 ,    (7) 

 

• Weighted F1-score 

∑ 𝐹1 ×
𝑘𝑖

𝑙

𝑁
𝑖 ,    (8) 

where TP is a true positive prediction 

 FP is a false positive prediction 

 FN is a false negative prediction 

 n denotes a class 

 Ki is the number of samples in a class 

 l is the number of all samples. 

 

Several analytical and interpretability techniques are applied to 

explore the model’s performance more in-depth. For each class 

and model, True Positives, False Positives and False Negatives 

(correct and misclassified images) are visually inspected. This 

helps in understanding what “confuses” the model and finding 

misclassified images and is especially useful for decisions 

regarding data cleaning and data enrichment.  To understand 

what is an image exactly contributes most to a certain class 

prediction a type of Gradient-weighted Class Activation Map 

(CAM) – GradCAM++ has been implemented (Chattopadhay, 

2018). This method generates a saliency map showing which 

special pixels have the largest contribution to a class prediction. 

It is based on the gradients of the last convolutional layer’s 

kernels and the resulting feature maps. This method is especially 

useful to analyse whether a model makes its predictions based on 

the right features, such as characterising a certain class. In 

addition, a TracInCP (Pruthi, 2020) is applied to find the most 

influential train images for a given prediction. This algorithm 

calculates the influential score for a given train example on a 

specified test image. This is achieved by estimating the change in 

the loss on the test image when the given train example is 

removed and the model retrained. In this case, one can find the 

train images with the most positive score – the proponents; as 

well as with the most negative score – opponents. 

 

The final model is compared to other state-of-the-art models on 

a randomly selected training-validation split. The models were 

selected so that different types of deep learning models are 

covered. Their weights were pretrained on ImageNet1k or 

ImageNet22k. CNN models tested are Xception (Chollet, 2016) 

and EfficientNet (Tan, 2019). Xception is reported to show 

slightly better performance than ResNet on some benchmark 

datasets. The architecture introduces modified separable depth-

wise convolution (a depth-wise convolution followed by a 

pointwise convolution) first introduced by the Inception model. 

EfficientNet on the other hand is developed to strive for optimal 

trade-off between model size, computational efficiency and 

model performance. It uses the concept of compound scaling, 

which systematically scales the network’s depth, width and 

resolution simultaneously. The optimized ResNet model is also 

compared against pure Visual Transformer – ViT (Dosovitskiy, 

2020) and BEiT (Bao, 2021) and hybrid architectures 

incorporating Visual Transformer (Steiner, 2021) and ResNet 

backbone. 

 

3. RESULTS 

The final optimized ResNet model shows consistent overall 

results over the 5-fold cross-validation with average accuracy of 

85%, average F1-score of 85%, average precision of 84%, and 

average recall of 84%. The observation suggests that the model 

performance on the dataset is independent of the exact images in 

the train and validation split. The results of each validation split 

are depicted in Table 2. 

 

Fold Accuracy 
Weighted 

F1-score 

Average 

F1-score 
Precision Recall 

Fold 1 87% 87% 85% 88% 87% 

Fold 2 88% 85% 88% 87% 85% 

Fold 3 84% 84% 81% 82% 82% 

Fold 4 83% 85% 82% 82% 82% 

Fold 5 83% 85% 82% 84% 82% 

Table 2. Results from the 5-fold cross-validation. 

To compare the performance to the other selected deep learning 

models, a random train validation split is performed. The 

optimized ResNet showed the highest performance across all 

observed metrics. It achieved an accuracy of 84.8%, a weighted 

F1-score of 85.2%, an average F1-score of 82.7% an average 

precision of 84.1% and a recall of 82.0% on the validation 

dataset. BEiT showed slightly lower performance with an 

Accuracy of 83.0% and F1-score of 80.1%. The other visual 

transformers ranked thereafter. The other CNN-based deep 

learning models, Xception and EfficientNet performed worse 

with 79.2% and 77.0% Accuracy and F1-score of 78.5 and 76.3 

respectively. Table 3 summarizes the results. 

 

Model Accuracy 
Average 

F1-score 

Average 

Precision 

Average 

Recall 

ResNet101, Fine 

Tuned  
84.8% 82.7% 84.1% 82.0% 

BEiTv2 83.0% 80.1% 81.4% 79.5% 

Hibrid ViT with 

ResNet50 
82.3% 80.0% 81.1% 79.2% 

ViT 82.0% 79.5% 81.4% 79.1% 

Xception65 79.2% 78.5% 79.0% 77.5% 

EfficientNet_b7 77.0% 76.3% 76.9% 76.1% 

Table 3. Comparison of models’ performance. 
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The performance metrics declined slightly once the additional 

class “bugs” was added to the classification task and dataset. The 

accuracy dropped to 82.6% and the weighted F1-score to 83.7% 

from the previous 84.8% and 85.2%, respectively. Out of the 64 

validation samples of the class “bugs”, 19 were confused with 

flat roofs and 9 with pitched roofs. This is understandable, 

considering that bugs were mostly rectangle-like shapes such as 

shadows, football fields or started constructions.  

 

The performance of the optimised ResNet shows differences 

between the individual classes. The higher accuracy is achieved 

for the class “pitched”, namely 91%. For the “flat” class 81% of 

the samples were predicted as annotated and for the class 

“complex” this was 77% of the samples. Table 4 shows the 

confusion matrix on the validation data. 

 

 Number of 

samples 

Complex Flat Pitched 

Complex 169 77% 11% 12% 

Flat 211 10% 81% 9% 

Pitched 410 4% 5% 91% 

Table 4. Confusion matrix on the validation data. 

Further exploration of the CAMs generated by GradCAM++ 

reveals the regions of each image that most contributed to the 

inference made. Looking at the CAMs of the correct prediction 

for the “flat” and “pitched” classes, it seems that these regions 

are distinctive for the respective class. Figure 4 shows examples 

of the CAMs for these categories. For the “flat” class, the roof 

features that contributed most are the flat parts of the roofs, often 

less covered with additional roof elements or the outlines of the 

roofs. For the “pitched” class, mostly the ridges or the hips of the 

roofs were highlighted by the GradCAM++. 

 

  
(a) flat roof (b) flat roof 

  
(c) flat roof (d) pitched roof 

  
(e) pitched roof (f) pitched roof 

Figure 4. Class Activation Maps for flat and pitched roofs. 

For the “complex” class, the regions contributing the most to the 

correct result often cross a more significant part of a roof. This is 

in line with the fact that the complexity of the geometry and 

architecture of the roofs comes from the combination of different 

roof styles across the roof (see Figure 5). 

 

  
(a) (b) 

Figure 5. Class Activation Maps for complex roofs. 

Analysis of GradCAM++ heatmaps of the misclassified samples 

gives insights into the reason for the misclassification. In most 

cases, the reasons lie in the ambiguity of the images. For 

example, roofs mainly composed of a flat part with a very small 

gable part could be annotated as complex but predicted by the 

model as flat and vice versa. Examples of misclassified roofs are 

shown in Figure 6. 

 

  
(a) Predicted complex, 

annotated flat 
(b) Annotated pitched, predicted 

complex 

  
(c) Annotated complex, pred 

pitched 
(d) Predicted flat, annotated 

complex 

  
(e) Predicted complex, 

annotated pitched 
(f) Predicted complex, annotated 

pitched 

Figure 6. Class Activation Maps for misclassified roofs. 

In addition, observing the individual misclassified samples, it is 

found that they are the most ambiguous roof types or, in some 

cases, those that are misannotated. Examples of such annotations 

are shown in Figure 7.  
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(a) (b) (c) 

 

Figure 7. Misclassified roofs. 

A more profound observation could reveal specific roofs that are 

misclassified. For example, white-pitched roofs are incorrectly 

recognised as flat roofs (see Figure 8). This might be because 

there are only two white-pitched roofs in the dataset. 

 

  
(a) (b) 

 

Figure 8. Incorrectly recognised white roofs. 

 

4. CONCLUSION AND FUTURE WORK 

This paper demonstrates the model development process for 

rooftop classification. The developed deep learning model 

demonstrated a solid ability to differentiate between the three 

categories, namely “flat”, “pitched”, and “complex.  It achieved 

performance metrics outperforming other state-of-the-art 

classification model architectures with 84.8% accuracy and 

85.2% class-weighted F1-score. The interpretability analysis 

demonstrates that it predicts precisely based on correct features. 

It reveals that most misclassifications are due to ambiguity in the 

samples concerning the defined classes. Adding a class for 

detecting objects wrongly identified as buildings slightly 

decreased performance. The model is developed and tested on the 

highly diverse architectural landscape of the city of Sofia. In the 

case of simpler urban architecture, significantly higher 

classification results can be expected. Testing the model with and 

without additional training on different georgical locations would 

potentially prove this hypothesis. Future work includes training 

and evaluating the model on different image types, such as 

satellite imagery. Retraining the model on combined images of 

different resolutions will raise its applicability. 
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