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ABSTRACT:

The maintenance of railway infrastructure requires detailed inspection of track assets including the rails, sleepers, fasteners, and tie
plates. Current methods using total stations and measurement trains are costly and the subsequent data processing is often manual.
A potent alternative is the use of Unmanned Aerial Vehicles (UAV) to investigate track asset deviations. However, the potential
degree of automation and the overall accuracy is still very much the subject of ongoing research. In this work, a potential pipeline is
investigated for the planimetric inspection of rails using UAV photogrammetry. Specifically, state-of-the-art line detectors such as
Holistically-Nested Edge Detection, DexiNed, Segment Anything Model, and Mobile Line Segment Detection are combined with
logical filtering to assess the localisation and gauge of the rails. The experiments indicate that the accuracy and detection rate are
promising. Overall, the proposed method is a promising step towards affordable and safe railway infrastructure inspection.

1. INTRODUCTION

The inspection of railway infrastructure includes the inspection,
measurement, and localisation of various railway components
including the rails, sleepers, fasteners, and tie plates. The loc-
alisation of the rails and the gauge needs to be measured on a
regular basis. A metric deviation analysis is performed between
the measured positions of the rails and the as-designed location
provided as a set of 3D CAD plans. Specifically for rails, there
are strict tolerances to comply with maintenance and safety regu-
lations. Conventional ground measurement techniques with total
stations, dedicated measurement trains, and Lidar techniques are
time and cost intensive. Furthermore, they require rail access
which interrupts train traffic and puts surveyors in potentially
dangerous situations. Currently, both the data processing and
interpretation are performed mostly manually, which is slow
and costly, even for the measurement train in some cases. For
instance, while rail track geometry measurement tools such as
trolleys or measurement trains can accurately measure the po-
sitioning and geometry, every single track has to be traversed
individually which significantly lowers its efficiency near sta-
tions where many tracks converge.

A promising alternative is to use Unmanned Aerial Vehicle
(UAV) footage to perform similar analyses. Besides automating
the process without interrupting train traffic, UAV techniques
are low-cost, less labor-intensive, and safer than conventional
ground measurement techniques with total stations, measure-
ment trains, and rail trolleys. With modern technology, ultra high
resolution can be achieved as shown in Figure 1, which allows
for the evaluation of rail positioning with computer vision tech-
niques. However, there are significant concerns regarding the
accuracy and detection rate of UAV-based methods. The goal of
this work is, therefore, to investigate the viability of automated
UAV-based rail inspection. Specifically, we present an unsu-
pervised pipeline that detects the edges of rails and compares
them to their digital twin counterpart in the utility companies’
database.
∗ Corresponding author

Figure 1. Drone image of 100M pixels at an elevation of 25.8 m
with a detail showing the ultra high resolution: 1.17 mm GSD

In summary, our contributions are:

1. Development of a workflow for planimetric monitoring of
rails using a photogrammetric UAV method.

2. Visualisation of the relative localisation and gauge of rails.

3. Adoption of state-of-the-art edge and line segment detection
methods such as HED, DexiNed, Mobile Line Segment
Detection (M-LSD) and Segment Anything Model (SAM)
for rail boundary detection.

4. Proposal of an evaluation and filtering method for detected
lines.

The remainder of this work is structured as follows. The related
work is presented in Section 2. In Section 3 and 4, the data
and methodology are described. The experimental results are
described in Section 5. Finally, we conclude with a discussion
(Section 6) and conclusion (Section 7).
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2. RELATED WORK

The main concerns in railway monitoring are defect detection,
track condition maintenance and deviation monitoring from the
as-designed rails. Specifically for rail geometry, techniques
using points clouds and imagery have been explored in the lit-
erature to improve inspection and localisation. Ariyachandra
and Brilakis (2020) use airborne Lidar point clouds to generate
a digital twin of railway track beds and the surrounding super-
structure. The obtained RMSE of their geometric digital twin
of the rail masts is 2.72 cm, which does not meet the required
accuracy to determine absolute positioning of rails. Jwa and
Sonh (2015) use point cloud data collected by a Lidar mobile
mapping system. By employing a Kalman filter and assuming
the linearity of rails, the rail heads can be effectively tracked.
However the absolute accuracy of their obtained laser point data
goes up to 5 cm with only 1 cm relative accuracy. Hence, their
methodology is not meant to monitor the absolute position of
the rail boundaries.

Singh et al. (2019) perform edge detection on nadir UAV im-
agery to extract the rail lines. The imagery is preprocessed with
Gaussian smoothing and converted to HSV colors in order to
extract the railway area and mask the surroundings, which would
not be feasible in RGB space. They apply Canny edge detection
on the grey-scale image and clean up the output with a morpho-
logical operation. Using the GSD, the distance between the rails
is measured directly within the rectified images. However, they
do not obtain absolute measurements of rail positioning, which
is what we achieve with our method.

A much more accurate assessment is performed by Ghassoun
et al. (2021), where the absolute positioning of crane tracks in
a harbour container terminal is determined using UAV imagery
and an adjusted network of ground control points. A digital
surface model is derived from the imagery from which rail edges
are determined. Since an extensive ground control network is
required to achieve the desired precision, this method is very
intensive. Furthermore, track access is required to place the
markers before the drone flight, which is not possible on railway
beds.

Edge detection and line extraction To delineate the rail bound-
aries in UAV imagery, several approaches are possible. First,
edge detection followed by line extraction is a two step pro-
cess that identifies intensity changes in an image. These edges
can then be used to detect straight lines. Edge detection and
line extraction are still relevant topics for current research and
many novel methods have been proposed. Canny edge detec-
tion (Canny, 1986) and Hough transform are commonly used to
identify (rail) lines in UAV imagery (Singh et al., 2019; Khuc et
al., 2020), but newer, deep learning methods could improve the
accurate localisation of the rails so that gauge and positioning
can be determined confidently. Holistically-Nested Edge De-
tection (HED) by Xie and Tu (2017) integrates holistic image
training and prediction with multi-scale and multi-level feature
learning to improve edge detection. The deep learning approach
is an end-to-end object boundary detection system that is easily
implemented. Inspired by HED and Xception networks, Soria
et al. (2023) propose DexiNed. This deep learning network is
trained on a dataset specifically designed for edge detection. The
resulting trained net generalizes well to other domains without
fine-tuning. Since HED and DexiNed are edge detection meth-
ods, lines still need to be extracted from the edge maps. For this
step, we use the Hough transform (Hough, 1962). To the best of

our knowledge, we are the first to apply HED and DexiNed to
UAV rail imagery.

A second possibility is the use of boundary detection methods.
Boundaries, in contrast to edges, are associated with objects.
Segmenting the pixels based on similarity and object-recognition,
can help in generating accurate boundaries which can then be
used to extract Hough lines. The recently released Segment Any-
thing Model (SAM) (Kirillov et al., 2023) uses a deep learning
network trained on 11 million images. The model consists of an
image encoder and prompt encoder or mask decoder depending
on whether the goal is to localize a prompted object or generate
a segmentation mask In this work, we use SAM’s mask decoder
to acquire a segmentation map of the detected objects. We are
the first to apply SAM to railway monitoring.

Line segment detection Line segment detection is useful for rail
localisation avoiding a multi-step process (separately performing
edge/boundary detection and then line extraction). Gu et al.
(2022) propose a light-weight line segment detection network:
Mobile Line Segment Detection (M-LSD). A matching and
geometric loss function during training enables the model to
integrate geometric cues. Besides retaining performance, the
model is faster than other state-of-the-art line segment detection
networks.

The claim of these methods is that they do not require domain-
specific fine-tuning, but their feasibility and accuracy must be
tested.

3. DATA

The imagery is acquired with a DJI Matrice 300 drone equipped
with a Phase One iXM-100 camera and Real Time Kinematic
(RKT) Global Navigation Satellite System (GNSS) flying 26.4m
above ground. The RTK GNSS receives real-time correction sig-
nals from multiple GNSS reference stations. Only nadir imagery
was captured. Ground control points (GCP) were measured
with a total station every 25 meters on both sides of the railbed.
The considered section includes 191 images and 4 GCPs. The
image size is 11664x8750 pixels. The study area is shown in
Figure 2 with the as-designed rails and GCP projected over the
orthomosaic.

Figure 2. The study area captured by the drone. The 4 GCPs are
positioned 25 m apart along the railbed. The as-designed rails are

projected in green and red on the orthomosaic.

Using the mentioned parameters, the GSD for the images is 1.17
mm, which is an extremely high resolution. Figure1 shows an
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example of high level of detail of the imagery captured with the
drone. Due to the very fine GSD, we can accurately localize the
rail edges, making it possible to calculate the gauge (distance
between inner edge of the rails) directly from the undistorted
images using the detected lines.

For railways with a maximum speed of 160 km/h, the local
requirements for railway placement are as follows:

• Absolute positioning:
20 mm vertical tolerance
10 mm horizontal tolerance

• Gauge:
-2 mm to +4 mm local gauge tolerance

It is important to note that the mentioned as-designed rails are
derived from the manually annotated lines in the photogram-
metric point cloud. In an ideal setup, the as-designed rail lines
should be acquired from the CAD design file. In this project, no
as-designed information was available. Thus, we chose to work
with the manually created CAD file and consider these lines the
as-designed lines. The obtained planimetric deviations in the
results section are thus not accurate. However, the developed
methodology is still applicable. Furthermore, the gauge devi-
ation results are independent of the precision of the as-designed
rail lines.

4. METHOD

In this section, an unsupervised pipeline is presented to detect
the boundaries of the rails, measure the gauge between the de-
tected rails, and visualize the deviations from the as-designed
rail geometries. Compared to a photogrammetric point cloud,
the Ground Sampling Distance (GSD) of the nadir images is
superior and, thus, the planimetric assessment can be directly
performed in the undistorted images.

The proposed workflow (Figure 3) to measure rail deviations in
UAV imagery is divided into four steps : 1) Photogrammetric
preprocessing: In the preprocessing step, the as-designed rails
are reprojected onto the undistorted image in order to select
relevant rail areas. 2) Rail boundary detection: in subdivided
tiles, the rail boundaries are obtained via various line extraction
methods. 3) Inner rail boundary pair selection: the line segments
for which the distance represents the track gauge can be paired.
4) Visualisation of positioning: gauge and planimetric absolute
deviation from the as-designed rails are shown in color-coded
maps.

4.1 Photogrammetric preprocessing

In the preprocessing step, the as-designed rails (q ∈ Q) are
projected on the imagery to mask irrelevant areas. Next, the
large images are tiled; only tiles that contain as-designed rails
are retained and processed in Section 4.2. This reduces required
storage and computational power.

In order to project the as-designed rails given in a local projection
system, the images are aligned in Agisoft Metashape. Since the
drone flew with RTK GPS, coordinates of the drone camera
center are obtained in the global coordinate system WGS84.
We transform the coordinates to the national projection system
before importing the images into Agisoft Metashape. Thus, the
aligned camera poses contain the location and the orientation in
the local coordinate system, and the Cartesian transformation

matrices are then used to transform given world coordinates to
pixel coordinates using the well-known Equation (1).

The relationship between pixel and world coordinate system can
be expressed as follows:

λ

uv
1

 = K

[
RT −RTt
0 1

]
X
Y
Z
1

 (1)

where λ = scale
u, v = pixel coordinates
K = intrinsic camera parameters
R, t = rotation and translation of the camera
X,Y, Z = world coordinates

Radial and tangential distortion are of importance. Therefore,
we undistort the images in the software. The improvement of
the undistortion on the coordinate projection is illustrated in
Figure 4b. Adding GCPs further improves the alignment of the
cameras leading to Figure 4c. From Agisoft Metashape, the
undistorted images and an .xml file containing the camera poses
of the images are exported.

4.2 Rail boundary detection

To extract the location of the rail boundaries from the tiled
images generated in the preprocessing step, we experiment with
the five methods listed below.

• Canny: Canny edge detection & Hough transform
• HED: Holistically-nested edge detection & Hough trans-

form
• DexiNed: DexiNed edge detection & Hough transform
• SAM: Segment Anything Model & Canny edge detection

& Hough transform
• M-LSD: Mobile Line Segment Detection

The first four multi-step methods extract edges or boundaries
which can then be used as input to a Hough line transformation
whereas the last one-step method (M-LSD) directly detects lines.
We refer to Figure 5 for a detailed depiction of the performed
steps involved in the five methods.

Edge detection Canny, HED, and DexiNed are edge detection
algorithms. Canny is threshold based, while HED and DexiNed
are deep learning models. To extract lines from the generated
edges, the Hough transform is used. However, the edges gen-
erated by HED and DexiNed require some processing before
the Hough transform can be used. The output first needs to be
converted to a binary image using a threshold value. In our
experiments, we used a pixel value of 128. The resulting edges
are then eroded to obtained thinner edges. Then, the Hough
transform algrithm is used to obtain lines.

Boundary detection Furthermore, we explore boundary detec-
tion using the Segment Anything Model (SAM). By applying
SAM, we generate object masks for all detected objects in the
images, including the rails. To obtain a boundary map from the
segmentation masks, we combine all the masks into a single
layer, assigning a unique pixel value ID to each object instance
(in Figure 5, we call this instancing) and obtain a single band
image. The pixel values range from 0 to the number of detected
instances. Canny edge detection is then applied to this boundary
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Figure 3. The proposed workflow starts by reprojecting the as-designed rail lines Q onto the undistorted images. The rail boundaries L′

are extracted using Segment Anything Model (SAM) and filtering out false positives from all detected lines L. The inner rail boundary
lines can be paired in L′′ to obtain gauge and absolute deviation maps.

(a) Image captured by
drone, alignment

without GCP

(b) Undistorted image (c) Undistorted image,
alignment with GCP

Figure 4. Projection of a GCP (a) in the original image captured
by the drone, (b) after undistorting the captured image, and (c)

adding the GCP to the alignment in Agisoft Metashape.

map. Since Canny detects edges based on the gradient between
pixel values and edges need to be detected between each in-
stance, we set the lower Canny threshold to the value of 0.5 so
that edges between each object instance are detected. Finally,
the Hough Transform algorithm is used to extract straight lines
from the resulting Canny edge map.

Line segment detection In the final approach, we directly per-
form line segment detection without employing Canny or Hough
line transformation. This is achieved using the Mobile Line Seg-
ment Detection method (M-LSD), which extracts line segments
from the images in a single step.

Line filtering The drawback of masking the irrelevant areas
around the rails, as described in Section 4.1, is that the edge of
the mask also results in a detected line. Furthermore, lines that
are not in the same direction as the as-designed rails, can already
be removed. False positives can, as shown in Figure 6, be filtered
out based on two conditions: the detected line l must be nearly
parallel to at least one as-designed rail line q and the distance
between l and the nearest q must be within the buffer zone. The

Figure 5. The required processing steps for the rail boundary
detection methods.
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resulting set of filtered lines L′ is defined in Equation (2) where
the distance and angle between l and q are below thresholds tB
and tα:

L′ = {l ∈ L | ∃q ∈ Q, dmax(l, q) ≤ tB & ̸ (l, q) ≤ tα} (2)

where dmax is defined as the maximum distance between the
endpoints of l and the nearest as-designed rail line q, as in
Equation (3) in which P1, P2 are the endpoints of detected line l.

dmax(l, q) = max (d(P1, q), d(P2, q)) (3)

Figure 6. False positives are removed using the maximum
distance from the endpoints of the detected lines l to the nearest

as-designed rail line q.

4.3 Inner rail boundary selection

In step 3, the inner rail boundary lines are selected as pairs
between which the gauge can be measured. We define L′′ as the
set of pairs of lines from L′, in which each rail line is matched
with another rail line in order to determine the gauge, using
several constraints, as defined in Equation (4):

L′′ = {(l1, l2) ∈ L′ | ∃q ∈ Q, |d(l1, l2)−G| ≤ tG & (4)
d(l1, q) ≤ td & d(l2, q) ≤ td}

where l1, l2 = inner rail boundary pairs
G = the expected gauge
tG = maximum gauge offset
td = maximum deviation tolerance

When determining the distance between line segments l1 and
l2, we only want to take into account the overlapping part. Con-
sidering the end points of both segments and constructing their
projection point on the other line, either none of two of these
projections lie within the other segment. We only consider the
latter and take the average of the distances as illustrated in Fig-
ure 7 and defined in Equation (5) where P2 and P3 are the line
endpoints that have a projection point on the other line segment.

d(l1, l2) =
d(P3, l1) + d(P2, l2)

2
(5)

Figure 7. The distance between detected rail lines l1 and l2 is
computed as the average of the distances between end points and

their projection on the other line, if this projection lies on the
other segment.

4.4 Gauge and deviation maps

Our proposed workflow concludes with a visualisation of the
deviation from the expected gauge and deviation from the as-
designed rail boundary lines. Each individual rail must be within
a tolerance of the as-designed plan. To determine whether their
location is within this tolerance, the coordinates of the detected
lines can be transformed from pixel space to world space. The
lines can be imported in the as-designed CAD file where it
is straightforward to determine the distance between the as-
designed and as-is rails. But, within the image directly, we can
also calculate their offset from the matching as-designed rail
line. This is done for all the lines in L′′.

5. RESULTS

5.1 Edge Detection and Line Extraction

We compare the Canny edge baseline to HED, DexiNed, SAM,
and M-LSD. Some factors to consider for the evaluation are the
detection of the rail boundaries, the number of lines detected, and
the processing speed. In Figure 8, we show some examples of the
detected lines using the described methods. The detected lines
by various algorithms are shown in green and the as-designed
inner rail boundary is shown in red. Figure 8 a) shows a simple
single rail. Only Canny fails to detect both rail boundaries (inner
& outer). In Figure 8 b) a crossing is shown. Figure 8 c) and
d) show cabled crossing perpendicular are diagonally over the
rail. The filtering using Equation (2) effectively removed most
detected lines on the mask edge and lines not parallel to the
as-designed line.

We find SAM gives very little false positives but requires intens-
ive processing. M-LSD and HED, on the other hand, generate
overlapping lines, but give quick results. A fair balance can
be found with DexiNed, many short lines are detected without
overlap and processing speeds are significantly faster than SAM.

5.2 Determining Gauge & Positioning Deviation

The resulting gauge and positioning deviation can be shown in
a color-coded deviation map as shown in Figure 9. For each
matching line pair the average distance is calculated. The stand-
ard gauge is 1435 mm. As described in Section 3, the maximum
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Figure 8. We show the results for the tested methods for a) a straight rail, b) a crossing, c) perpendicular visual obstructions of a rail, and
d) a diagonal overhead line creating visual obstruction of a rail. From left to right: Canny edge detection with Hough lines,

Holistically-Nested Edge Detection (HED) with Hough line extraction, DexiNed edge detection with Hough line extraction, Segment
Anything Model (SAM) with Canny edge detection and Hough lines,and Mobile Line Segment Detection (M-LSD).
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gauge deviation tolerance is -2 mm to +4 mm. Based on its devi-
ation from the expected gauge, the line pairs are colored in red
for a gauge that is 1440 mm or more or in blue for a gauge that is
1430 mm or less. For the deviation for the absolute positioning,
a similar color coding is utilised as shown in Figure10.

The matching lines in L′′ are filtered on a distance close to the
expected gauge, as defined by equation (4). However, some false
positives still occur as shown in Figure 11.

6. DISCUSSION

From our experiments we find that the tested newer edge detec-
tion and line extraction algorithms outperform the traditional
Canny edge detector. However, obstructions and uneven wear
of the rails makes it visually difficult to determine the rail edge
location. The generated deviation maps are thus incomplete,
with gaps present, but for each detected rail pair, the deviation
can accurately be determined. Our method has the advantage
that localisation accuracy can be improved with an improved
ground control network as done by Ghassoun et al. (2021).

Since no accurate ground truth as-designed rail lines were avail-
able, the rail boundary detection methods could not be quant-
itatively evaluated. A new campaign is planned in which the
ground truth will be measured with a rail measurement trolley.
The accuracy of the detected rail boundaries can then be verified.
Furthermore, with foreseen oblique image capturing, the rail
localization can be extended to a 3D evaluation. The altimetric
assessment can then be computed from the photogrammetric
point cloud. Lidar data, as employed by Ariyachandra and
Brilakis (2020), would also allow for the altimetric evaluation.
However, the drone cannot fly with both optical and Lidar sensor,
and Lidar data would only be sufficient to determine altitude,
and not planimetric rail boundary localisation.

7. CONCLUSION

In this work, we present a UAV-based rail boundary localization
method for gauge and absolute positioning deviation measure-
ment. Drone inspections for railways are a promising alternative
to the traditional measurement trolleys, which are not only time-
intensive but also dangerous as rail access is required. In this
work, we explore a remote sensing method using RTK drone
imagery and GCPs. The local government imposes strict require-
ments on the gauge deviation and on the absolute positioning of
the rails. Our workflow consists of preprocessing where cameras
are aligned in Agisoft Metashape so that as-designed rail edges
can be reprojected onto the imagery. Then, five algorithms are
tested to detect the inside rail boundary edges. Specifically, we
compare newer deep-learning methods to the well-known Canny
edge detector. False positive detections are filtered out using
angle and distance measurements from the as-designed rail lines.
The gauge is measured between matching rail boundary pairs
and the deviation from the as-designed rails is mapped using
color codes. We find that among the tested line extraction meth-
ods, DexiNed is a good trade off between detections, speed, and
minimal overlapping lines. SAM is a good method to reduce
false positive detections, but requires powerful processors. Our
developed method effectively detects inner rail boundary lines
and results in easily interpretable deviation maps.

Although there is no doubt that a rail measurement trolley will
provide more accurate results, traditional methods are not an

Figure 9. The gauge deviation map is a visualization of the
detected rail line pairs colored based on their deviation from the

expected gauge. This example shows M-LSD lines.

Figure 10. The planimetric deviation from the as-designed rail
lines can be visualised using a color map. This example shows

M-LSD lines.

Figure 11. A False positive inner rail pair. The detected line on
the left is an outer rail edge. It is matched with the bottom of the

rail on the right. The distance between the two is equal to the
gauge.
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option when rail access is denied. UAV monitoring has various
benefits, not only is it safe and fast because no track access is
required, it is also cheaper.
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