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ABSTRACT:

In recent years, drones have gained wide popularity in forest research and operational applications. Over the forest canopy, where
Global Navigation Satellite Systems (GNSS) are available, the flights are already highly automated. However, under the canopy
of dense forests, the flights still need active manual control by a human pilot due to missing GNSS signal and obstacles. The
objective of this study was to design and implement a prototype of a drone autonomously flying inside a forest for future boreal
forest research purposes by utilizing open-source algorithms. Based on a literature survey, EGO-Planner-v2 with VINS-Fusion
localization and stereo-depth camera-based mapping was chosen as the base of the implemented prototype. The algorithms were
first tested in a simulator and later a custom drone hardware was built to evaluate the performance and suitability in real boreal
forest environments. The evaluation criteria for the performance were the success of the mission, the reliability of the obstacle
avoidance, and the accuracy of the localization. Based on the results, the performance of the prototype was promising, but in dense
forests, the sensing of small needleless branches and leafless understory vegetation needs to be improved to increase reliability. In
a dense spruce forest, nine of 19 test flights were successful, when approximate flight distances varied between 35 m and 80 m. In
the longest of those test flights, the error of the VINS-Fusion estimate of the trajectory length was approximately 1 m.

1. INTRODUCTION

In recent years, the autonomously flying of drones has been an
actively studied topic in both commercial and academic organ-
izations. Most autopilots can fly autonomously in open areas
where Global Navigation Satellite Systems (GNSS) are avail-
able. However, inside dense forests, the localization of the
drone cannot rely on GNSS due to poor quality or missing
GNSS signal due to signal blocks or multipath effects caused
by trees (Schubert et al., 2010). Furthermore, inside forests, the
drone also has to avoid various obstacles such as trees, bushes,
branches, and understory vegetation on its path.

Recent literature has presented various solutions for autonom-
ous flying in GNSS-denied environments, and they differ in
sensor setup and algorithms. Although many of those solutions
have been tested only in simulators or designed to fly in indoor
environments, the literature also contains several solutions with
open source code, which have been successfully flight tested
in forest environments. These open source real-environment
tested methods were the focus of this study. The solution pro-
posed by Liu et al. (2022) was targeted purely at large-scale
autonomous flights in forest environments. The system used
an inertial measurement unit (IMU) and a stereo camera to run
visual-inertial-odometry (VIO) and 3D light detection and ran-
ging (LiDAR) to run a semantic simultaneous localization and
mapping (SLAM) algorithm, which was used to correct drift in
VIO-estimate. The flight tests were performed in a North Amer-
ican pine forest. The solution proposed by Campos-Macı́as et
al. (2021) used a stereo tracking camera to run VIO and a point
cloud from an active stereo depth camera to create a voxel map.
The solution concentrated on computational efficiency and was
able to run in real-time with a low-power CPU. In addition to
indoor environments, the system was tested in a sparse mixed
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forest. The solution proposed by Loquercio et al. (2021) con-
centrated on high-speed autonomous flying in unknown envir-
onments. The system forwent on maintaining a map, and dif-
ferent sensing, mapping, and planning subtasks were replaced
by a single neural network that produced feasible trajectories
from depth images. The drone had an active stereo depth cam-
era to produce the depth images, and a stereo tracking camera
to run VIO. The system was successfully flight tested in vari-
ous environments that contained also Central-European mixed
forests. The solution proposed by Zhou et al. (2022) was de-
signed for swarm flights. The designed system used only one
stereo camera to run both mapping and VIO, and the swarm
flights were successfully tested in a dense bamboo forest.

The objective of this study was to design and implement a pro-
totype of a drone flying autonomously under the canopy for
forest research purposes in boreal forest environments utilizing
open source codes. However, none of the open-source solutions
had been tested in dense boreal forest environments. Further-
more, for most of the systems, the reliability of the navigation
had not been evaluated either. The system proposed by Lo-
quercio et al. (2021) was the only one whose reliability was
evaluated in the original paper by performing the same flight
task multiple times. In our prototype, existing open-source al-
gorithms were utilized, and the suitability of those solutions
for boreal forest environments was evaluated. The major re-
search questions were the performance and potential of the sys-
tem in boreal forest environments as well as further develop-
ment needs. The system was first implemented and tested in a
simulator, followed by altogether 39 flights in real forest envir-
onments in Finland.

This article is based on the Master’s thesis of the first author
Väinö Karjalainen (2023).
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2. MATERIALS AND METHODS

2.1 Algorithms

The solution by Zhou et al. (2022), was chosen as the base of the
implemented prototype, since it was proven to work with only
one stereo camera. That is beneficial, since in drone applic-
ations, minimizing both weight and battery consumption is a
crucial component. Cameras are typically lighter than LiDARs
and their typical power consumption is smaller (Reddy Cenker-
amaddi et al., 2020). Even though the solution had been flight
tested only in a bamboo forest, the test forest of the original
article was also the densest among the found open-source solu-
tions. The planner algorithm was named in Github as EGO-
Planner-v2. Even though the EGO-Planner-v2 is a swarm-
supporting approach, in this study, a single drone method was
implemented. The algorithm is running on top of the Robot Op-
erating System (ROS). The mapping module of EGO-Planner-
v2 is based on probabilistic occupancy grid maps (Moravec and
Elfes, 1985). The mapping module uses depth images produced
by the stereo camera as an input and the system adopts the fixed-
sized circular buffers for maintaining the local map as proposed
by Usenko et al. (2017). The maps also have a virtual floor and
a virtual ceiling. The virtual floor defines the minimum altitude
of the grid map, and the virtual ceiling defines the maximum
altitude of the grid map. Virtual floor and virtual ceiling can be
used for restricting the altitude where the system is allowed to
plan paths.

In trajectory planning, EGO-Planner-v2 uses a trajectory rep-
resentation called MINCO (minimum control) (Wang et al.,
2022) designed for differentially flat systems, such as quadro-
tors (Mellinger and Kumar, 2011). Trajectories are represented
as piece-wise polynomial splines, where spatial and temporal
parameters are decoupled (Zhou et al., 2022). The trajector-
ies are optimized by minimizing the weighted sum of metrics
defined for smoothness and time. The feasibility of the tra-
jectory is forced by deforming the trajectory shape to avoid
obstacles and restricting the magnitudes of trajectory velocity,
acceleration, and jerk to fulfill the dynamical constraints of the
drone. For computational practicality, the trajectory constraints
are enforced via integrals of penalty functions with large pen-
alty weights, and integrals are evaluated by a finite sum of
equally spaced samples along the timeline. The optimization
of time-dependent objectives J in one piece of the trajectory
can be represented in simplified form by

min
∑
x

λxJx (1)

where where Jx are penalty terms and λx are corresponding
weights. Subscripts x = {s, t, d, o, u} stand for smoothness,
total time, dynamical feasibility, obstacle avoidance, and uni-
form distribution of constraint evaluation points, respectively.
In addition to these, EGO-Planner-v2 has also penalty terms for
swarm operations, but those are omitted here. A* is used as
the global path-searching algorithm given as an input for the
optimization.

In the original article by Zhou et al. (2022) an open-source
VIO-algorithm, VINS-Fusion (Qin et al., 2018, 2019), was
used to provide the pose estimate to EGO-Planner-v2. VINS-
Fusion used grayscale stereo images and IMU to track the po-
sition and orientation of the drone. VINS-Fusion detects Shi-
Tomasi corner features (Shi and Tomasi, 1994), and tracks them

between frames with KLT Tracker (Lucas and Kanade, 1981).
VINS-Fusion also uses IMU preintegration, i.e. position, ve-
locity, and orientation are integrated from IMU measurements
between two frames. VINS-Fusion also adopts an online tem-
poral calibration method for inertial and visual measurements
(Qin and Shen, 2018), which can be used for estimating the time
offset td between the camera and the IMU online. In the swarm
operations of the original article, the drones used also relative
distances measured with Ultra Wide Band (UWB) sensors to
correct the drift in pose estimate, but with a single drone that
function is omitted.

For trajectory tracking, an open-source tracking controller (ZJU
FAST Lab Team, 2022) included in the source code of Zheji-
ang University’s drone building course was used. The tracking
controller gets setpoints for position, velocity, acceleration, and
yaw from the planner, and converts them to attitude and thrust
setpoints that are forwarded to PX4 flight controller software
(PX4 Community, 2020). The complete system architecture of
the prototype is presented in Figure 1.
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Figure 1. The system architecture used in this study
(Karjalainen, 2023). In comparison to the original

EGO-Planner-v2 article by Zhou et al. (2022), UWB-based Drift
correction and Wireless trajectory broadcast network modules

for swarm operations were omitted in this study.

2.2 Drones

Simulated tests were performed in Gazebo simulator (Koenig
and Howard, 2004) with PX4 running software in the loop
(SITL). The simulated drone platform was 3DR Solo, whose
Gazebo model was included in the PX4 software. The drone
had an approximately 33 cm radius with propellers included.
A simulated Intel RealSense D435 camera was attached to the
drone. For simulating the D435, a Gazebo ROS plugin Pal Ro-
botics Development Team (2019) published by PAL Robotics
was used. The simulated camera was publishing both depth im-
ages and grayscale stereo images at a frequency of 30 Hz. The
resolution of all images was 640 × 480 pixels. The simulated
drone is presented in Figure 2.

In the physical robot drone prototype an onboard computer
ASUS PN51-E1 with AMD Ryzen 7 5700U processor was
used. The used PX4-compliant autopilot was Hex Cube black,
which contained also the IMU. For mapping and VIO, an Intel
RealSense D435 camera (Intel Realsense Development Team,
2023)(Keselman et al., 2017) was used. RealSense D435 is
based on active stereoscopy, which allows it to output high-
quality depth images. The camera was publishing both depth
images and grayscale stereo images at a frequency of 30 Hz
and the resolution of all images was 640 × 480 pixels. The
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Figure 2. The simulated drone.

camera-IMU system was calibrated with an open-source cam-
era calibration toolbox, kalibr (Furgale et al., 2012)(Furgale et
al., 2013)(Maye et al., 2013). In the calibration, the intrinsic
and extrinsic parameters of the left and right grayscale cameras
and the time shift between the camera and the autopilot IMU
were calculated from recorded data where Aprilgrid (Olson,
2011) was used as a calibration target. The computer, the cam-
era, and the autopilot were attached to a 330 mm drone frame.
The propellers had three pieces of 6.5 cm long blades each. The
measured weight of the drone was 1248 g without the batter-
ies, and 1613 g with batteries for the motors and the onboard
computer included. An overview of the used drone hardware is
presented in Figure 3.

Figure 3. The drone hardware used in the flight tests.

2.3 Test environments and experimental setups

The performance of the system was first evaluated in simu-
lated forests. The two main components of the system, obstacle
avoidance and VIO, were first evaluated separately in random-
ized forests with artificial spruce models. The forest genera-
tion process was adapted from the script by Oleynikova et al.
(2016). As tree models, photorealistic Norway spruce models
by Globe Plants were used (Globe Plants Team, 2022). A total
of 12 different forests were generated. The tree densities of the
forests were 0.1 trees/m², 0.15 trees/m², and 0.2 trees/m² so that
there were four individual forests per density. An example of a
simulated forest with a density of 0.2 trees/m² is shown in 4.

The performance of the obstacle avoidance was tested with four
different maximum flying velocities: 1.0 m/s, 1.5 m/s, 2.0 m/s,
and 2.5 m/s. For every forest and velocity combination five
flights were performed, so there were in total 20 flights with
every density and velocity combination. In the obstacle avoid-
ance tests, the drone got precise pose estimates from the simu-
lator instead of the VIO. The flight distance was 25 m.

To evaluate the performance of VINS-Fusion during obstacle
avoidance, flight data from six flights were recorded. From

Figure 4. Example of simulated forest with a density of 0.2
trees/m².

those, three flights were performed with a maximum velocity
of 1.0 m/s and three flights with 2.0 m/s. Since VIO is not
a deterministic process, the estimation result varies between
runs even if the input data remains exactly the same. For that
reason, VINS-Fusion estimation was performed 20 times for
every flight data recording. From those, the estimation was run
10 times by using the online estimation for td and 10 times with
a fixed value for td. The used fixed td value was acquired by
roughly testing different values in the simulator. At the end of
every estimation, the estimated position and orientation were
compared against the ground truth values from the simulator.

After successful flights in artificial forests, the system was
tested in its entirety in a simulated forest that was generated
based on the point cloud data from a real pinewood forest in
Finland. The data was processed and the 3D model was cre-
ated with Agisoft Metashape (Metashape Development Team,
2021). A screenshot from the forest is presented in Figure 5.
The purpose of these tests was not only to validate the safe joint
operation between VIO and planner but also to evaluate the per-
formance of the system in longer flights with a computationally
lighter environment. The goal was 90 m forward and 8 m up
from the takeoff location since the flying direction was up the
slope. In total 10 test flights were performed, and the maximum
flying velocity was set to 2.0 m/s.

Figure 5. Simulated forest generated from real point cloud data.

After validating the safe operation and correct performance of
the system in a simulator, its performance and suitability for
operating in boreal forest environments were evaluated using
real physical hardware. The success of the mission, the reli-
ability of the obstacle avoidance, and the accuracy of the loc-
alization were used as evaluation criteria. The performance of
the system was tested in three different forest environments in
Southern Finland. Tests were carried out between January 2023
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and February 2023, under leaf-off conditions, and in different
weather conditions, and adjusting the maximum flying speed
and the distance to the goal during the tests. The takeoff pose
of the drone was defined as the origin of the coordinate system,
where the x-axis was pointing forward from the drone, the y-
axis was pointing left from the drone, and the z-axis was point-
ing up from the drone. The navigation goal was then defined by
sending three-dimensional coordinates of the goal point to the
system.

The first test environment was a sparse mixed forest. In total,
nine test flights were performed there, and the flight distances
varied between 18 m and 23 m. The maximum flight velo-
city was 0.5 m/s in the first test flight and 1.0 m/s in the rest
of the flights. The weather was sunny, but the sun was not
pointing toward the camera. Figure 6 presents the overview of
the test environment. The second test environment was a park
woodland with dense understory vegetation and uneven ground.
Since the tests were performed during the winter, the vegetation
was leafless. Again, nine test flights were performed, and the
flight distances varied between 21 m and 40 m. The maximum
flight velocity varied between 1.0 m/s and 1.5 m/s. The weather
was partially cloudy, and on some flights, the sun was point-
ing toward the camera. An overview of the second test area is
presented in Figure 7. The last test environment was a dense and
snowy spruce forest. In this environment, 19 test flights were
performed and the flight distances varied between 35 m and 80
m. The maximum flight velocity was 1.0 m/s in all test flights.
The weather during the tests was partially cloudy, but dense
forest blocked the direct sunlight during the sunny moments.
For this environment, a rough estimate of the forest density was
formed with a backpack laser scanner. In the first part of the
flight test area the forest was very dense consisting mainly of
young spruces with low branches. The estimated average forest
density in that area was approximately 0.238 trees/m². After ap-
proximately 35 m the forest had two small open areas, that were
used as goal locations in shorter flights. After the open areas,
the forest was sparser than in the beginning. The estimated aver-
age forest density in that area was approximately 0.165 trees/m²
consisting mainly of older trees with fewer low branches. An
overview of the third test area is presented in Figure 8.

The experiments tested the ability of the system to detect and
avoid trees, branches, and understory vegetation. For some of
the flights, also the precision and accuracy of the VIO were
evaluated by comparing the precision of the landing point in re-
peated flights and measuring the distance from the takeoff loc-
ation to the landing point with a laser range meter.

3. RESULTS AND DISCUSSION

3.1 Simulation results

The system was first implemented and validated using the
Gazebo simulator. Based on the results, increasing the forest
density or flying velocity decreased the success rate of obstacle
avoidance. With a maximum flying velocity of 1.0 m/s, the sys-
tem was able to navigate without collisions in forests with a
density of 0.15 trees/m². With the highest maximum flying ve-
locity and forest density, 2.5 m/s and 0.2 trees/m², only six of
the 20 flights were successful.

In the evaluation of VINS-Fusion, the average position error
over all flights was 0.49 m with fixed td and 0.85 m with using
built-in online td estimation. In both cases, the average position

Figure 6. Sparse mixed forest.

Figure 7. Drone flying in park woodland with dense leafless
understory vegetation.

error was biggest in the x-direction, which was also the direc-
tion where most of the moving happened. The average position
error in the x-direction was 0.39 m with fixed td and 0.80 m with
using online td estimation. The standard deviation between the
estimations was also biggest in the x-direction, 0.20 m with
fixed td and 0.17 m with using online td estimation. The av-
erage orientation error was biggest in the yaw-direction, 0.67°
with online estimated td and 0.74° with fixed td.

For the last simulation test flights in the forest model generated
from the photogrammetric point cloud data, the td was fixed.
The system managed to fly all 10 test flights without collisions.
The average position error of the ten flights was 1.32 m. The av-
erage orientation error was again highest in the yaw-direction,
0.8°.
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Figure 8. Dense snowy spruce forest.

3.2 Real forest test results

The prototype performed well in the sparse mixed forest, and
out of nine test flights eight were successful. In these cases
the drone autonomously calculated its path and avoided any
obstacles in its way. In the only failed flight the drone failed
to find the path to the goal position and was manually landed
from hovering mode.

In the park woodland with dense understory vegetation only
three out of nine test flights were successful. The most common
reason for the failures was a late detection of small branches of
the leafless understory vegetation leading either to collisions or
late emergency stops in situations where the planner was unable
to find a new path even after the emergency stop. Two flights
failed also since the drone considered the given goal position
to be under the ground. However, there were also successful
flights with identical goal points and takeoff locations, which
indicates that there was a deviation between the z-coordinate of
VIO-estimations of the flights.

In the dense spruce forest, nine out of 19 test flights were suc-
cessful. This performance convincingly showed that the system
is capable to operate in quite challenging conditions. The most
common reason for the failures was again a late or completely
missed detection of small dry branches. Figures 9 and 10 illus-
trate the problem by presenting a left stereo image and depth
image respectively approximately a second before a collision
with the small branches in front of the drone. As can be seen
from the illustration of the local map in Figure 11, the system
did not detect the branches and the grid map in front of the
drone was clear. In three flights the reason for the failure was
the unstability of the VIO-estimate, and once the drone tried to
go under the ground straight after the takeoff due to poor global
path returned by the planner.

Figures 12, 13, and 14 illustrate examples of flight paths in suc-
cessful autonomous flights in sparse mixed forest, park wood-
land, and dense spruce forest respectively. The maps and the
paths are seen from up, so paths going through obstacles mean
that the drone navigated under a low branch.

Figure 9. Left stereo image before a collision with the small
branches.

Figure 10. Depth image before a collision with the small
branches.

Figure 11. The local map and planned path before a collision
with the small branches.

The precision of the VINS-Fusion estimate was roughly evalu-
ated by performing three flights with identical takeoff locations
and goals both in sparse mixed forest and dense spruce forest.
In the mixed forest, the goal of the three flights was 18 m for-
ward from the takeoff location. The longest distance between
the landing points was approximately 0.5 m. In the dense spruce
forest, the goal of the three flights was 60 m forward and 1.5 m
left from the takeoff location. The longest distance between the
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Figure 12. Example of flight path in sparse mixed forest.

Figure 13. Example of flight path in park woodland.

Figure 14. Example of flight path in dense spruce forest.

landing points was approximately 2.2 m. In both cases, the ma-
jority of the deviation was in y-direction. Hence the deviation
can be caused by differences in initial headings, since in the 60
m long flight even a 1° difference in the initial heading leads to
approximately 1 m difference in the position at the end of the
flight. A rough estimate of the accuracy of the VINS-Fusion es-
timate was formed with a laser range meter. In the three sparse
mixed forest flights, the range meter reading from the takeoff
location to the approximate center of landing points of 18 m
flights was exactly 18 m. In the dense spruce forest measur-
ing the distance with a range meter was difficult due to trees
and branches in the path. However, in the longest test flight
VINS-Fusion estimated the flight distance to be 79.6 m, and
the distance measured from the takeoff location to the landing
location was 78.6 m.

The performance of the prototype was promising, but develop-
ment is needed to increase the reliability of obstacle avoidance
in dense boreal forests with tiny leafless branches. At the hard-
ware level, improved methods to detect thin branches need to
be tested. Using only one stereo camera makes the sensor setup
energy efficient and light, but comes with the drawback of lim-
ited field-of-view. Using LiDAR or 360° camera would offer a
better view of the surrounding trees and branches. Although
the evaluation methods for the performance of VINS-Fusion
were approximate, its accuracy and precision were satisfying
for flights with this distance. However, in the snowy spruce
forest, the VINS estimate became unstable in three tests. Two
times the unstability started straight after the initialization dur-
ing the takeoff, and only once during the flight. The unstabil-

ity problems were not detected in the two earlier environments,
so the possibility of environmental reasons or hardware breaks
cannot be excluded. The performance and reliability of VINS-
Fusion could also increase by performing a new calibration for
the sensor setup or implementing a hardware synchronization
between the stereo camera and the IMU.

4. CONCLUSIONS AND FURTHER WORK

In this study, a prototype of a drone flying autonomously un-
der the canopy for forest research purposes in boreal forest
environments was designed and implemented. The prototype
was built by utilizing existing open-source algorithms, EGO-
Planner-v2 and VINS-Fusion, and its suitability and perform-
ance were evaluated in various Finnish forest environments. In
the best-case scenario, the prototype was able to successfully
navigate and avoid obstacles even in dense spruce forests, but
the detection of thin branches needs to be improved to achieve
reliable and robust flight performance.

The implemented prototype can be used for example for further
research on improving the performance of the system and de-
veloping applications on top of it. Potential ways to further im-
prove the system are, for example, combining a high-level path
planner performing area coverage to the system or improving
the VIO estimate with loop closures and GNSS-fusion. Also,
the implementation of the full swarm-based solution would be
of interest. More testing in different seasons would also be rel-
evant.

The ability to fly inside a forest opens up completely new pos-
sibilities to digitalize forest analysis and offer enhanced eco-
system services. Potential future applications of the system
in forest research include direct forest inventory measurements
inside the forest (e.g. tree species and stem parameters), im-
age data collection of understory vegetation for biodiversity re-
search, analysis of stem quality e.g. to detect damages in the
bark of the trees due to insect pests, as well as a search of wild-
food such as mushrooms and berries, to mention but a few po-
tential applications.
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