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ABSTRACT: 
 
Maintenance works are crucial to improve the reliability and resilience of road infrastructure but, despite efforts to achieve a safer 
operation, work zones are still risky areas where 4% of all road accidents occur. The main factors that increase the risk during 
maintenance include the proximity to live traffic, inadequate warning signs and driver behaviour. Intelligent Transportation Systems 
and their supporting technologies including sensors, data processing and analysis have been beneficial for increasing road safety.  
In this work, we present the design of a context awareness approach based on an Unmanned Aerial System aimed to detect 
inadequate speed of incoming traffic approaching to a work zone and to raise warning alerts. To accomplish this objective, an optical 
payload carrying an on-the-edge analysis system based on deep learning tracking was developed and tested. Preliminary results show 
the potential of the design to achieve near real-time operation preserving a mean Average Precision similar to that obtained with 
more complex architectures.  
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1. INTRODUCTION 

Improving the reliability and resilience of road infrastructure 
throughout its lifecycle is of great importance. To achieve this, 
road maintenance has been improving through a paradigm shift 
from corrective methods to predictive ones (Rúa et al., 2022). 
Despite efforts to improve road safety, work zones remain a 
priority as 4% of all accidents occur in these areas, that entail 
significant risks to both road users and workers (European 
Transport Safety Council, 2011). The execution of repetitive 
tasks increases the likelihood of errors and, therefore, associated 
risks. This is one of the reasons why there is a growing interest 
in the use of infrastructure maintenance robots to improve 
efficiency and safety. 
 
On the other hand, intelligent transportation systems (ITS) have 
made significant progress in recent decades with benefits in 
sustainability and safety improvements. ITS are 
multidisciplinary systems that combine Information and 
Computing Technologies (ICT), including sensors, data 
processing and analysis methods, and communications, to 
support conventional transport infrastructure (Lin et al., 2017). 
In the construction field, optical sensors that allow for 
monitoring and mapping of the scene enable real-time 
supervision of construction activities, both indoors and outdoors 
(Rao et al., 2022). These improvements in ITS are useful for 
monitoring the traffic approaching work zones on roads during 
maintenance.  
 
In this manuscript, we present the design of a context awareness 
and monitoring approach based on an Unmanned Aerial System 
(UAS). The objective of this work is to define an intelligent 
UAS-payload for on-the-edge processing and analysis of video 
frames to detect incoming traffic to the work-zone and to raise 
alerts in case of imminent risk. 
 
 

2. PROPOSED SOLUTION 

The proposed solution consists of the following components: 
• Unmanned Aerial Vehicle (UAV) platform 
• Optical payload and image analytics 

 
2.1 UAV Platform 

In a UAS, the UAV platform is the first subsystem to be 
defined, because the operation and regulations depend on its 
characteristics.  
 
In our case, the main aim of the UAS is the monitoring of the 
different space segments of the infrastructure where a Work 
Zone is defined. These spaces consist of the approach area, the 
queuing area , the inner work zone and the termination area 
(Dirección General de Carreteras, 2014). Figure 1 depicts the 
approaching areas before reaching the inner WorkZone, that are 
the target areas for UAS-based monitoring. 
 

 
Figure 1 Segmentation of WorkZone in Approach Area, 

Queuing Area, Inner WorkZone. 
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Taking into account the main objectives of the UAS, the most 
suitable UAV platform is a rotary wing vehicle, also known as 
multicopter.  
 
The most salient feature of this platform consists of its 
capability to hover on the air, thus maintaining the position that 
is collected by means of a GNSS component.  In order to 
improve the precision of the positioning, a Real-time Kinematic 
(RTK) solution is required.  
 
The main drawback of these platforms is that the autonomy of 
the system is low compared to fixed wing platform. To 
overcome this limitation, the platform is powered by a ground 
station that is tethered to the UAV through a cable. As a result, 
the ground station provides both power and control capabilities 
to the system that can perform the context awareness functions 
with no restrictions of time (Elistair | The Tethered Drone 
Company, 2023). Figure 2 shows the UAV flying with the 
tethering cable attached to the Ground Power system. 
 

 
 

Figure 2 UAV Ground-powered with a tethering system 

 
2.2 Optical payload 

The optical system of the UAS consists of a RGB camera 
mounted with a zoom lens that allows for traffic monitoring in 
the approach area of the Working Zone. The distance to the 
Working Zone is defined to alert users and personnel with a 
sufficient time to respond to the traffic risk, and in our case 
consist of 400 m, that is the distance from the starting point of 
the Approaching Area (view Figure 1). 
 
 
2.3 Image analytics 

The analytics of the context awareness system consists of a 
Multi Object Tracking (MOT) algorithm based on ByteTrack 
including (i) a Deep Learning based vehicle detector, (ii) an 
instance tracker based on Kalman filtering, and (iii) an analysis 
module to provide traffic statistics and raise alerts in case of 
risk. Similarly, ByteTrack has gained attention because of its 

tracking capabilities based on the combination of object 
detection and tracking into a unified framework. It integrates the 
benefits of both tracking-by-detection (in frame) and tracking-
by-regression (in consecutive frames) approaches, making it 
robust and accurate in real-time handling of complex tracking 
scenarios (Zhang et al., 2022). The workflow of the image 
analysis is shown in Figure 3. 
 

 
 

Figure 3 Software workflow design 
 
2.3.1 Deep learning vehicle detector. The state of the art for 
image detection consists of the advanced full deep neural 
networks (DNNs) and, among the proposed architectures, 
YOLO (You Only Look Once) has emerged as a highly efficient 
detection framework. The architecture of YOLO consists of a 
neural network that is divided into two parts: a feature extractor, 
typically a pre-trained convolutional neural network (CNN), and 
a detection head based on convolutional and fully connected 
layers (Redmon et al., 2016). As a result, YOLO takes an input 
image and outputs a set of bounding boxes and class 
probabilities for the objects detected in the image. In particular, 
YOLO-v8 has shown performance improvements and, 
considering that v8 is focused on hardware efficiency and 
architectural reforms, this results in in better throughput with a 
similar number of parameters compared to previous versions of 
the detector (Hussain, 2023). 
 

 
 
Figure 4 Preliminary architecture of YOLOv1 as in (Hussain, 

2023) 
 
The training and validation of the Neural Network was 
conducted on non-pretrained models using different 
combinations of real and synthetic datasets obtained from 
Nvidia’s Omniverse platform (Conde et al., 2023).  
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2.3.2 Reprojection of detection points on the ground. In 
order to obtain real-world measurements from the bounding-box 
vehicle detections, we use the reprojection of the image 
coordinates of a reference point onto a photogrammetric 3D 
model that was created using images collected with a UAV 
surveying.  
To derive the reference points from the detections, the following 
assumptions are made: 

1. Vehicles can be approximated to a rectangular 
prism in shape, so the overall structure of vehicles 
tends to resemble a rectangular base, with the body 
extending on height. This approximation helps 
visualize the general dimensions of vehicles and the 
space they occupy on the road. 

2. The road is locally flat, meaning that there are 
no significant variations in height in the immediate 
surroundings of the car. This indicates that the road 
terrain remains locally even and consistent. 

3. We can exploit the fact that, considering that the 
actual dimensions of the vehicle are not of interest to 
us, and the curvature ratios in high-capacity roads we 
can simplify the problem by assuming that the object 
under study maintains the same rotation with respect 
to the camera. By doing so, we achieve a centre local 
invariance with respect to the object's rotation. 

Considering that (Xl, Yl) and (Xu, Yu) are the corners of the 
bounding box, we obtain the coordinates of the centre of the 
upper and lower segments: 
 
Once these coordinates on the image are known, we will use the 
intrinsic parameters and distortion coefficients to obtain the 
direction vector of the line that passes through the points in the 
world space that correspond to that pixel in image space. This 
method aims to correct lens distortion, but it also returns the 
normalized coordinates, and, therefore, we can construct the 
desired direction vector using the resulting X and Y components 
obtained from the execution of this method, by setting the Z 
component equal to 1. 
Once this vector is known, it is rotated using the inverse 
rotation vector extracted from the camera's position to transform 
it into world space and, using a lightweight library, we perform 
raycasting on the 3D model of the zone, obtaining the three-
dimensional point where the object's bounding box intersects 
with the ground for the central point of the lower segment. 
Regarding the upper point and since we have assumed that the 
road is locally flat, the raycasting is not performed directly on 
the model itself. Instead, it is performed on a plane positioned at 
the same height as the lower point of the bounding box to form 
a right triangle behind the car. 
Considering the positioning of these 3D points and the 
timestamp of the video frames, we can calculate both the 
trajectory and speed of the vehicles to be tracked on the images. 
An extended Kalman filter is used to filter the trajectory. 
 
 
2.4 On-the-edge processing and implementation 

The algorithm runs in a GPU-based embedded processing 
system that aims to provide real-time monitoring of the traffic 
flow.  
 
DNNs can be quite computationally extensive, comprising 
multiple layers and a multitude of weights. As a consequence, 
DNNs demand significant computing power, memory, and 
energy usage, which can pose challenges for embedded devices 
with limited capabilities, making it difficult to deploy and run 
the models efficiently. However, there are optimized 

inferencers, such as TensorRT, that can leverage the capabilities 
of open-source frameworks and enable low-latency and high-
throughput execution on embedded systems by re-implementing 
and deploying pre-trained DNNs. 
 
The optimization of the inference engine involves two steps: 
compilation and runtime optimization. During the compilation 
phase, the inference engine makes decisions on how to execute 
the layers and perform the operations efficiently. One 
optimization technique involves weight and activation precision 
calibration, where the engine reduces the precision from FP64 
to FP32 or even quantizes them to INT8 whenever feasible. By 
reducing the precision, the engine can achieve a good trade-off 
between computational accuracy and efficiency. Additionally, 
layer and tensor fusion techniques are applied to minimize the 
number of operations required while maintaining precision. By 
fusing multiple layers into a single operation, the engine can 
reduce the computational overhead and exploit the GPU 
memory and bandwidth more effectively. This fusion process 
ensures that the model's precision is minimally affected while 
maximizing the utilization of available resources. 
 
In the runtime phase, the inference engine focuses on executing 
the network as efficiently as possible. Integration with popular 
frameworks provides the opportunity to replace generic layer 
implementations with those specifically optimized for NVIDIA 
graphics devices. By embedding executors designed for the 
specific hardware, the inference engine can leverage device-
specific optimizations and hardware acceleration, thereby 
improving the overall performance and efficiency of the 
inference process.  
 
This combination of compilation and runtime optimization 
techniques enables the inference engine to deliver high-
performance and resource-efficient execution of deep neural 
networks, unlocking a higher potential of NVIDIA graphics 
devices for deep learning applications. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Location and Description of the test site 

The test site for the designing activities described in this 
document is the AG41 road in Pontevedra, a province in 
northwest Spain. AG41 plays a crucial role in facilitating 
seamless connectivity and transportation efficiency between a 
touristic area and the major AP9 highway. As a high-capacity 
road, it is designed to handle significant traffic volume, 
ensuring smooth flow and reducing congestion. The specific 
location consists of the Kilometric Points (PK) 12 -13 of the 
road, depicted in Figure 5. 
 

 
Figure 5 Aerial view of the test site in PK12-13 of the AG41 
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3.2 Image analytics results 

In order to obtain the performance of object detection modules, 
we calculated the mean Average Precision (mAP), a common 
metric for this purpose that is derived at an Intersection over 
Union (IoU) threshold. This means that, to calculate mAP@50, 
we need the Average Precision (AP) for each of the classes in 
our dataset. We obtain this by inspecting the area under the 
precision-recall curve (view Figure 6). 

 

a 

 

b 

 
 

Figure 6 Precision-Recall curve for the training with (a) only 
real data and (b) including synthetic data 

It is important to mention the effect of using synthetic data in 
the training and validation dataset in this experiment that was 
beneficial, as it resulted in an improvement in the mean average 
precision while also reducing the variation between different 
classes. Particularly noteworthy was the ability to successfully 
detect the motorcycle class, which is typically more challenging 
to identify. This achievement was possible by incorporating 
synthetic data alongside the limited number of real data 
samples. By augmenting the dataset with synthetic examples, 
the model's performance was enhanced, leading to a higher 
overall average precision and a notable reduction in the 
variability across different classes. 
 
Focusing on mAP metrics, mAP50 is depicted in the following 
table along with the more stringent evaluation mAP50-95, that 
shows average mAP over different IoU thresholds, from 0.5 to 
0.95.  
 

 mAP50 mAP50-95 
Car 0.570 0.342 
Motorcycle 0.206 0.082 
Truck 0.040 0.023 

All 0.272 0.149 

Table 1 mAP Values 

 
These validation metrics before the optimization were obtained 
with Ultralytics YOLOv8 and a custom dataset of 3770 images. 
Figure 7 shows the output for this stage of the methodology. 

 

 
 
Figure 7 Example of bounding box vehicle detections in  the 

test site. 
 
By applying the procedure to reproject the coordinates of the 
derived locally invariant centre of the detection bounding boxes 
on the ground, and the timestamp between frame, instantaneous 
speed is calculated (view Figure 8). Considering that the system 
is at design stage, the accuracy of speed measurements is still 
pending. 
 

 
 
Figure 8 Estimation of vehicle speed from the reprojection of 

the image to ground coordinates 
 
 
3.3 On-the-edge implementation results 

The primary motivation behind implementing inference 
optimizers lie in achieving reduced latency and higher 
throughput for the classification. Latency refers to the time 
delay between inputting data into the model and receiving the 
corresponding output. By optimizing the inference process, 
these optimizers aim to minimize this delay, enabling near real-
time or even real-time performance depending on time-
sensitivity.  
 
In addition to latency reduction, inference optimizers also strive 
to achieve higher throughput. Throughput, in this context, refers 
to the number of inferences or predictions that can be processed 
per unit of time by the inference engine and hardware-specific 
optimizations on GPUs. 
 
Table 2 shows the improvements in processing time, including 
preprocessing of the images, the inference stage and 
postprocessing. 
 
These tests were conducted on an NVIDIA GPU 3080 Laptop. 
The case study aimed to evaluate the impact of inference 
optimization on the overall performance of the model.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-605-2023 | © Author(s) 2023. CC BY 4.0 License.

 
608



 

 mAP50-
95 

(Original) 

mAP50-95 
(TensorRT 

without 
quantification) 

mAP50-95 
(TensorRT with 
quantification) 

Preprocessing 2.5 ms 2.6 ms 2.5 ms 
Inference 23.3 ms 19.5 ms 10.4 ms 
Postprocess 1.9 ms 2.1 ms 2.1 ms 

Total 27.7 ms 24.2 ms 15.0 ms 

Table 2 Processing time for on-the-edge implementation 

 
The results demonstrated a significant improvement in inference 
throughput, with a notable x1.8 enhancement achieved. This 
improvement indicates a substantial reduction in the time 
required for making predictions, enabling faster and more 
efficient object detection. 
 
Although there was a slight increase in preprocessing and 
postprocessing time due to memory copy bottlenecks between 
devices, the overall inference time was consistently reduced. 
This highlights the effectiveness of the inference optimization 
techniques implemented, which successfully mitigated any 
potential delays caused by data transfer or synchronization 
between different memory spaces. 
 
Layer fusion and data quantization techniques, while beneficial 
for optimizing inference throughput, may introduce a potential 
trade-off in terms of precision. These optimization methods 
involve merging multiple layers into a single operation and 
reducing the precision of numerical data to achieve faster 
computations and memory usage. However, this reduction in 
precision can result in a loss of accuracy or subtle differences in 
the output. Table 3 shows the precision of the optimized results, 
showing negligible difference with the original. 
 

 mAP50-
95 

(Original) 

mAP50-95 
(TensorRT 

without 
quantification) 

mAP50-95 
(TensorRT with 
quantification) 

Car 0.3420 0.3420 0.3410 
Motorcycle 0.0825 0.0821 0.0809 
Truck 0.0230 0.0231 0.0230 

All 0.1490 0.1490 0.1480 

Table 3 mAP after on-the-edge optimization 
 
 

4. CONCLUSIONS 

In this work we presented the design monitoring system based 
on an UAS and an intelligent UAS-payload for on-the-edge 
processing and analysis of video frames to detect incoming 
traffic. The preliminary results for the tests show the potential 
of the solution. Particularly, we have shown that incorporating 
synthetic data from virtual reality frameworks into the training 
process significantly improved the performance and robustness 
of the machine learning models. We analysed and found that the 
optimizations for on-the-edge analysis of images led to a 
reduction in the processing time that permits near real-time 
operation. At the same time, the mean Average Precision of the 
results was not significantly stricken by the optimizer, showing 
metrics differences that are negligible. Finally, a coarse 
definition of the vehicles’ position based on geometric 
simplifications and assumptions led to promising results on 

speed estimation, but further efforts and assessment are pending 
as future work for a more robust performance. 
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