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ABSTRACT:

Reconstructing the geometric curves of highways holds significant value for various tasks, such as highway design, traffic simula-
tion, and road network planning. An essential step in highway curve reconstruction is fitting highway curve models to the extracted
road markings from laser scanning point clouds. Existing methods for highway curve fitting typically handle one curve at a time.
However, a stretch of highway often contains multiple curves. In this paper, we introduce a novel method capable of fitting multiple
highway curves simultaneously. The method leverages a reinforcement learning (RL) algorithm to achieve this goal. Specifically,
we design a unique RL environment that empowers the RL algorithm to fit multiple highway curves. Our experimental results
demonstrate the superiority of our method over other methods.

1. INTRODUCTION

Road construction plays an important role for smart cities. How-
ever, due to financial constraints, construction technology lim-
itations, and other restrictions, advanced road network design
becomes imperative. Among the crucial elements of road net-
work design, curves hold particular significance (Othman et al.,
2014). Rational design of road curves not only enhances road
traffic safety but also offers a more comfortable driving exper-
ience for people while helping to optimize construction costs.
Studies have revealed that curves are accident-prone areas of
the road traffic system. When vehicles enter road curves, blind
spots and increased centrifugal forces can lead to lateral slid-
ing and, ultimately, collisions (Wang et al., 2019; Chuan et
al., 2014). To mitigate such risks and improve highway curve
design, it is essential to perform road curve reconstruction. The
purpose of road curve reconstruction is to recover the geometric
information of highway curves. This process allows for evalu-
ating their performance, identifying potential issues, and im-
plementing improvements or adjustments to enhance road per-
formance. Moreover, it provides accurate data and simulation
results for traffic simulation and road network planning, aiding
in the avoidance of driving accidents.

There are several types of sensing data that can be used to re-
construct road curves, such as images recorded by the cam-
eras mounted on aircrafts or satellites, point clouds collected
by the air-borne or vehicle-borne laser scanners. In particular,
the point clouds collected by vehicle-borne laser scanners are
called mobile laser scanning (MLS) point clouds. In contrast
to other types of data, MLS point clouds contains highly accur-
ate and highly dense 3D geometric information of the scanned
highways (Zhang et al., 2020).

A number of methods have been proposed to utilize MLS point
clouds to reconstruct road markings (Mi et al., 2021). How-
ever, only a few methods have been proposed to reconstruct
highway curves from MLS point clouds. The highway curve
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reconstruction method proposed in (Zhang et al., 2020) con-
sists of two major steps. The first step is extracting the road
marking points by using the intensity variance as extraction fea-
ture. The second step is fitting the highway curve to the extrac-
ted road marking points by the evolutionary optimization al-
gorithm called cuckoo search algorithm (Yang and Deb, 2010).
Although the method proposed in (Zhang et al., 2020) can ac-
curately reconstruct highway curves, it is only able to fit one
curve at a time. However, a stretch of highway often contains
multiple curves. To reconstruct multi-curves, the fitting method
proposed in (Zhang et al., 2020) has to be applied multi-times,
making it less convenient.

In this paper, we introduce a novel method to fit multiple high-
way curves simultaneously to increase the convenience of high-
way curve fitting. The fitting of multiple curves from a highway
is a kind of geometric multi-model fitting problem. Zhang et
al. (2019b) have formulated the geometric multi-model fitting
problem as a sequential decision problem and applied a Deep
Reinforcement Learning (DRL) algorithm to solve the sequen-
tial decision problem. It is worth noting that DRL has attracted
much attention in recent years. Many scientific advances have
been made using DRL, such as AlpahGo (Silver et al., 2016).

In (Zhang et al., 2019b), only a very simple case of straight
line fitting was presented. However, highway curve fitting is
more complex than straight line fitting. That is, a highway
curve has more parameters than a line. The DRL method used
in (Zhang et al., 2019b) is called Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2016). Although DDPG can
handle models with a small number of parameters, such as lines,
it is less efficient for DDPG to fit models with a larger number
of parameters, such as in the case of highway curve reconstruc-
tion. Therefore, this paper proposes to use a more efficient DRL
method called Proximal Policy Optimization (PPO) (Schulman
et al., 2017) instead of DDPG.

Our main contribution is as follows. We propose a new method
for highway curve reconstruction using the PPO algorithm. Spe-
cifically, we design a unique DRL environment that empowers
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the PPO algorithm to fit multiple highway curve. Our exper-
imental results demonstrate that our method is able to recon-
struct multiple highway curves simultaneously.

The rest of this paper is organized as follows. Section 2 reviews
the relevant research related to the work presented in this pa-
per. Section 3 provides a detailed description of the proposed
method. Section 4 introduces the dataset used, presents and
discusses the experimental results, and compares them with the
results of other experiments. Section 5 concludes the paper.

2. RELATED WORK

In this section, we review some current studies related to our
work.

2.1 Road marking extraction

There are many methods for extracting road marking points.
Currently, most of the extraction methods are based on geomet-
ric features or employ deep learning-based approaches.

2.1.1 Geometry-based methods: Geometry-based methods
primarily rely on the geometric information derived from point
cloud data, such as point coordinates, intensity, and curvature,
to extract road markings. In recent years, the most common
approach has been to leverage the geometric features of intens-
ity to extract road marking points. Road markings, made of
highly reflective materials, exhibit higher reflectance intensity
compared to the surrounding road surface. Guan et al. (2014a)
employed a point density-related multi-threshold method and
adaptively estimated the locally optimal intensity threshold us-
ing the Otsu algorithm. Guan et al. (2014b) utilized a road
surface segmentation method based on curb-lines to extract the
road surface and performed multi-threshold segmentation of the
road using Otsu’s thresholding algorithm.Cheng et al. (2017)
proposed a road marking extraction method based on intensity
calibration and high-pass enhancement.The method utilized in-
cident angle to represent the received intensity and employed
global Otsu threshold, median filtering, and region-growing al-
gorithms for noise removal and road marking extraction. Yang
et al. (2020) introduced a line edge detector that combines in-
tensity gradients with intensity histogram statistics to detect
road markings.Ye et al. (2022) utilized local optimal thresholds
and distance thresholds determined by road design standards to
extract road markings while considering intensity information.
The method set minimum and maximum intensity thresholds
based on visual interpretation of the test dataset and took into
account occlusions caused by large obstacles and erosion of
road markings. Other studies have also employed geometric
features other than intensity. For example, Yan et al. (2016)
used an edge detection and edge constraint method to extract
road markings and further refined the extracted points based on
segment-based and dimension-based features.

Geometric-based methods are effective in extracting road mark-
ings in simple scenes or high-quality point cloud data, but their
accuracy decreases in complex scenes.

2.1.2 Deep learning-based methods: Deep learning-based
methods are commonly employed for extracting road markings,
such as using Convolutional Neural Networks (CNNs) for end-
to-end training and prediction on road point clouds, enabling
automatic extraction of road markings. During the current re-
seach, Liu et al. (2020) introduced a finely tuned image-to-
image transformation model, which is based on the pix2pix

framework for automatic road marking extraction method. Ma
et al. (2021) introduced a deep learning framework based on
capsule networks to extract road markings from MLS point clouds,
constructing a U-shaped capsule network. Lagahit and Mat-
suoka (2023) proposed an improved loss function (focal combo
loss) to enhance the performance of extracting road markings
from sparse point cloud images through training CNN models.

Deep learning-based methods can learn higher-level features
from point cloud data, enabling better adaptability and extrac-
tion performance in complex scenes. These methods enhance
automation when trained with abundant annotated data. How-
ever, training and optimizing the models require significant time
and computational resources. Limited input data may result in
degraded extraction performance.

2.2 Road marking reconstruction

Reconstructing road markings provides more accurate, compre-
hensive, and detailed information compared to methods that
only extract road markings. This makes it suitable for com-
plex scenes and dynamic environments. Reconstruction meth-
ods have significant value in applications such as road planning
and autonomous driving. Soheilian et al. (2010) accurately ex-
tracted and reconstructed road markings in dense urban areas
using edge point extraction, matching processing, geometric
filtering, and theoretical model fitting. Hervieu et al. (2015)
defined a road marking pattern library according to national
specifications. The method is based on energy minimization us-
ing marked point processes, incorporating a data-driven revers-
ible jump Markov chain Monte Carlo sampler and simulated an-
nealing to extract road markings. It addresses the ambiguity of
road markings types and transformations using a model-driven
kernel.

3. METHOD

Our method has two major stages. The first stage is road mark-
ing extraction. The second stage is highway curve fitting by
RL. The details of the two stages are described in Sections 3.1
and 3.2, respectively.

3.1 Road marking points extraction

In this paper, the approach for road marking points extraction
is similar to (Zhang et al., 2020). We briefly introduce the ap-
proach as follows. The dataset used in the approach is com-
prised of raw MLS point cloud data and its corresponding tra-
jectory data. A raw MLS point cloud data consists of three
location coordinates (x, y, z) and an intensity value (i), while
the trajectory data is obtained from the GNSS-IMU position-
ing and orientation system (POS) mounted on the MLS vehicle,
providing real-time accurate vehicle trajectory data. The ex-
traction of road marking points consists of four steps: raw data
partitioning, road surface detection, road marking detection and
clustering, hull detection.

In the first step, the raw MLS point clouds are partitioned based
on the vehicle’s trajectory data. In the second step, a smoothness-
based region growing algorithm is applied to detect the road
surface points from each partition. In the third step, road mark-
ing points are detected from the road surface points using a
thresholding algorithm based on the intensity variance. These
road marking points are then grouped into clusters by calculat-
ing the Euclidean distance to the cluster centroids. In the fourth
step, hull points are detected from each cluster using the alpha-
shape algorithm.
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Figure 1. The hull extracted after segmentation using deep
learning methods.

3.1.1 Raw Data Partitioning To address the challenges posed
by large, unstructured, unevenly distributed MLS point cloud
datasets, it is common practice to partition the raw dataset into
multiple sub-point sets. The trajectory points of the scanning
vehicle, which are organized in the order of acquisition time,
are used for partitioning in this paper. This partitioning pro-
cess helps organize the raw MLS point cloud dataset into smal-
ler and more manageable subsets, enabling further analysis and
processing.

3.1.2 Road Surface Detection In the context of this paper,
the focus is on road markings on road surfaces. To facilitate
the detection of road markings, it is beneficial to identify road
surface points. Highway surfaces are typically smooth, so we
use the smoothness-based region growing algorithm (Vossel-
man et al., 2004) for road surface point detection. As the dis-
tance between the laser scanners on the vehicle’s top and the
road decreases, the density of MLS point clouds increases. By
employing region growing, the region with the highest number
of points usually corresponds to the road surface. Two para-
meters are required in this step. The first is a distance threshold
for determining neighboring points to calculate surface normal
vectors. The second parameter is a smoothness threshold for
comparing surface normal vectors. In this paper, we set the
smoothness threshold to 2°.

3.1.3 Road Marking Detection and Clustering On road-
way surfaces, road markings are typically brighter than their
surroundings. As a result, the intensity of a road marking point
is usually higher than that of its surrounding points. However,
the intensities of different road marking points can vary sig-
nificantly due to factors like laser scanner incident angles and
ranges (Yu et al., 2015). Therefore, detecting all road marking
points is often inadequate with a simple approach like intens-
ity thresholding. To reconstruct highway curves, we focus on
detecting the edge points of road markings. In (Zhang et al.,
2020), an intensity variance-based approach has been proposed
for detecting these edge points. By applying a single threshold
to the intensity variances, the edge points can be effectively de-
tected.

The Otsu’s algorithm (Yu et al., 2015) is then used to compute
a threshold based on the intensity variances, which helps dis-
tinguish edge points from other points. Points with variances
higher than the threshold are identified as edge points. As there
can be multiple road markings on a road surface, the detected
points usually do not belong to a single road marking. To ad-
dress this, the Euclidean clustering algorithm is employed to
group the detected points into clusters.

Agent

Environment

Action 
ai

Reward ri

ri+1

State si

si+1

Agent

Environment

Action 
ai

Reward ri

ri+1

State si

si+1

Figure 2. Reinforcement learning

3.1.4 Hull Detection The detected markings often appear
wider than the real markings in the proposed approach. Con-
sequently, after detection the road marking points, the alpha-
shape algorithm (Edelsbrunner et al., 1983) is utilized to extract
the boundary points of the road markings. This is for providing
a more comprehensive description of their shape and obtaining
more accurate information about their positions and sizes. In
this paper, the alpha parameter in the alpha-shape algorithm is
set to 0.1. By adjusting the alpha to a smaller value, a more
precise boundary for the road markings can be generated. This
process involves connecting the discrete road marking points to
form a continuous boundary shape, which accurately represents
the morphology of the road markings.

It is worth noted that, we have attempted to extract road mark-
ing points using deep learning methods (Hu et al., 2020). How-
ever, as shown in Fig. 1, the extracted hull points from the deep
learning-based extracted road marking points are contaminated
by an uneven distribution of curve edge points, which increases
the difficulty of reconstruction and significantly reduces the ac-
curacy of the reconstruction. Therefore, in this paper, we do not
use deep learning methods to extract road marking points.

3.2 Highway curve fitting by RL

3.2.1 Reinforcement learning As shown in Figure 2, the
process of RL is an interactive process between an agent and
its environment (Lillicrap et al., 2016). This interaction process
is conducted sequentially with the step i ∈ N. At each step i,
the agent observes the environment in state si, takes action ai

based on the reward ri obtained from the environment, which
transitions the environment to a new state si+1 and yields a new
reward ri+1. The agent’s behavior is determined by a policy.
The policy π represents the probability of taking action a in
state s: π (a|s) ∈ [0, 1]. When action a is taken in state s,
the environment provides a reward r(s,a). The cumulative re-
ward starting from a certain state si, known as the return Ri, is
defined as follows: Ri =

∑n
k=i r(sk,ak), where n is the step

when the final state is reached. It can be seen that the return R
depends on a sequence of actions determined by the policy π.
The goal of RL is to learn the optimal policy that maximizes
the expected return J = E[R1] starting from the initial state.
The interaction between the agent and the environment can be
represented by a Markov Decision Process (MDP) composed
of elements such as state space, action space, state transition
function, and reward function (Lillicrap et al., 2016).

The goal of RL is to solve sequential decision problems (i.e.,
MDP problems). That is, RL aims to find the best sequence of
decisions. Therefore, if we can model the process of highway
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curve fitting as a sequential decision problem, we can apply re-
inforcement learning methods to perform highway curve fitting.

3.2.2 Mathematical models of highway curves According
to the highway geometric design standard (Bertolazzi and Frego,
2018), there are three elemental types of horizontal curves: line,
circle, and spiral. Additionally, two elemental types of vertical
curves exist: line and parabola (Zhang et al., 2020). When con-
sidering 3D highway curves, they are formed by a combination
of horizontal and vertical curves. This results in six elemental
types of 3D highway curves, all of which can be represented
in parametric forms. Upon observing the parametric forms, it
becomes evident that the line and circle curves are special cases
of the spiral curve, while the line curve is a special case of the
parabola (Zhang et al., 2020). For simplicity, this paper will
solely represent an elemental 3D highway curve by the most
general combination, i.e., the combination of horizontal spiral
and vertical parabola.

The mathematical model of the elemental 3D highway curve
can be defined as:

Mθ = {(x, y, z) |x = fx(u), y = fy(u), z = fz(u)} (1)

where θ = (h, x0, y0, z0, µ0, ξ0, η, κ0, ψ)
T represents the para-

meters determining the model, and fx(u), fy(u), fz(u) are
defined as: fx(u) = x0 +

∫ u

0
cos(µ0 + κ0t+

1
2
ψt2)dt

fy(u) = y0 +
∫ u

0
sin(µ0 + κ0t+

1
2
ψt2)dt

fz(u) = z0 + uξ0 +
1
2
ηu2

(2)

The parameter u ∈ [0, h], where h is the arc-length of the
curve. Including h, the model has 9 parameters. The paramet-
ers x0, y0 and z0 define the start location, µ0 is the start hori-
zontal azimuth, ξ0 is the start slope, η is the vertical curvature,
κ0 corresponds to the start horizontal curvature, and ψ is the ho-
rizontal curvature change rate. It is worth noting that curvature
is the reciprocal of radius.

3.2.3 Design of the RL environment The objective of mul-
tiple highway curve fitting is to find a set of highway curves
that collectively best fit the extracted road marking points. This
curve fitting problem can be seen as a sequential decision-making
process. As mentioned earlier, a highway curve can be repres-
ented by a parametric mathematical model. Determining the
values of parameters for one curve can be viewed as making a
single decision. Extending this to the values of parameters for
multiple curves, the problem becomes a series of interrelated
decisions.

As shown in Eq. (1), for a fixed value of θ, Mθ represents
an instance of 3D highway curve. The instance actually is a
continuous 3D point set (Zhang et al., 2019a), i.e., Mθ ⊂ R3.
Given an extracted road marking point set D ⊂ R3, the goal
of highway curve fitting is to find a highway curve M that is
most similar to D. For multiple highway curve fitting, M is the
union set of multiple curves, i.e.,

M =
⋃n

i=1
Mθi , (3)

where n is the number of curves.

Multiple highway curve fitting now can be formulated as the

following maximization problem:

g∗ = argmax
(θ1,θ2,··· ,θn)

g(θ1,θ2, · · · ,θn) = e(
⋃n

i=1
Mθi , D)

(4)
where e(·, ·) is the geometric similarity estimator defined in
(Zhang et al., 2019a).

To utilize RL algorithms to solve the problem as shown in Eq.
(4), we design the RL environment in the following way. The
agent action a is the same as the curve parameter θ: a = θ. The
environment state correspond to the parameters of all curves.
Given a preset max number of curves n. The environment
state s is a vector composed by (θ1,θ2, · · · ,θn). Let θL be
the preset lower bound of the curve parameter θ. We define
the lower bound of the parameter h (i.e., the arc-length of the
curve) as 0, therefore a curve with parameter θL is just a null
set. The initial state of our proposed RL method is defined as
(θL,θL, · · · ,θL). The reward in the step i is defined as:

ri = g(θ1,θ2, · · · ,θi)− g(θ1,θ2, · · · ,θi−1) (5)

3.2.4 Pseudo-code of our method The pseudo-code of our
method is shown in Algorithm 1, and the PPO policy π used
in the algorithm can be found in (Schulman et al., 2017). In
each iteration, the algorithm proposes a hypothesis value θi for
each curve based on the policy. Subsequently, the hypothesis
is verified by computing the reward, which is used to update
the policy. The stop criterion for the inner loop is defined as
follows: the algorithm stops if a curve is too close to the pre-
viously proposed curves or if a curve of insufficient length has
been proposed.

Algorithm 1 Our proposed method
Input: a road marking point set D, a preset max number of
curves n, a preset max number of iterations jmax, the PPO
policy π.
Output: (θ∗

1,θ
∗
2, · · · ,θ∗

i ) that maximizes Eq. (4).
g∗ ← 0
for j=1 to jmax do

s1 ← (θL,θL, · · · ,θL)
for i = 1 to n do

ai = θi ∼ π(·|si)
Get reward ri according to Eqs. (5) and (4)
si+1 ← (θ1,θ2, · · · ,θi)
Update π according to si, ai, ri and si+1

if The stop criterion is reach then
break

end if
end for
if g(θ1,θ2, · · · ,θi) > g∗ then

(θ∗
1,θ

∗
2, · · · ,θ∗

i )← (θ1,θ2, · · · ,θi)
g∗ ← g(θ1,θ2, · · · ,θi)

end if
end for

4. EXPERIMENTS

We implemented our method using Python for road marking ex-
traction and curve reconstruction, and Java for generating vir-
tual road data (Bechtold and Höfle, 2016). The experiments
were conducted on a machine running Ubuntu operating sys-
tem, equipped with an Intel Core i7-11700K 3.60 GHz CPU
and 32 GiB RAM. The experiments included experiments on
real datasets, and comparative studies on road curve reconstruc-
tion.
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Figure 3. Curves (red) reconstructed from the hull points
(white).

Figure 4. Hull points after hull extraction.

4.1 Experiments on Real MLS Data

In our experiment, we utilized real MLS data collected from
the RIEGL VMX-450 system (Zhang et al., 2020). As shown in
Fig. 3, the white portion represents the curve data obtained after
hull extraction, while the red portion illustrates the reconstruc-
ted curve data using our method. Notably, our approach proves
to be effective in handling outliers present in the curve data
and successfully fitting multiple curves, encompassing both in-
ner and outer ones. The iterative process resulted in the fitted
data converging, ultimately achieving accurate reconstruction
of the curve shape of the road, as evident from the red portion
in Fig. 3. The fitting process lasted for 12,523,575 iterations
and 155,001.635 s, and 2,127,875 iterations and 22,131.646 s,
respectively.

Overall, the experiment using real MLS data provides com-
pelling evidence of the effectiveness of our approach in hand-
ling real-world scenarios and accurately reconstructing high-
way curves.

4.2 Comparative experiment

We conducted comparative experiments using a 3D virtual scan-
ning dataset of highways generated by the HELIOS virtual scan-
ning system (Bechtold and Höfle, 2016). Focusing on road
curves, we extract a portion of the road for reconstruction. The
extracted outer contour of the virtual 3D road curve includes
two inner curves (red) and two outer curves (green) as shown in
Fig. 4.

In the comparative experiments, we compared our method with
Zhang et al. (2020). Our method outperforms the cuckoo search
algorithm in reconstructing the inner and outer curves of mul-
tiple roads, as shown in Fig. 5 and Fig. 6 using the same virtual
road dataset. The curve parameters fitted using our proposed
method are close to true curve parameters, as shown in Table 1.

Figure 5. Fitting results using reinforcement learning.

Figure 6. Fitting results using cuckoo search.

5. CONCLUSION

In this paper, we introduce a novel approach to reconstruct high-
way curves utilizing the deep reinforcement learning algorithm
PPO. Our method proves to be highly effective in reconstruct-
ing multiple highway curves from dense, unstructured, and un-
evenly sampled MLS point clouds. Through testing on virtual
scanning datasets and real MLS datasets, we have successfully
demonstrated its capability to accurately reconstruct multiple
highway curves, capturing the precise shape of the road curves.

However, it is worth noting that our current method necessit-
ates many iterations to obtain the optimal model, which leads
to considerable time costs. As a future research direction, we
plan to concentrate on enhancing the efficiency of the recon-
struction process. By addressing this aspect, we aim to further
refine and optimize our method, making it more practical and
accessible for real-world applications.

Overall, our work represents an advancement in highway curve
reconstruction, and we look forward to addressing the efficiency
challenges to expand the practicality and usability of our ap-
proach.
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Variable ψ η

Inner
curve (1)

Ground-truth 0.000035 0
Cuckoo Search -0.002892 0.000035

Our Method -0.002343 -0.003057

Inner
curve (2)

Ground-truth 0.000035 0
Cuckoo Search - -

Our Method
A -0.00221 -0.002343
B -0.002273 -0.003866
C -0.002369 -0.003107

Outer
curve (1)

Ground-truth 0.000035 0
Cuckoo Search 0.000541 0.000031

Our Method -0.002227 -0.004477

Outer
curve (2)

Ground-truth 0.000035 0
Cuckoo Search - -

Our Method
A -0.000489 -0.004311
B -0.001715 -0.002342
C -0.002185 -0.002127

Table 1. Comparison of several important curve parameters
between the fitted curve results and the ground truth values;
Inner curve (1) - (2) and Outer curve (1) - (2) respectively

represent the inner curve and outer curve from top to bottom; A -
C respectively represent the curves fitted from left to right using

our method.
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