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ABSTRACT: 

 

The technology of laser cutting is widely used in various industries for processing materials. However, it generates a substantial 

amount of harmful dust, smoke, and aerosols, which pose a threat to the environment and endanger the health of workers. One 

potential method that has emerged to monitor the cutting process and identify materials in real-time is speckle sensing. This paper 

presents a novel material classification technique that employs a new deep-learning model architecture designed for speckle pattern 

images to classify materials according to the speckle patterns of the material's surface. The proposed approach involves training a 

convolutional neural network (CNN) on a large dataset of laser speckle patterns to recognize various material types for safe and 

efficient cutting. Material classification using speckle sensing enhances the process, reducing the time required to train the speckle 

images and the inference time for predicting the material from the speckle images. Experimental results demonstrate that the 

suggested method achieves high precision in categorizing materials, particularly hazardous ones. The model was evaluated on a test 

dataset of 3,000 new images, achieving an F1-score of 0.9781. The utilization of speckle sensing enables the proposed method to 

offer a fast, reliable, and accurate approach to material-aware laser cutting while mitigating the potential risks associated with the 

process. 

 

 

1. INTRODUCTION 

Laser cutting is a widely used technology in many industrial 

sectors due to its high precision and efficiency (Riveiro et al., 

2012). However, the process generates harmful pollutants such 

as dust, smoke, and aerosols, which pose a risk to the 

environment and workers' health (Barrett and Garber, 2003). To 

ensure safe and efficient laser cutting, it is crucial to monitor 

and control the process in real time. Speckle sensing has 

emerged as a promising method for monitoring laser cutting and 

classifying materials (Dogan et al., 2021). By analyzing the 

speckle pattern produced by the laser on the surface structure of 

the used material, it is possible to extract valuable information 

about the material and the cutting process. Deep learning 

techniques have displayed immense capabilities in the past few 

years for analysing speckle patterns and categorizing different 

materials (Dogan et al., 2021), (Kalyzhner et al., 2019), and 

(Saguy et al., 2021).  

 

The utilization of laser cutters in workshops is a prevalent 

practice, however, it comes with its own set of challenges. 

Therefore, there are various support tools available to assist 

operators in laser-cutting tasks, such as PacCAM (Saakes et al., 

2016) a tool for packing parts according to the placed sheet 

inside the laser cutter, Fabricaide (Ticha et al., 2021) also 

proposed another tool that integrates the creation and 

preparation of designs for fabrication, despite the increasing 

availability of diverse materials for laser cutting, there remains a 

shortage of systems that assist operators in effectively 

navigating and selecting appropriate cutting parameters for each 

material type. As a result, laser-cutting operators face 

difficulties in recognizing unmarked sheets from material 

inventories or spare parts in a laser-cutting workshop since 

many materials share a similar visual appearance, like 

transparent materials (e.g., Acrylic, PETG, and Acetate) (Man-

Hin et al., 2022). 

Consequently, users may mistakenly choose the wrong material 

from the stack and apply the incorrect power and speed settings, 

which can lead to material wastage or pose a risk to the 

environment and workers' health because numerous materials 

are not safe for laser cutting due to the released toxic fumes 

(Park et al., 2018), and (He et al., 2022). Unfortunately, the 

similarity in appearance between safe and hazardous materials 

can lead to hazardous materials being mistaken for safe ones.  

 

To address this issue, a lens-less camera can be incorporated 

into the laser cutter to identify materials through laser speckle 

sensing. In the SensiCut study conducted by (Dogan et al., 

2021), they employed a lens-less camera along with deep 

learning techniques to categorize laser-cutting materials based 

on their surface characteristics using speckle patterns. They 

assembled a dataset encompassing 30 distinct material classes, 

as depicted in Figure 1. The speckle pattern images were 

generated using a green laser pointer, whereas the majority of 

laser cutting machines employ a red laser pointer, as elucidated 

in a subsequent study by (Salem et al., 2023). 

 

This paper proposes a material classification technique that uses 

deep learning to classify materials for laser cutting based on the 

speckle patterns of the material’s surface structure. The 

proposed technique involves training a convolutional neural 

network (CNN) on the SensiCut dataset. It utilizes an approach 

to minimize the training and inference time of the deep learning 

model in the classification process by training a CNN model 

from scratch instead of using a pre-trained model as in previous 

related work (e.g., Sensicut). As a result, it recognizes distinct 

material types faster than the model used in Sensicut. The 

proposed method achieves high accuracy in material 

classification, providing a robust and accurate solution for 

material-aware laser cutting using speckle sensing. 
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Figure 1 illustrates two different samples from the SensiCut 

dataset. Specifically, Figure 1(a) displays a sample picture of 

the speckle patterns of Oak Hardwood, whereas Figure 1(b) 

depicts the speckle patterns of MDF. 
 

 

 

 

 

 

 

 

 

 
    (a)                                                            (b) 

Figure 1. Two different samples from the SensiCut dataset. (a) 

Speckle patterns of Oak Hardwood. (b) Speckle patterns of 

MDF. 

 

2. MATERIAL AND METHODS 

2.1 Novelty and Advancements 

A new technique for material classification using speckle 

sensing is proposed in this study. Unlike traditional methods 

that require all three RGB colour channels of the speckle pattern 

images for training a convolutional neural network, the 

proposed approach only utilizes the layer corresponding to the 

laser colour. This method reduces the training time of the model 

and makes it more efficient by reducing the inference time 

while increasing the classification accuracy. By extracting 

features from only one colour channel, the number of 

dimensions of the input layer of the deep learning model is 

reduced. This allows us to exclusively use the speckle patterns 

of the channel corresponding to the colour of the laser, without 

considering other colour channels. Consequently, this approach 

provides a more practical solution for hazardous material 

detection in laser-cutting applications.  

 

The proposed deep learning model can classify materials before 

the laser cutting process, aiding in identifying the cutting 

parameters and alerting the operators if any hazardous materials 

are present. This approach can significantly reduce the time 

required for material classification and detection of hazardous 

materials, making it a practical solution for real-time material 

classification applications. The proposed approach can be 

implemented in laser cutting machines, and operators can be 

alerted to the presence of hazardous materials before the cutting 

process, ensuring the safe operation of the machine and 

preventing potential harm to the environment.   

 

2.2 Applications of Speckle Patterns 

Laser speckle sensing refers to an optical technique whereby 

lasers are used on bumpy surfaces where scattered waves from 

these surfaces generate patterns consisting of bright/dark spots 

commonly characterized as "speckles" containing relevant 

measurements about texture properties such as movement or 

roughness evaluated statistically and promptly giving precise 

results (Fujii et al., 1974), and (Matthijs et al., 2009).  

 

Laser Speckle Sensing does not physically contact surfaces 

making it useful for diverse applications which require detailed 

information about textured surfaces like biomaterials imaging, 

water content measurement, or material characterization thereby 

preventing any form of damage (Dogan et al. 2021), and 

(Madruga et al., 2020).  

 

 
 

Figure 2. Components of laser speckle sensing. 

 

An image capture system traps reflected beams originating from 

a material's surface structure after a laser beam is directed, 

which produces a unique speckle image through the interaction 

of reflected rays reflecting different phases as seen in Figure 2.  

 

An overview of the main components of laser speckle sensing is 

shown in Figure 2. The technique involves directing a laser 

beam at the surface structure of the material being analysed and 

capturing the reflected rays using an image sensor. The 

generated speckle pattern image by the sensor contains valuable 

information regarding the material's microstructure and surface 

properties, such as roughness, texture, and movement. The 

generation of the speckle patterns is due to the interference 

between the reflected rays in different phases. Through 

statistical analysis of the speckle pattern, laser speckle sensing 

is capable of providing real-time and highly sensitive 

measurements of the material's surface properties. 

 

2.3 Image Acquisition and Pre-processing 

The SensiCut dataset, which is available on Kaggle, contains 

39,609 images classified into 59 different categories. These 

categories belong to 30 distinct material types, some of which, 

such as acrylic, are available in multiple colors. Therefore, the 

dataset contains more than 30 directories, although the 

classification is only made for 30 material types. Each image has 

a resolution of 800 pixels by 800 pixels, and the images in the 

dataset have green speckle patterns due to the use of a laser with 

a wavelength of 515nm, as shown in Figure 3. The color of the 

generated speckle pattern depends on the wavelength of the used 

laser, with the most critical channel among the three RGB layers 

corresponding to the color of the laser source. Figure 3 

demonstrates three different speckle pattern images captured by 

a lens-less Raspberry Pi camera using three different laser 

pointers for each image. The wavelength of the laser used in 

Figure 3(a) is 515 nm, while the laser used to generate the 

speckles in Figure 3(b) is 532 nm, resulting in a green image. In 

contrast, when a laser with a wavelength of 650 nm is used, the 

speckles appear in red colors in the captured image as in Figure 

3(c). In summary, the color of speckle patterns in the generated 

images changes corresponding to the color or wavelength of the 

used laser source. 
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(a) (b) (c) 

 

Figure 3. Three different laser sources are used to produce 

speckles. (a), (b), and (c) correspond to lasers with wavelengths 

of 515nm, 532nm, and 650nm, respectively. 

 

2.4 Proposed Approach for Speckle Images 

Figure 4 provides a more detailed explanation of the main 

concept behind this study, which involves utilizing only the 

layer that corresponds to the laser colour used during the 

speckle pattern-capturing process. The image in Figure 4 shows 

a sample of Maple Hardwood from the SensiCut dataset, with 

the original RGB image as the first layer. The individual red, 

green, and blue layers are displayed separately behind the first 

layer for comparison. 

 

The visual comparison presented in Figure 4 clearly shows that 

the green channel of the sample image of Maple hardwood 

appears to be the most informative layer for material 

classification. The green layer provides a similar pattern to the 

original image and appears to contain the most significant 

features for distinguishing between different materials. In 

contrast, the other color layers seem to be either noisy or could 

be neglected for the classification task. Therefore, the proposed 

approach that utilizes solely one layer for material classification 

is expected to provide better accuracy and faster inference time 

compared to the traditional method that utilizes all three RGB 

channels. 

 
 

Figure 4. The original RGB image of Maple Hardwood from 

the SensiCut dataset. And its blue, green, and red channels. 

 

To validate the effectiveness of the proposed approach, 

experiments were conducted using the SensiCut dataset, which 

comprises 39,609 speckle pattern images, each corresponding to 

30 different material types. To assess the proposed method, it 

was compared against a baseline model (Dogan et al., 2021) that 

utilized all three RGB layers for material classification by 

means of transfer learning from a pre-trained ResNet-50 model 

(He et al., 2016). The experiments showed that the proposed 

approach achieved higher accuracy and faster inference time 

compared to the baseline model. Specifically, the proposed 

approach achieved an accuracy of 98.3%, while the baseline 

model achieved an accuracy of 98.01%. Moreover, the proposed 

approach required only 13.5% of the time required by the 

baseline model for inference. 

  

The results demonstrate the effectiveness of the proposed 

approach for material classification using speckle sensing, 

which provides a viable solution for reducing the required time 

for model training and inference while maintaining high 

accuracy levels. Furthermore, it offers a solution to the issue of 

mistakenly cutting hazardous materials by laser-cutting 

machines, allowing for more flexibility and ease of use in 

practical applications. 

 

3. PROPOSED DEEP LEARNING MODEL 

The proposed material classification approach employs a 

Convolutional Neural Network (CNN) for learning the 

discriminative features of speckle pattern images. The 

architecture of the CNN model used in this study is shown in 

Figure 5, and its summary is provided in the following: - 

 

3.1 Deep Learning Model Architecture  

The architecture consists of four convolutional layers with Max-

pooling followed by two fully connected (dense) layers. 

 

3.1.1 Input layer: The input image size is (256, 256, 1), 

where only one layer is used from the input image 

corresponding to the laser colour used during the speckle 

pattern-capturing process. 

 

3.1.2 First convolutional layer: The first convolutional 

layer has 32 filters with a kernel size of 3x3 and a rectified 

linear unit (ReLU) activation function. The max-pooling layer 

reduces the spatial dimension by half. 

 

3.1.3 Second convolutional layer: The second 

convolutional layer has 64 filters with a kernel size of 3x3 and a 

ReLU activation function, followed by another max-pooling 

layer. 

 

3.1.4 Third convolutional layer: The third convolutional 

layer has 128 filters with a kernel size of 3x3 and a ReLU 

activation function, followed by another max-pooling layer. 

 

3.1.5 Fourth convolutional layer: The fourth convolutional 

layer has 128 filters with a kernel size of 3x3 and a ReLU 

activation function, followed by another max-pooling layer. 

 

3.1.6 Flattening and Dense layers: The flattened output 

from the last fourth convolutional layer is connected to two 

dense layers with 512 and 30 neurons, respectively, and a ReLU 

activation function. 

 

3.1.7 Output layer: The final layer has 30 neurons with a 

SoftMax activation function. The SoftMax function is 

commonly used in multiclass classification tasks, where the 

model needs to assign a probability score for each possible class 

label. The SoftMax function takes as input a vector of arbitrary 

real values and transforms them into a probability distribution 

over the classes. 
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3.1.8 Optimizer, Loss Function, and Metrics: In the 

context of the proposed CNN model, the optimizer used during 

training was Adam with a learning rate of 0.001, which 

determines how quickly the model learns from the training data, 

The categorical cross-entropy loss function was used to 

calculate the difference between the predicted probabilities and 

the actual class labels during training. The output accuracy of 

the model was used to monitor its performance during training. 

 

 

Figure 5. Proposed model architecture. 

 

The proposed model was compared with the model presented in 

the Sensicut study (Dogan et al., 2021), which utilized all three 

RGB layers for material classification and used transfer learning 

from a pre-trained ResNet-50 model with around 134.5 million 

trainable parameters. In contrast, the proposed model has only 

13.1 million trainable parameters. The results demonstrated that 

the proposed model achieved an impressive accuracy of 97.8% 

on a test set of 3000 images of various materials. Moreover, the 

proposed model is significantly faster than the Sensicut model, 

requiring only 13.5% of the inference time of the baseline 

model. These results indicate that the proposed model is 

efficient and has the potential for real-time material 

classification and hazardous material detection applications. 

 

4. RESULTS AND DISCUSSION 

 The training and validation loss graph in Figure 6 illustrates the 

performance of the proposed model over 100 epochs. The graph 

shows that the model achieved stable accuracy and loss 

throughout the training process. The loss consistently decreased 

during training, while the accuracy increased rapidly in the 

initial epochs, it eventually converged to 99%. Figure 7 shows 

the training and validation accuracy throughout 100 epochs. 

 

To improve the model's capacity to generalize with diverse 

speckle images and avoid overfitting on the training set, image 

augmentation techniques such as zooming in and out within a 

range of ±20% were implemented. This allowed the model to 

better generalize with materials of varying thicknesses. A batch 

size of 256 was used during the training process. The key 

innovation of the proposed approach is to use only one colour 

channel from the input image, corresponding to the laser colour 

that generated the speckle patterns. 

 

 

Figure 6. Training and validation loss. 

 

 

Figure 7. Training and validation accuracy. 

The proposed model's performance was evaluated by 

conducting experiments on a set of 3000 images, and a 

confusion matrix was generated to validate its accuracy in 

A
cc

u
ra

cy
 [

%
] 

L
o

ss
 

Epochs 

Epochs 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-497-2023 | © Author(s) 2023. CC BY 4.0 License.

 
500



 

distinguishing between 30 distinct materials. Figure 8 illustrates 

the classification performance of the proposed model for these 

materials. The confusion matrix indicates that the proposed 

model achieved a high accuracy in identifying the materials, 

with an overall accuracy of 97.8%. Furthermore, the ability of 

the model to recognize hazardous materials that can have a 

negative impact on the environment, such as Acrylonitrile 

butadiene styrene (ABS), Polyvinyl chloride (PVC), Lexan, and 

Carbon Fibre, was also tested. These materials can produce 

hazardous fumes and particles during laser-cutting processes, 

making it crucial to verify the model's ability to accurately 

identify them. Doing so has the potential to aid in 

environmental protection efforts.  

 

The tests included 100 images per material, covering all 30 

materials, including the four hazardous ones. The proposed 

model exhibited high accuracy in identifying hazardous 

materials, underscoring its potential to assist in environmental 

protection efforts. 

 

 

Figure 8. Confusion matrix for the 30 different materials, 

including four hazardous. 

 

The confusion matrix displayed confusion between Polyvinyl 

chloride or vinyl (PVC), which is one of the hazardous 

materials, and Delrin, owing to the similarities in their surface 

structures. The samples utilized in the experiment had the same 

colour properties as a white transparent sheet, contributing to 

the confusion that arose. To address this problem in the future, 

materials with different colours could be added to the training 

set. This would enable the model to better generalize to the 

unique speckle patterns of each material.  

 

To further evaluate the proposed model, the model's sensitivity 

to identify the materials was tested using precision, which 

involves calculating the fraction or proportion of the number of 

hazardous materials that are actually predicted as positive. This 

is the number of truly predicted hazardous samples over the 

tested ones. Additionally, the recall metric was used to calculate 

the fraction or proportion of the number of materials that are 

predicted to be hazardous over the total number of truly 

hazardous samples in the test set. Finally, the F1 score metric 

was also used to evaluate the model's ability to identify the 

materials. The precision, recall, and F1-score metrics are 

calculated according to Equations 1, 2, and 3 respectively. 

 

 

,                          (1) 

 
,                             (2) 

 
 

,            (3) 

 

 

Where  TP = Number of true positive samples 

 FN = Number of false negative samples 

 FP = Number of false positive samples 

 

True Positive (TP) refers to the cases where the model correctly 

identifies a hazardous material as hazardous, while False 

Negative (FN) refers to the cases where the model incorrectly 

identifies a hazardous material as non-hazardous, and False 

Positive (FP) refers to the cases where the model incorrectly 

identifies a non-hazardous material as hazardous.  

 

The results indicate that the proposed model was generally able 

to distinguish between the majority of wooden materials, such 

as Maple, Walnut, Birch Plywood, Cork, Veneer MDF, 

Bamboo, and laminated MDF. However, the randomness in the 

surface structure of Oak and MDF wood led to some confusion 

between these materials. Although the confusion between Oak 

and MDF was limited, it was still present when compared to the 

results of the base model that utilized full-color images. To 

address this, additional images of these two types of wood could 

be acquired from different positions and orientations to improve 

the model's ability to distinguish between them. Figure 9 

presents the evaluation of the proposed model performance in 

terms of the F1-score, precision, and recall for the wooden 

materials.  

 

Additionally, the precision, recall, and F1 score evaluation of 

the proposed model for plastic materials is depicted in Figure 

10. The model exhibited higher classification accuracy for 

plastics, despite the confusion observed between silicon and 

felt, which was due to the black color of the samples that 

absorbed most of the laser rays and produced only a few speckle 

patterns in the images. The confusion may be alleviated by 

using samples with more distinguishable surface textures, 

thereby improving the model's performance. 

 

Also, the evaluation of textile materials is summarized in Table 

1. The F1 score for each category ranged from 0.90 to 1.00, 

indicating high precision and recall. The precision ranged from 

0.91 to 1.00, and the recall ranged from 0.90 to 1.00. 

 

Material Precision Recall F1-Score 

Felt 1.00 1.00 1.00 

Leather 0.9184 0.9 0.9091 

Suede 1.00 0.96 0.9796 

Table 1. Classification report for different textile materials. 

 

True  

Predicted 
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Figure 9. Classification report for different 9 wooden materials. 

 

 

 
Figure 10. Classification report for different plastic materials. 

 

Table 2 presents the precision, recall, and F1-score for paper 

materials: Cardstock, Cardboard, and Matboard. The precision 

values range from 0.9151 to 0.9479, indicating high accuracy in 

identifying the materials. The recall values range from 0.91 to 

0.97, indicating the proportion of actual positives that were 

correctly identified by the model. The F1-score, which is a 

harmonic means of precision and recall, ranges from 0.9286 to 

0.9417, indicating the overall high performance of the model for 

the paper materials. 

 

 

Figure 11. Precision, recall, and F1-score for the paper 

materials. 

 

Based on the results presented in Table 3, the proposed model 

achieved high precision, recall, and F1 score in classifying 

metallic materials. However, some confusion was observed 

between Aluminium and Carbon Steel. This confusion was also 

observed in the base model, which used full-colour images. 

These results suggest that acquiring more images of these 

materials from different positions and orientations may improve 

the model's ability to distinguish between them and therefore 

enhance its classification performance. 

 

Figure 12. Precision, recall, and F1 score for metallic materials. 

 

Most importantly, precision, recall, and F1-score were 

calculated for the hazardous materials, achieving remarkable 

results for all four hazardous materials. Despite the confusion 

between PVC and Delrin due to their similarity in surface 

structure and colour, the proposed approach achieved 100% 

accuracy in classifying ABS, Lexan, and Carbon fibre. as shown 

in Figure 13. 

 

 

 

Figure 13. Precision, recall, and F1-score for hazardous 

materials. 

 

Overall, the proposed approach achieved high accuracy in 

classifying 30 different laser cutting materials, with most 

classes having a perfect score of 1.0. Lower scores for some 

materials, such as Oakwood, MDF, and Leather, may be due to 

physical property variation. Despite this, the approach is 

satisfactory, reducing material classification time and adaptable 

to different materials, providing a flexible solution for a safe 

and environmentally friendly laser cutting industry. 
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5. CONCLUSION 

This study proposes a new deep-learning model architecture that 

achieves high accuracy rates in classifying a wide range of 

laser-cutting materials and detecting hazardous materials for 

safe and efficient cutting, including wood, plastics, metals, and 

others, with low computational time. The main contribution of 

this paper is the use of solely one colour channel from the input 

image corresponding to the colour of the laser in conjunction 

with a custom CNN architecture. The proposed model 

significantly decreases the needed inference time compared to 

traditional laser speckle sensing based on a pre-trained model, 

as the use of one colour channel depends on a custom 

architecture. The approach is adaptable to different materials, 

not just hazardous materials in laser cutting, making it a 

versatile solution for laser speckle sensing, material 

classification tasks, and hazardous materials detection. The 

proposed deep learning model's simplicity and ability to detect 

hazardous materials make it a promising solution for various 

industries, including digital manufacturing, additive 

manufacturing, and CNC machining. Future research could 

focus on deploying the proposed model in these industries to 

enhance the safety and efficiency of the digital manufacturing 

industry. 
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