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ABSTRACT: 

 

Recently, HD maps have various merits for achieving the highest level of self-localization accuracy, keeping track of the state of the 

road infrastructure and maintenance, and providing an indication if any repairs are required. Therefore, it is essential to keep the HD 

map up to date. However, the process of updating the HD map is exorbitant because the HD map is created using expensive sensor 

setups, and updating the map frequently via these setups will be costly. In this paper, a full pipeline is proposed for updating the HD 

map via a crowdsourced dataset that is collected with low-cost smartphone sensors. Furthermore, an Android application is developed 

and installed on a smartphone to collect the raw data. Once the dataset is collected from the area of interest, it will be uploaded 

automatically to the cloud server that is connected to the HD map database. Then, object detection, depth estimation, and matching 

algorithms are triggered on the cloud server to keep updating the HD map database. The positions of the detected objects from the 

crowdsourced dataset are estimated by using fused outputs of deep learning models and the Global navigation satellite system (GNSS) 

of a smartphone and then compared with the objects in the HD map through matching algorithms. The proposed model is considered 

the first comprehensive pipeline approach for updating HD maps with high a cost-effective and efficient solution. 

 

1. INTRODUCTION 

The advent of autonomous vehicles has sparked a paradigm shift 

in the transportation industry, offering immense opportunities to 

enhance safety, convenience, and efficiency. High-Definition 

(HD) maps have emerged as a key enabler in this regard, 

providing detailed and accurate information about road networks 

and their surroundings. It is worth noting that researchers in (R. 

Liu et al., 2020) build an accurate 3D map that contains multiple 

attributes, such as semantic information. For reaching the 

optimum accurate navigation, the HD map should be always 

updated to be matched with the changes in real world.  

  

In (Pannen et al., 2019), they proposed an approach for HD Map 

change detection and update based on filters. Lane markings and 

road edge geometry were utilized as primary landmarks to 

estimate the vehicle's pose through a series of landmark 

detections and matching. Additionally, they utilized two particle 

filters for estimating a vehicle position and detecting the changes 

in the HD map.  While, in (Park et al., 2022), they utilized an 

object detection model, YOLOv3 (Redmon & Farhadi, 2018), for 

updating a 3D HD map. When the YOLOv3 model outputs the 

bounding boxes, the canter point of each bounding box is used 

for comparing it with the center of a 3D object in the HD map for 

taking a decision of updating or unchanged the HD map objects.  

 

Similarly, (Heo et al., 2020) utilized an instance segmentation 

deep learning network for matching between a camera frame and 

an HD map mask that is projected from the HD map by a given 

camera location of the captured frame. The output from the 

instance segmentation model is a similarity score mask that 

indicates if any object of the HD map should be added, changed, 

or removed. Although the models (Heo et al., 2020; Pannen et al., 

2019; Park et al., 2022) achieved an acceptable accuracy in 

updating HD maps, they lack leveraging of crowdsourced data 

from different contributions because the crowdsourced dataset 

provides a scalable solution for updating HD maps.  As the 

number of data increases, the confidence and accuracy of 

updating HD maps with low-cost sensors increases. Additionally, 

crowded data provides an extensive dataset that is sufficient for 

a better representation of the real world.  

 

The researchers in (Zhang et al., 2021) exploit the benefit of a 

crowdsourced dataset that is collected from a camera, Controller 

Area Network (CAN), and a high-end localization sensor, called 

SPAN-IGM-A1 that provides accurate positioning via 

integrating the reading from GNSS and Inertial Measurement 

Unit (IMU). They estimated the segmentation of static objects by 

utilizing the BiSeNet network (Yu et al., 2018) and then it is 

integrated with Simultaneous Localization and Mapping 

(SLAM) reading and the positioning sensors for predicting the 

point cloud of static objects. After that, the predicted point cloud 

data are denoised, clustered, and vectorized for easing matching 

it with HD map objects via Intersection Over Union (IOU) 

method. Even though they reached good accuracy in matching 

crowdsourced data with the HD map, their model is not 

affordable because they depend on expensive high-end sensors. 

In a corresponding manner, (Jo et al., 2018) employs a SLAM 

algorithm and particle filter to update an HD map using data from 

the onboard sensors of an autonomous vehicle, including the light 

detection and ranging (LiDAR) sensor. It should be noted that 

LiDAR sensors are generally regarded as expensive for 

implementation. 

 

 In (Cho et al., 2022), they tried to tackle the problem of utilizing 

expensive sensors for updating HD maps by using low-cost 

onboard sensors instead, which can be installed on taxis or buses 

for collecting crowdsourced datasets. The researchers in (Cho et 

al., 2022) focused mainly on updating road lanes alongside traffic 

signs and lights in Seoul, South Korea. They compared the 

crowdsourced dataset with HD map objects and clustered 

unassigned objects with the map to be utilized as new objects of 

the HD map. The main drawback of their model is focusing on 

one or two objects in updating maps without caring about other  

vital objects in roads like barriers or pedestrian bridges. The 

problem is overcome in (Kim et al., 2021) by proposing a general 

solution for updating multiple discrete landmarks and continuous 

landmarks, namely lanes. Their updating algorithm depends 
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mainly on three criteria: the distance between a predicted object 

and an HD map object, the variance of the crowdsourced device’s 

location, and the variance of detecting an object’s location. Also, 

these criteria are utilized in clustering unassigned objects to the 

HD map to be classified as a new landmark to the map if the 

number of instances in a cluster exceeds a specific threshold. 

 

One limitation observed in all models that utilize crowdsourced 

low-cost sensors for HD map updates is the absence of a 

comprehensive pipeline encompassing the entire update process. 

Each model tends to concentrate on a specific module of the 

update process, failing to provide a holistic view. As a result, the 

accuracy of HD map updates remains constrained. However, the 

proposition of a complete pipeline for map updates presents an 

opportunity for the research community and industries to achieve 

optimal accuracy by adjusting various parameters within the 

pipeline. By embracing and implementing such a comprehensive 

approach, significant advancements can be made in enhancing 

the accuracy of HD map updates.  

 

In this research, the proposed comprehensive pipeline for 

updating HD maps is implemented by using crowdsourced low-

cost smartphone sensors. Our research focused on updating 

various road classes in downtown Calgary, Canada, including 

barriers, traffic lights, pedestrian bridges, and various classes. 

Multiple navigation sensors are utilized as inputs for pipeline, 

such as Cameras, Lidar, GNSS, and IMU to create a highly 

accurate HD map covering the entirety of downtown Calgary. 

Then, an Android application is developed from scratch that 

connects low-cost smartphone sensors (phone's camera, GNSS, 

and IMU) to the cloud-based HD map database for perfect 

updates. 

 

2. METHODOLOGY 

In this section, we will provide a comprehensive overview of the 

complete process involved in updating HD maps using low-cost 

smartphone sensors through crowdsourcing. As depicted in 

Figure 1, the map update procedure initiates by streaming data 

from a smartphone's camera and GNSS sensors, which is 

collected by an Android app installed on a smartphone. Once the 

dataset is gathered from the app, it is uploaded to the Amazon 

cloud, where all the necessary deep learning models and 

algorithms for HD map updates, in addition to the HD map that 

is stored in the Amazon database.  

 

Since the locations of the HD map objects are stored in a global 

format in the database, the predicted object locations from the 

smartphone also need to be global for effective comparison. To 

achieve this, the global locations of the detected objects are 

estimated through two simultaneous steps: predicting the objects' 

relative locations to a camera and calculating the global locations 

of the camera frames. Firstly, two deep learning models are 

applied to the camera frames of the phone: object detection and 

depth estimation. Notably, the You Only Look Once Version 5 

(YoloV5) model (Jocher, 2020) and the Neural Window Fully-

connected Conditional Random Fields (NeWCRFs) network 

(Yuan et al., 2022) are utilized for detecting landmarks of roads 

and predicting depth estimation from camera frames, 

respectively. By combining the outputs of these two models, the 

depth of the bounding boxes surrounding the landmarks is used 

to calculate the relative locations of the landmarks with respect 

to the camera. Concurrently, the global locations of camera 

frames are determined by synchronizing the timestamps of the 

camera frames and GNSS readings. This allows us to match the 

respective camera frames with the corresponding GNSS 

readings. Integrating these two steps provides the global 

locations of the landmarks. In order to decrease the computation 

time required for comparing HD map objects with detected 

objects, we employed clustering techniques to group objects with 

similar locations and subsequently eliminated the outlier object 

locations.  Successively, the predicted clustered objects are 

compared with the HD map objects according to areas of interest. 

Based on this comparison, appropriate actions are taken on the 

 
 

Figure 1.  Full pipeline of HD map update with Low-cost smartphone sensors. 
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HD map objects, such as adding or removing objects from the 

map. In the following subsection, we will delve into a more 

detailed description of this pipeline. 

 

2.1 Android Application  

 

We created a brand-new Android app that gathers datasets from 

various sensors in a smartphone (camera, GNSS, IMU, and 

Magnetometer), as seen in Figure 2. It also retrieves data from a 

mobile network and calculates the smartphone's orientation 

angles relative to the North-East-Down (NED) coordinates. 

Furthermore, the app can connect to Onboard Diagnostics 2 

(OBD2) through Bluetooth to obtain a vehicle's speed. All the 

collected data is saved simultaneously in easily readable Comma-

Separated Values (CSV) files. Each file includes a timestamp for 

every frame of sensor readings to ensure synchronization. We 

collected camera data at 30 frames per second (FPS), GNSS 

readings at 20 FPS, and the phone's orientation angle whenever 

its position changed. Additionally, the app is linked to the 

Amazon cloud, automatically uploading the collected data to 

initiate HD map update algorithms. To accommodate various 

Android phones, our app is designed to work on multiple Android 

versions, starting from Android version 8. 

 

 

2.2 HD map 

 

The Trimble MX9 device is responsible for generating the high-

definition (HD) map. It comprises an MX9 laser scanner, a built-

in Trimble GNSS-Inertial system, and four cameras, including a 

spherical camera with a field of view that covers 90% of the 

entire sphere, as seen in Figure 3. The laser scanner has a 360-

degree field of view and can accurately detect objects within a 

range of 1.2 meters to 420 meters, with a precision of 2-5 

millimetres. In our project, we utilized this system to scan all the 

roads in downtown Calgary, Canada. The data collection took 

place under various weather conditions and at different times, 

including both day and night, in order to create a precise HD map 

encompassing both static landmarks (such as barrier bridges) and 

dynamic landmarks (such as cones). Once the map underwent 

cleaning and processing, it was saved as shape files. 

Subsequently, we extracted the data from these shape files and 

stored it in the Amazon database to facilitate easy access within 

the Amazon cloud environment. 

 

2.3 Objects' relative locations to a camera 

 

To determine the relative positions of specific objects (road 

landmarks) with respect to the camera's location, we introduce 

object detection and depth estimation models. The object 

detection model identifies and categorizes landmarks within a 

camera frame. The centre point of each bounding box enclosing 

a landmark is then calculated as a representative location point. 

Next, the depth estimation model comes into play, estimating the 

distance between the centre point of each object and the camera 

being used. By utilizing the camera's intrinsic parameters, the 

central points are computed in 3D space relative to the camera's 

location using the following formula: 

 

𝑍 = 𝐷𝑒𝑝𝑡ℎ(𝑖, 𝑗);   𝑋 =
(𝑗−𝑐𝑥)

𝑓𝑥
⋅ 𝑍; 𝑌 =

(𝑖−𝑐𝑦)

𝑓𝑦
⋅ 𝑍, (1) 

 

Where   i, j = the location of the central point of an object on a 

camera frame  

X, Y, Z = the location of the central point in 3d space relative to 

the camera 

𝑐𝑥, 𝑐𝑦  =  the optical center of the camera in x and y axis 

𝑓𝑥 , 𝑓𝑦 = the focal length in pixels of the camera in x and y axis 

 

Because the intrinsic parameters of the camera that is represented 

in the optical center (𝑐𝑥, 𝑐𝑦) and the focal length (𝑓𝑥 , 𝑓𝑦) in the x-

axis and y-axis of the camera frame is crucial for estimating the 

object's location, our application was developed to collect all 

intrinsic parameters of the camera along with gathering the 

camera’s frames. By utilizing this information, as well as the 

central location of the bounding box on a frame (i, j), we are able 

to calculate the objects' relative location to the camera (X, Y, Z), 

as indicated in equation (1). 

 

For reaching optimum accuracy of estimating the relative 

location, we utilized the state-of-the-art object detection model, 

YoloV5 model (Jocher, 2020), and monocular depth estimation 

model, NeW CRFs model (Yuan et al., 2022). Yolov5, an 

advanced real-time object detection model, is a direct descendant 

of the Yolo series, which originated with YoloV1 (Redmon et al., 

2016) and drew heavily from Yolov4 (Bochkovskiy et al., 2020). 

The Yolo framework revolves around the concept of dividing an 

image into numerous smaller grids, wherein each grid signifies a 

prediction for object localization and its associated class 

probabilities. YOLOv5 takes inspiration from YOLOv4 but 

introduces its own modifications and optimizations, and the 

model is designed to be focused on a balance between speed and 

accuracy. The researchers of YoloV5 introduce a versatile 

architecture for object detection, comprising three primary 

layers: Backbone, Neck, and Head, in which each layer can 

accommodate multiple object detection models. They 

meticulously select models that contribute to their objective of 

achieving highly accurate real-time object detection. To this end, 

they employ the CSPNet model (Wang et al., 2019) in the 

Backbone layer, incorporating the SPP model (He et al., 2014) 

and PAN model (S. Liu et al., 2018) in the Neck layer, and 

leveraging the YoloV3 model (Redmon & Farhadi, 2018) in the 

Head layer, see Figure 4. This thoughtful combination of models 

aids YoloV5 in achieving its desired outcomes. 

 

On the other hand, the New CRFs model heavily relies on the 

utilization of the Fully Connected Conditional Random Fields 

 
 

Figure 2. The employed android application for data 

collection. 

 

Figure 3. Trimble MX9 device. 
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(FC-CRF) algorithm for monocular image depth prediction. The 

FC-CRF algorithm, which is a probabilistic graphical model, 

captures the spatial relationships between adjacent pixels or 

regions in an image. Each node in the FC-CRF graph represents 

a random variable, while the edges between nodes signify the 

dependencies or relationships between these variables. Given 

that depth estimation is inherently a task that involves spatial 

connections, where the depth of one pixel is influenced by its 

neighbouring pixels, the FC-CRF algorithm is employed to 

model the intricate interactions and dependencies across the 

entire image. Consequently, the NeW CRFs model leverages this 

approach by incorporating the FC-CRF module into each part of 

the model's decoder. This allows for depth estimation at different 

resolutions, and subsequently integrates the depth images into a 

single accurate depth representation. In each FC-CRF, the image 

is divided into multiple separable windows, each containing fully 

connected nodes that represent a small patch of the input image. 

It's important to note that the nodes within a window are fully 

connected, while nodes across different windows are not 

connected, as illustrated in Figure 5. The introduction of window-

based division serves the purpose of reducing computational 

complexity while maintaining the accuracy of depth estimation. 

 

 

 

2.4 Global Locations of objects 

 

The estimation of real-world object locations involves combining 

two predictions: the global locations of camera frames and the 

relative locations of the objects with respect to the camera. The 

previous section provides a detailed description of the second 

prediction. For the global locations of camera frames, the 

synchronization of timestamps between a GNSS sensor and the 

camera is crucial for accurately estimating the position of each 

camera frame. Since timestamps are already recorded for each 

sensor's readings, as explained in section 2.1, predicting the 

locations of the camera frames becomes a straightforward task. It 

should be noted that the global location of a camera is calculated 

in Geodetic coordinates, namely latitude, longitude, and altitude. 

Therefore, the relative locations of the objects are mapped to the 

North-East-Down (NED) frame to seamlessly integrate them 

with the camera frames' locations in Geodetic coordinates. This 

mapping of relative locations from camera space to the NED 

frame involves two consecutive transformations: first, a 

transformation from camera space to the body frame, and then a 

transformation from the body frame to the NED frame. As 

depicted in Figure 6, the first transformation is relatively simple 

because the body frame closely resembles the camera space, 

except that the body frame's z-axis points outward while the 

camera's z-axis points inward and the x-axis direction of the body 

frame is the inverse of the x-axis direction of the camera space. 

The second transformation relies on the orientation angles of the 

phone with respect to the NED frame, which are already collected 

by the Android application as mentioned earlier. Finally, with 

knowledge of the frame location in Geodetic coordinates, the 

computation of the objects' locations in Geodetic coordinates will 

be performed by the method indicated in (Cai et al., 2011).  

 

 

Figure 6.  Transformation of an object’s location from the 

camera space to the NED coordinates. 

 

2.5 Compare HD map with crowdsourced objects 

 

As we collected camera frames at a rate of 30 frames per second 

(FPS), there are often multiple objects with similar locations, as 

mentioned in section 2.1. To address this issue, we utilized 

clustering techniques to group the predicted objects and eliminate 

any outliers. Each cluster represents a single object, which is 

determined by calculating the average location of all objects 

within that cluster. Subsequently, we retrieved the HD map 

objects within the region corresponding to a group of camera 

frames` locations, in order to reduce computation time when 

comparing HD map objects with detected objects.  

 

As illustrated in Algorithm 1, the comparison algorithm begins 

by extracting HD map objects from the chosen region, which are 

then added to the objects list if they belong to the same class as 

the detected object. Next, we select the HD map object that is 

closest to the detected object from the objects list. If the 

Euclidean distance between the selected HD map object and the 

detected object is below a distance threshold, the matched HD 

map object is retained. However, if there is no HD map object of 

the same class as the detected object or the distance between the 

selected HD map object and the detected object exceeds the 

distance threshold, the detected object is marked as unassigned. 

After that, all unassigned objects, gathered from different 

 
 

Figure 4. YoloV5 model architecture. 

 

Figure 5. NeW CRFs model (Yuan et al., 2022) architecture. 
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crowdsourced devices, are clustered into multiple clusters, with 

each cluster represented by the average position of the objects 

within it.  

 

We iterate over the clusters to find a cluster where the number of 

allocated objects surpasses another threshold known as the 

adding threshold. If a cluster meets this condition, the 

representative object of that cluster is added to the HD map, while 

disregarding clusters that do not meet the condition. Afterward, 

we calculate the number of non-matched occurrences for each 

HD map object that was fetched and added to the objects list 

within the same region where a detected object is in but did not 

match with any detected object. Finally, if the number of non-

match occurrences for an HD object exceeds a third threshold 

referred to as the deleting threshold, the object will be removed 

from the HD map. It is worth noting that Algorithm 1 is 

implemented every time we have a group of camera frames, 

which is passed as input to the HD map for fetching HD map 

objects within the region of the frames' locations. 

 

 

Figure 7. An image from our collected dataset by Trimble MX8. 

Figure 8. Bar plot of our collected dataset classes, where the 

horizontal axis represents class names and the vertical axis 

represents the number of instances in each class. 

 

3. RESULTS 

3.1 Training deep learning models 

 

By utilizing our dataset collected in downtown Calgary using 

Trimble MX9, we performed training and testing on both YoloV5 

and NeW CRFs models. Refer to Figure 7 for an image from our 

dataset. To train the object detection models, we labelled 

approximately 6,000 images from the collected dataset. This 

labelling process involved using an open-source labelling tool to 

annotate 12 classes of road landmarks, namely Pavement 

marking-white solid, Traffic light pole, Traffic light, Pedestrian 

bridge, Manholes, Dynamic obstacle, Hydrant, Cone, Post, Bus 

stop sign, Barrier, and Landmark (representing other road 

landmarks). Due to the imbalanced distribution of data classes, 

as shown in Figure 8, we employed data augmentation techniques 

and implemented a specialized data-splitting approach. In this 

approach, we ensured that the testing set had the same class 

distribution as the training set by selecting 30 consecutive frames 

from every successive 100 frames and incorporating them into 

the testing set. Additionally, we discarded bounding boxes with 

Algorithm 1: Comparing HD map objects with detected 

objects 

 Input: Detected objects for number of frames: detObjs, 

            HD map objects within a selected region: hdObjs 

 Output: New object candidates: newObjs, 

               Deleted object candidates: delObjs, 

               Normal object candidates: normalObjs 

1 Initialization:  

2 Set number of non-matched in each object in hdObjs to 

zero if the function is called for the first time. 

3 Initialize newObjs, delObjs, normalObjs as an empty list 

4 Define unassigned objects as an empty list: unAssObjs 

5 Foreach detObj in detObjs do 

6  Search for the object classes in hdObjs that are the 

same as the class of detObj add the outputs to selLs 

7   Calculate the distance between detObj and every 

object in selLs 

8  Define the nearest object to detObj as minSelObj 

9  Define distance between detObj and minSelObj as 

minDist 

10  If minDist < distance threshold Then 

11   Add minSelObj to normalObjs  

12  Else 

13   Add detObj to unAssObjs 

14  End 

15 End 

16 Increment all non-matched objects in hdObjs by one 

17 Cluster unAssObjs and add the outputs in unAssObjsCls 

18 Foreach cluster in unAssObjsCls do 

19  Count number of objects in cluster: cntCluster 

20  Define the representative of cluster as: repCluster 

21  If cntCluster > adding threshold Then 

22   Add repCluster to newObjs 

23  End 

24 End 

25 Foreach obj in hdObjs do 

26  Define the number of non-matched for obj as: 

nonCnt 

27  If nonCnt > deleting threshold Then 

28   Add obj to delObjs 

29  End 

30 End 
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a detection confidence probability below 0.3 to ensure the most 

accurate object detections possible. 

 

For the purpose of training depth estimation, we utilized the MX9 

laser scanner to calculate ground truth depth images, obtained by 

converting the estimated point cloud at each camera frame's pose. 

Because depth estimation plays a crucial role in the HD map 

updating algorithm, we specifically extracted reliable depth 

estimations within the range of 0.2 meters to 80 meters, 

disregarding values outside of this range. 

 

 

3.2 Deep learning models assessment 

 

The collected dataset was divided into a training set (70% of the 

total data) and a testing set (30%) to train both the YoloV5 and 

NeW CRFs models. To compare the inference times of the 

models, we conducted tests on an RTX 3070 GPU. As shown in 

Table 1, the YoloV5 model exhibited significantly lower 

inference times compared to the NeW CRFs model. Additionally, 

it was observed that the depth estimation process had a 

substantial impact on the overall time delay in updating HD 

maps. Consequently, the current depth estimation model is not 

suitable for real-time HD map updates and would require 

modifications to achieve real-time performance. However, this 

aspect is beyond the scope of this paper, as our current focus is 

on attaining accurate updates for HD maps. 

 

Since the object detection model and the depth estimation model 

produce distinct outputs, we evaluated the accuracy of both 

models using different metrics. The YoloV5 model was assessed 

using the Average Precision (AP) metric, which approximates the 

area under the Precision-Recall (PR) curve. This was calculated 

by comparing the Intersection Over Union (IOU) of predicted 

bounding boxes with the ground truth bounding boxes, using 

varying IOU thresholds. To comprehensively evaluate the 

YoloV5 model, we employed a wide range of IOU thresholds, 

from 0.5 to 0.95, resulting in an AP of 0.166 within this range, as 

shown in Table 1. 

 

On the other hand, the NeW CRFs model was evaluated using the 

Absolute Relative Error (ARE) metric, which quantifies the 

absolute difference between the true depth value and the 

estimated depth value, normalized by the true depth value. Our 

collected dataset yielded highly accurate depth estimation results 

for this model, with a precision of 0.052 in terms of ARE. 

 

3.3 Evaluation of HD map updates 

 

In order to assess the effectiveness of the proposed algorithm for 

updating HD maps, a dataset obtained through crowdsourcing 

was gathered along the fourth avenue of downtown Calgary. The 

selection of the downtown area for testing was based on the 

frequent alterations in landmarks and road infrastructure. 

Moreover, the accuracy of the phone's GNSS localization is 

hindered in this downtown location due to the urban canyon 

effect resulting from the presence of continuous buildings on 

either side of the roads. Consequently, we set out to prove 

accurate updates of our model even under these challenging 

conditions. 

 

Our proposed algorithm proved the successful matching of 

detected objects by low-cost sensors with their corresponding 

landmarks in the high-definition (HD) map. As seen in Figure 9, 

one can see a minimal disparity between the detected landmarks 

and their corresponding counterparts in the HD map. 

Furthermore, our model effectively identifies new landmarks, 

such as cones, that are absent from the HD map at particular 

locations (refer to Figure 10). Additionally, the proposed model 

has the capability to estimate HD landmarks that are no longer 

present in the real world, as described in Algorithm 1, 

subsequently removing them from the map.  Figure 11 

demonstrates the accurate identification of a cone that is 

appropriately determined for removal from the HD map, as it 

remains undetected by any crowdsourced smartphones. 

 

 

Figure 9. Visualization of matching detected landmarks with the 

HD map's landmarks, where camera markers and point markers 

represent the detected landmarks and the HD map's landmarks, 

respectively. 

 

 
Figure 10. Location of the detected cone which will be newly 

added to the HD map. 

 

 
Figure 11. Location of the HD map cone that will be removed 

from the map due to not being detected by any crowdsourced 

sensors. 

Model name 

Inference 

time on 

RTX 

3070 

Utilized metric 
Testing 

result 

YoloV5 37ms 
AP at IOUs from 0.5 

to 0.95 
0.166 

NeW CRFs 199.59ms ARE 0.052 
 

Table 1. Comparison between YoloV5 and NeW CRFs model 

in the inference time and the metrics utilized for computing 

detection accuracy. 
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4. CONCLUSION 

In this research paper, the proposed a comprehensive pipeline for 

is used to update HD maps by low-cost smartphone sensors. Our 

approach involved the development of an Android application to 

collect raw data, which was then automatically uploaded to a 

cloud server connected to the HD map database. 

 

Once the data was uploaded, the object detection, depth 

estimation, and matching algorithms’ outputs are fused in 

pipeline to update the HD map. By integrating deep learning 

models with the smartphone's Global Navigation Satellite System 

(GNSS) sensor for object position estimation, we were able to 

compare the detected objects from the crowdsourced dataset with 

the objects in the HD map. As a result, we could add new objects 

and remove existing ones to ensure the HD map accurately 

reflected real-life updates. 

 

Our research presents a cost-effective and efficient solution for 

updating HD maps, leveraging the power of crowdsourced data 

and low-cost smartphone sensors. This approach allows for 

frequent updates to the HD map, enhancing its accuracy and 

maintaining its relevance to the evolving road conditions. Further 

improvements and optimizations can be explored to make the 

pipeline even more robust and capable of real-time updates, 

contributing to the advancement of HD map technologies and 

their applications in various domains. 
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