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ABSTRACT: 
 

This paper presents a method of visual LiDAR odometry and forest mapping, leveraging tree trunk detection and LiDAR localization 
techniques. In environments like dense forests, where smooth GPS signals are unreliable, we employ camera and LiDAR sensors to 
accurately estimate the robot's position. However, forested or orchard settings introduce unique challenges, including a diverse 
mixture of trees, tall grass, and uneven terrain. To address these complexities, we propose a distance-based filtering method to 
extract data composed solely of tree trunk information from 2D LiDAR. By restoring arc data from the LiDAR sensor to its circular 
shape, we obtain position and radius measurements of reference trees in the LiDAR coordinate system. Then, these values are stored 
in a comprehensive tree trunk database. Our approach combines visual-based SLAM and LiDAR-based SLAM independently, 
followed by an integration step using the Extended Kalman Filter (EKF) to improve odometry estimation. Utilizing the obtained 
odometry information and the EKF, we generate a tree map based on observed trees. In addition, we use the tree position in the map 
as the landmark to reduce the localization error in the proposed SLAM algorithm. Experimental results show that the loop-closing 
error ranges between 0.3 to 0.5 meters. In the future, it is expected that this method will also be applicable in the fields of path 
planning and navigation. 
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1. INTRODUCTION 

In recent years, mobile robots have been primarily used in 
different agricultural applications. The development of sensors, 
software applications, and communication techniques has 
encouraged active participation from researchers and companies 
to advance the utilization of autonomous agricultural robots to 
save on labor and costs. Map generation of forest environments 
is one of the important parts of the forest-related technologies. 
In the view of the complexity of the forest environment, 
achieving precise localization and navigation of robots is a 
primary challenge that needs to be addressed for successful 
mission execution. SLAM(simultaneous localization and 
mapping) (Dissanayake et al, 2001)  technology has played an 
important role in solving problems related to indoor localization. 
SLAM-based robots are equipped with various sensors to 
accurately detect information about the surroundings such as 
image sensors, 2D and 3D LiDAR, radar, GPS, wheel encoder 
and IMU (Aguiar et al, 2020). GPS is widely used as a 
positioning sensor for robots to estimate their location. However, 
in areas with mountainous terrain and dense tree coverage, the 
GPS signal can be distorted, leading to inaccuracies in position 
estimation (Garforth and Webb, 2019). Cameras play a vital 
role in localization, mapping, and mobile navigation in outdoor 
agricultural environments, primarily due to their affordability. 
However, the camera's performance can be significantly 
influenced by external environmental factors, such as shadows 
or backlighting. While LiDAR sensors may be more expensive 
compared to image sensors, they are widely recognized as one 
of the most commonly employed sensors in outdoor agricultural 
environments. LiDAR operates as an active system that measure 
the time it takes for emitted light to travel to objects and provide 

range and angle measurements for detected features. Another 
alternative is to use wheel odometry that estimates the position 
of a mobile robot from attached encoders of its wheels. 
However, it has drawbacks such as wheel slip or loss of traction 
when encountering uneven or varying friction on the floor. The 
integration of various sensors for mapping purposes not only 
enhances the robustness of the map but also enables mobile 
robots to accurately determine their position and orientation at 
each time step. Previous studies have investigated the individual 
use of GPS (Han, J. h et al, 2020), image sensors (S. Liu et al, 
2022), and LiDAR (Li, S. et al, 2020) sensors for mapping 
applications. Furthermore, researchers are actively exploring 
sensor fusion techniques that combine different sensor 
modalities, such as camera and GPS (Cho, Y., et al, 2020), 3D 
LiDAR and GPS (Mao, Wenju et al, 2022), as well as camera 
and 3D LiDAR (H. Kurita et al, 2022). This work presents a 
method for accurate mapping of forest environments using 2D 
LiDAR, stereo camera and wheel encoder. A flow diagram of 
the proposed method is shown in Fig. 1. We apply distance-
based filtering to the LiDAR to extract only tree trunk 
information and restore it with position and radius data. The 
localization information of tree trunks is managed in real-time 
through a database. Thus, a tree map is generated using loosely 
coupled odometry from a LiDAR and a stereo camera. In 
addition, we use the tree position in the map as the landmark to 
reduce the localization error in the proposed SLAM algorithm. 
The structure of our paper is as follows. We introduce our work 
in five chapters: Chapter 2 provides a brief introduction to 
related research similar to this paper. Chapter 3 explains how 
the proposed methods are developed. Chapter 4 presents the 
experiments conducted. Finally, in Chapter 5, we describe the 
conclusions. 
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Figure 1. End-to-End System Flowchart 

 
2. APPROACH 

2.1 Multi-Sensor Calibration 

There is the disparity in coordinate systems between the scan 
information of a 3D space captured by a 2D LiDAR and the 2D 
image planes obtained from a camera. This can be enabled 
through geometric correction to accurately project the 3D point 
capture by the 2D LiDAR onto the left camera of a stereo 
camera system. Fig. 2 illustrates the process, where the point 
P(X,Y,Z) in the 3D space is projected onto the 2D camera 
image, resulting in the conversion to a point (u,v). This 
demonstrates the transformation relationship between the 3D 
coordinates of the LiDAR and the camera. To achieve this 
transformation, a PnP algorithm is utilized to obtain a 
transformation matrix that accounts for the disparities in 
coordinate systems. The transformation matrix is derived using 
the information of the 3D points obtained from the LiDAR and 
the corresponding 2D image points. The internal parameters of 
the camera were obtained through calibration in advance. 
 

,            (1) 

 
where   = focal length 
 = Rotation matrix  
  = translation matrix  
 ,  = camera coordinate point 
 X, Y, Z = LiDAR coordinate point 
  = scale factor 
 
2.2 Generate tree trunk from LiDAR data 

LiDAR is a sensor that is widely used for robotic systems for 
environmental perception and self-localization. To enable 
robots to operate effectively in forested areas and generate tree 
maps, the detection of trees becomes crucial. However, 
traditional 2D LiDAR systems, which emit laser beams in all 
directions to measure angles and distances from objects within a 
360° field of view, often encounter challenges in distinguishing 

trees from other forest elements such as fences, stones, and 
ground. These elements share similar characteristics in atypical 
forest environments, making accurate tree detection difficult. To 
address this issue, we propose a handcrafted tree detection 
algorithm using 2D LiDAR. This algorithm employs a filtering- 
based approach to extract tree trunk information from the 
LiDAR data. It is also able to operate efficiently in low-power 
and low-cost embedded environments. Moreover, since the 
algorithm relies solely on 2D LiDAR data, it also has the 
advantage that sophisticated camera- LiDAR synchronization is 
not required. The tree detection algorithm follows a step-by-step 
procedure to extract tree data in unstructured environments. 
Firstly, to focus on tree-related information, the algorithm 
selectively considers data within a 100° angle of view from the 
camera and within a 5-meter distance. Next, among LiDAR data, 
consecutive points based on distance are grouped. This 
grouping process allows for a coherent representation of objects 
and aids in identifying tree structures accurately. Finally, 
through filtering based on the width and length of the trees, tree 
column LiDAR data candidates are obtained. By setting a 
threshold of 0.55 meters for tree width, the algorithm 
determines viable candidates for tree column LiDAR data. Fig. 
3 provides an example illustrating the selection of tree trunk 
data by applying distance-based filtering to the LiDAR sensor 
data. Overall, this approach ensures that only relevant tree 
information is extracted, leading to a refined dataset focused on 
tree structures. 
 
2.3 Circle Fitting 

To create a tree map, it is necessary to restore the occluded area 
of the tree trunk. The previously entered data through tree 
detection filtering is grouped and recognized as a single tree 
trunk. However, an error occurs because points of overlapping 
wooden pillars with similar distances are recognized as one 
pillar. In order to separate overlapping trees, we applied radius 
median filtering to filter only data within a specific distance 
centered on the median point of the grouped points. Through 
this, we separated overlapping trees by removing noise data. 
After that, the grouped points are restored to the wooden 
column using KASA circular fitting (Kåsa, 1976), and the 
location and radius of the central point of the wooden column 
are calculated. LiDAR is a sensor that has a high laser and can 
recognize objects at a relatively long distance. However, when 
recognizing a distant object, the circle fitting causes a large 
error due to the small number of corresponding points. The 
circle fitting error was improved by limiting the circle fitting to 
be performed only when the number of points recognized as 
trees was more than a certain number. At this time, the radius 
used for median filtering is 0.5m, and the number of points used 
for circle fitting conditions is 40. 
 

 
Figure 2. The 3D coordinate transformation relationship 

between 2D LiDAR and stereo cameras 
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Figure 3. Landmark extraction process with (a) distance-based 

filter and (b) tree database 
 
2.4 Combination of LiDAR SLAM and visual SLAM 

We use a robot equipped with a stereo camera and a 2D LiDAR. 
As the SLAM algorithms, we employ VINS-stereo (Qin et al., 
2018) and Cartographer (Hess et al., 2016) to utilize each sensor. 
However, each SLAM algorithm has its own advantages and 
disadvantages. Stereo camera-based SLAM calculates odometry 
by comparing and computing features between the surrounding 
environment in the images. Although the estimation of robot 
direction is accurate, the generated map may have a different 
scale from the actual object size. Cartographer captures the 
distance between the robot and surrounding environment by 
scanning lasers, obtaining 3D data of the environment. It can 
achieve precise SLAM but accuracy may decrease in 
environments that the ground is not planar. We assume that the 
robot moves on a planar ground. To combine the strengths of 
each sensor and compensate for their weaknesses, the 
EKF(Extended Kalman Filter) (Bellantoni and Dodge, 1967) is 
used to combine them in a loosely coupled manner.  

 

2.5 Tree trunks as T-SLAM landmarks   

The data received in LIDAR frame was filtered and restored as 
a tree trunk composed of information on the position of a tree, 
and the pose of the robot was estimated based on EKF between 
sensors. However, applying the tree data as-is for mapping the 
estimated position of the robot prevents the creation of an 
accurate tree map due to the accumulation of localization errors. 
In uneven terrain, the estimation of robot position using sensors 
is prone to accumulating localization errors, which arise from 
LIDAR sensor limitations in detecting terrain features beyond 
trees and the occurrence of slip phenomena between the wheels 
and the running floor. The accumulation of localization errors in 
the robot results in the fragmentation of the same tree into 
multiple segments in physical space, thereby impeding loop 
closure on the map. Moreover, recording all the detected tree 
data in each frame onto a 3D map leads to a proportional 
increase in data volume with operation time and mission space 
size, consequently hampering efficiency. 
To address this issue, we introduce a tree DB(database) to 
generate only the most reliable trees by considering the 

observed trees as the same entity, as illustrated in Figure 3(b). 
The tree DB is a data space that stores and manages location 
information and radius information of tree trunks recovered 
through circle fitting during the process of SLAM. The process 
of unifying tree location information using a DB is as follows. 
Initially, the location information and radius information of the 
tree trunk recovered through the tree observed for the first time 
is stored in the tree DB. The tree observed in the subsequent 
frame is considered to be the same tree if it falls within a 
specific range determined by comparing it to the tree stored in 
the tree DB. If it is recognized as the same tree, the position and 
radius of the existing tree are updated based on weighted 
averaging. The number of times a tree is recognized is also 
calculated and stored in the database. If it is not recognized as 
the same tree, new tree information is added to the DB. The 
weight averaging method is as follows. 
 

   
 
During the robot's continuous movement, weight-based updates 
for tree positions are performed using the tree data obtained for 
each frame. If a tree falls outside the observation range of the 
robot, the update for that tree in the tree DB is halted. 
Subsequently, when the robot observes a new tree, the newly 
obtained tree data is not immediately stored in the tree DB. 
Instead, it is compared with the values stored in the existing tree 
DB based on distance. If the new tree falls within a certain 
range, it is recognized as the same tree, and the tree position 
stored in the tree DB is updated based on weighted averaging. 
Conversely, if the new tree falls outside the range, it is 
identified as a new tree and added as a new entry in the DB. 
The tree DB, where tree locations are updated using weight 
averaging, is employed to generate a tree map based on the 
recognition count for each tree. When the recognition count of a 
tree stored in the DB exceeds a specified threshold, the location 
information of that tree is considered highly reliable and 
updated in the landmark list. Tree data stored in the list is used 
for visualizing the tree map. At this time, the radius used for 
median filtering is 0.5m and the recognition count threshold is 
20. 
 

 
Figure 4. Example of tree DB usage for tree trunk position 

unification 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-627-2023 | © Author(s) 2023. CC BY 4.0 License.

 
629



 

Fig. 4 presents an illustrative example of unifying the locations 
of identical trees using a tree DB and generating a tree map. In 
this particular example, the robot detects the same tree on two 
occasions and follows a path back to its starting point. For the 
first tree observed while in motion, the tree's location 
information, acquired through frame-to-frame comparison, is 
updated in the tree DB. In Figure 4(a), the positional 
information of the same tree observed during the robot's return 
journey is calculated. However, due to cumulative odometry 
errors, the tree is visualized at a different position from what is 
stored in the tree DB. The trees observed are marked with white 
bounding boxes. In Figure 4(b), the location information of the 
tree observed during the process is compared with the stored 
value in the tree DB. If the observed tree falls within a certain 
range of the stored value, it is recognized as the same tree, and 
the location in the existing tree DB is updated accordingly. The 
unified tree is highlighted with a yellow bounding box. 
Additionally, the restored position of tree trunks in the list can 
serve as landmarks in the global coordinate system, indicating 
the tree location. These tree landmarks are converted into 
landmark messages containing the tree location, pose, and 
unique ID of each tree. They are then incorporated as an input 
to LiDAR SLAM. The tree location is derived from the 
information in the list, and individual IDs are assigned based on 
location information. Since the tree trunk orientation cannot be 
discerned as it always faces the sky, it remains constant 
regardless of the robot’s observation direction or position 
relative to the tree trunk. By employing landmarks as inputs in 
LiDAR SLAM, errors in loop closure are corrected, enhancing 
the robot's localization performance and map creation 
capabilities during the optimization phase of LiDAR SLAM. 
 
2.6 Tree map Generation 

Accurate tree maps are essential for enabling robots to 
successfully carry out missions and navigate their environments. 
As part of the preceding processes, the calculation of 3D robot 
position estimates and tree locations from a list of landmarks 
was carried out, which are essential for map generation. 
However, it should be noted that the landmark list stores the 
location of observed tree data in the LiDAR coordinate system. 
In order to create a 3D map using tree data, LiDAR coordinate 
system data is converted into robot coordinate system. 
Subsequently, the trees are mapped to the EKF odometry 
location to ensure precise alignment within the map. Equation 3 
is the formula for this.  represents a LiDAR 
data point defined in the 2D LiDAR coordinate system.  is a 
4x4 matrix representing the transformation between the LIDAR 
sensor and the base. The calibration between these two sensors 
is mechanically established.  is a 4x4 matrix representing the 
transformation between the base and the world coordinate 
systems. Finally,  denotes the  point, 
which is measured by the 2D LiDAR based on the world 
coordinate system. 
 

(  ) ,                  (3) 
 

The resulting  point represents the position of the tree trunk 
within the world coordinate system. To visualize the tree map, a 
point cloud is generated using the position and radius 
information from the landmark DB at the corresponding 
location. In this visualization, the tree trunk is assumed to have 
a height of 1 meter. The circumference of the circle, centered on 
the location of the tree trunk, is represented by 10 samples. 
Additionally, the height of each tree trunk is augmented from 0 
meters to 1 meter at intervals of 0.1 meters, resulting in a total 
of 110 points per tree trunk for representation. 

3. EXPERIMENTS 

3.1 Configuration and environment 

To evaluate the performance of the proposed method, we 
acquired the data by equipping a robot with a stereo camera and 
LiDAR sensor, as depicted in Fig. 5. The specification of each 
sensor utilized in the mobile robot platform are shown in Table 
1. The stereo camera employed is ZED2 which offers a field of 
view of 110 degrees. To capture image input, the camera is 
configured to obtain color images for each lens, with a 
resolution of (672x376) pixels and 10 fps. The 2D LiDAR we 
applied is RPLIDAR S2, with operates at a 0.12° angle 
discrimination rate and 20 fps. For this experiment, we use 
Clearpath Husky UGV robot platform, capable of operating on 
uneven terrain and accommodating experiments of varying sizes 
and paths. The main embedded board is NVIDIA Jetson Xavier 
NX, responsible for collecting data from the sensors, executing 
the tree detection algorithm, and simultaneously operating the 
SLAM algorithm for tree map. Camera and LiDAR are 
connected to the embedded board via a USB connection, and 
the UGV communicates wheel encoder data through a serial 
connection.  
The robot operates at speeds ranging from 0.1 m/s to 0.3 m/s 
during data collection. We conduct the experiment in the forest 
area of the school campus, as shown in Figure 6. Both 
experimental spaces measure 20 meters in width and 20 meters 
in length. 
 
3.2 Experiment 

Since we do not have exact GT(Ground-Truth) information for 
each trajectory in the forest, we establish a prerequisite. The 
prerequisite assumes that a trajectory starting and ending at the 
same line ensures loop closure. To fulfill this prerequisite, we 
create a start line by aligning the chess board on the side of the 
wheel, as shown in Fig. 6 (a). The robot proceeds forward to 
collect data, exploring the environment until it returns to the 
same location beside the chessboard, marking the end of data 
collection. We calculate the arrival point from the data and 
measure the distance by comparing the start point and end point, 
as depicted in Figure 6(b). The error value represents the 
Euclidean distance of each point in the xy plane. 
 

 
Table 1. Robot hardware spec sheet 

 

 
Figure 5. Description of mobile robot platform used in the 

experiment 
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Figure 6. (a) Test field (b) loop closure error measurement from 

start to end point 
 

Figure 7 shows the tree map results for multiple trajectories. 
The robot's path is denoted by a red line, while the observed tree 
trunks are represented as orange cylinders with a height of 1m. 
Figure 7(a) illustrates an experiment conducted to compare the 
effectiveness of tree landmarks. The robot's path is designed to 
enable multiple observations of the same tree. The tree map 
demonstrates the trees being managed as a list, ensuring the 
absence of duplicated instances of the same tree visualized in 
different locations. By utilizing the tree trunks as landmarks, the 
loop closure error is reduced to 0.56 meters, compared to 0.656 
meters without tree landmarks. The loop closure errors, reported 
from top to bottom, are: 0.56 meters, 0.36 meters, 0.348 meters, 
and 0.413m, respectively. It is found that that the loop closure 
errors range from 0.3 to 0.5 meters. 
 

4. CONCLUSIONS 

We applied stereo camera and 2D LIDAR to organize the 
platform. To address the complexities of the forest, we propose 
a distance-based filtering method to extract data consisting 
solely of tree trunk information from 2D LiDAR. We also 
estimate odometry using EKF and generate a tree map based on 
observed trees. Experimental results demonstrate that the loop-
closing error ranges between 0.3 to 0.5 meters. 
Prior work documents the effectiveness of mapping using 
multiple sensors and reducing loop-closing errors. Other 
projects have explored the use of GNSS for improved 
localization performance. However, these studies have not 
focused on the cost-performance trade-off. The sensors and 
platform used in these studies are expensive for customers to 
purchase. In this study, we apply an algorithm that offers 
relative low cost while maintaining high performance. We find 
that mapping in the forest using stereo cameras and 2D LiDAR 
allows for the detection of tree trunks while operating. We also 
use the location of detected tree trunks to improve loop-closing 
accuracy.  

 
Figure 7. Examples of tree map visualized with tree landmarks 
 
Although our study results show improvements in loop closure, 
there is limited space available for experimentation. Therefore, 
it is necessary to conduct experiments in larger and more 
expansive areas to effectively address loop-closing errors. 
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