
3D MODELING OF ROAD INFRASTRUCTURES ACCORDING TO CITYGML 3.0 AND
ITS CITYJSON ENCODING

A. Yarroudh1,∗, G.-A. Nys1, R. Hajji2

1 Geomatics Unit, University of Liège, Allée du six Août 19, 4000 Liège, Belgium - (ayarroudh, ganys)@uliege.be
2 College of Geomatic Sciences and Surveying Engineering, Institute of Agronomy and Veterinary Medicine, BP 6202 Rabat,

Morocco - r.hajji@iav.ac.ma

Commission I, WG I/2

KEY WORDS: 3D City Model, Road infrastructure, CityGML 3.0, CityJSON, MongoDB.

ABSTRACT:

This study proposes a systematic approach for standardized 3D modeling of road infrastructures based on CityGML 3.0 and its
CityJSON encoding. The approach involves generating a LoD2 3D model of the road infrastructure based on a semi-automatic
extraction of linear features from mobile mapping LiDAR data. This enables geometric and semantic modeling of the roads.
A codification system is proposed to assign predefined codes to each linear feature, allowing each section and intersection and
each road surface to be modeled separately. The resulting model is converted to a CityJSON file, stored in a document-oriented
database and visualized through a web application. The proposed approach provides a cost-effective alternative to traditional manual
modeling methods while maintaining a high level of accuracy and consistency. It also considers the validation of data schema and
geometric primitives to ensure that any non-conformity with CityJSON schemas, and any topological and/or geometric errors can
be detected and then corrected. This is important since schema changes in new versions of CityJSON can result in compatibility
issues, while geometric and topological errors can affect the accuracy of 3D models and ultimately lead to inaccurate simulation
outcomes or analysis results.

1. INTRODUCTION

3D city models are digital representations of urban areas and
landscapes in a 3D format featuring, among others, buildings,
roads, vegetation, water and other city objects. So far, most re-
searches have focused on 3D building models. This is partly
due to their prominent role in the urban tissue but also because
of insufficient information and data feeds for other thematic
topics (Beil and Kolbe, 2017).

In recent years, with the increasing need to address urban plan-
ning and sustainable city management, the 3D modeling of other
city objects types such as roads becomes a necessity. Indeed,
detailed road models are essential for a range of applications,
including navigation, autonomous driving and urban planning
(Zhang et al., 2019). Furthermore, information provided on
roadways is increasingly available which makes it possible to
reconstruct the 3D geometry of the road infrastructure.

Considering that most current standards primarily focus on a
linear representation of road networks, our study aims to de-
velop an approach for standardized 3D modeling of road infra-
structures based on CityGML 3.0 (Kutzner et al., 2020) and its
CityJSON encoding (Ledoux et al., 2019). The proposed ap-
proach involves developing a systematic process for producing
3D road models that are geometrically consistent, efficiently
structured and stored, and accessible for online visualization
and inspection through a web application.

To briefly summarize, the main contributions of this work are
twofold:

• A systematic approach for creating geometrically consist-
ent 3D road models in CityJSON format.

∗ Corresponding author

• An optimized method for structuring, storing and visualiz-
ing of these models.

The reminder of the paper is organized as follows: Section 2
gives an overview about existing road modeling standards. Sec-
tion 3 provides a detailed description of the proposed method-
ology. We presents and discusses the results in section 4 and
conclude the paper in section 5.

2. RELATED WORKS

Different standards have addressed 3D modeling of road net-
work based either on linear or surface representations. Among
them, we can cite Geographic Data Files (GDF), OpenDrive,
LandInfra, RoadXML, ASB & OKSTRA and CityGML (Bo-
ersma, 2019, Beil and Kolbe, 2017).

Most of these standards focus on a linear representation of
roads, with the exception of CityGML and LandInfra, whose
geometry is surface-based (Boersma, 2019). While a linear rep-
resentation is generally sufficient for applications such as nav-
igation and traffic simulations, other applications may require
a detailed geometric representation of the road surface. Unlike
CityGML, LandInfra has no concept of Level of Detail, nor a
separate class for intersections (Beil et al., 2020). Therefore, it
is not possible to differentiate between multi-scale representa-
tions of 3D semantic city models.

CityGML is actually considered as the technological back-
bone of 3D city models. Whereas previous versions standard-
ized a GML (Geography Markup Language) exchange format,
CityGML 3.0 standardizes the underlying information model
and can therefore be implemented in a variety of non-GML

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
63



technologies. The Transportation module is one of the them-
atic modules that has been revised in CityGML 3.0 to address
the limitations of the previous versions.

Transportation objects are now defined as subclasses of the ab-
stract TransportationSpace class (Kutzner et al., 2020). These
objects can be subdivided into sections, which can be regular
road segments, intersections and roundabouts (Figure 1).

Figure 1. Illustration of road sections in CityGML.

Objects can also be subdivided into TrafficAreas, such as roads
and sidewalks, and AuxiliaryTrafficAreas like green spaces. In
order to adapt the semantics of the Transportation module to
the CityGML 3.0 concept of space, the classes TrafficSpace and
AuxiliaryTrafficSpace have been introduced, with the two areas
now representing the lower boundaries of the two spaces. Each
TrafficSpace can have an optional ClearanceSpace (Kutzner et
al., 2020) (Figure 2).

Figure 2. Space concept for Transportation objects in CityGML
3.0 (Kutzner et al., 2020).

The concept of LoD has been also redefined in version 3.0.
Unlike the previous version, road objects in the Transporta-
tion module of CityGML 3.0 are modeled in 4 levels of de-
tail: LoD0-LoD3 (Beil and Kolbe, 2017). In LoD0, roads are
modeled in a linear representation. From LoD1 onwards, road
surface can be modeled by linear and/or surface objects respect-
ively. In addition to the road axis, linear representations for
pedestrian zones and cycling lanes become possible in LoD2.
Finally, LoD3 representations contain a TrafficSpace object for
each individual traffic lane (Figure 3).

Although CityGML proposes a solid data model for structuring
3D city models, it also shows some technical problems. One
of these problems is that CityGML files are very difficult to
examine and extract information from.

CityGML files present problems on three levels: XML, GML
and CityGML (Ledoux et al., 2019). XML (eXtensible Markup

Figure 3. Surface representation of roads in LoD1-3.

Language) suffers from an excessive number of tags, reducing
readability and increasing data size. GML has multiple ways to
store the same geometry, requiring developers to handle various
variations. CityGML inherits the advantages and disadvantages
of XML and GML, including large file sizes, deep hierarch-
ies, diverse surface storage, lack of topology storage, and the
possibility of having different Coordinate Reference Systems
(CRS) for different objects. Additionally, the absence of com-
plete JavaScript parsers for CityGML complicates web-based
file exchange and processing.

Therefore, to respond to these drawbacks, CityJSON was in-
troduced as an OGC community standard on August 13, 2021.
It is a conceptual model and exchange format for 3D data that
implements almost all of the CityGML data model. JSON is
generally preferred by developers. This preference is mainly
due to the fact that JSON is much simpler than XML, since
JSON is a data format while XML is a markup language, and
it is therefore much easier to develop software for JSON than
for XML (Ledoux et al., 2019). Another important aspect is
that the CityGML data schema has been flattened and all hier-
archies removed. Therefore, the city objects can be accessed
directly by their identifiers.

Additionally, CityJSON files are much lighter than CityGML as
compression is supported in several ways. Vertices indexing is
a solution given that vertices are usually shared between several
surfaces, and repeating them can be costly in terms of storage
space. CityJSON files can also be compressed if vertex coordin-
ates are transformed to integer values using a transformation
matrix. The use of geometry-templates also allows CityJSON
files to be further compressed, as certain objects only need to
be declared once (Ledoux et al., 2019).

CityJSON is designed to be both compact and user-friendly for
developers, allowing files to be effortlessly visualized, manip-
ulated, and edited. As a result, numerous tools and APIs (Ap-
plication Programming Interface) have already been created and
are readily accessible. Ninja Viewer and Measur3D are two
web-based applications that provide visualization and inspec-
tion capabilities for CityJSON files.

Ninja Viewer is a lightweight and interactive web viewer for
CityJSON files (Vitalis et al., 2020). It uses Three.js library to
create 3D scenes in a web browser, allowing users to visual-
ize and explore the geometry and semantics of 3D city models.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
64



Figure 4. Our proposed method for 3D modeling, storage and visualization of road infrastructure.

However, Ninja Viewer does not provide a server-side architec-
ture for data storage and retrieval.

Conversely, Measur3D is a more comprehensive solution that
not only offers visualization but also includes functionalities for
storing, managing, and retrieving CityJSON files (Nys and Bil-
len, 2021). It is built as a MERN (MongoDB, Express, React,
Node) application, which allows for the storage of CityJSON
files in a MongoDB database. Measur3D leverages the capab-
ilities of MongoDB, such as its document-oriented nature and
flexible schema, to provide efficient storage and retrieval of 3D
city models. Overall, Measur3D provides a complete RESTful-
API for managing CityJSON files, making it a powerful tool for
working with 3D city models.

Figure 5. Measur3D user interface.

3. METHOD

This study aims to reach geometrically consistent 3D road mod-
els in CityJSON format. The proposed approach involves geo-
metric and semantic modeling of the road infrastructure based
on the CityGML 3.0 data model. As illustrated in Figure 4,
the method relies primarily on a semi-automatic extraction of
linear features of the road, such as curbs and road boundaries,
from a three-dimensional point cloud. These linear features are
then used to construct various semantic surfaces, which ensures
valid topology between different components of the road infra-
structure.

The generated 3D road model is translated into a valid
CityJSON file. This validation is performed at two levels:

firstly, validation of the data schema, i.e., checking if the file
syntax is correct and compliant with CityJSON specifications.
Secondly, validation of the geometric primitives in accord-
ance with the ISO 19107 standard, which specifies conceptual
schemas for describing spatial characteristics of geographic fea-
tures.

The output file is stored in MongoDB database using Measur3D
API. Finally, the data is extracted from the database and then
provided to users through a web application. Measur3D cap-
abilities are used, and changes are made to the client layer to
support semantic surfaces’ visualization and inspection.

In the following sub-sections, we provide a detailed description
of the proposed methodology.

3.1 Data acquisition

Road data acquisition was carried out using a mobile mapping
system installed on a moving vehicle. The mission consisted
of two parts: data collection in the field and post-processing
of the collected data. Other information is acquired during the
mission, including GNSS (Global Navigation Satellite System)
and IMU (Inertial Measurement Unit) observations for the pos-
ition and the orientation of the point cloud, in addition to 360°
panoramic images for textures.

Post-processing is necessary to deliver an accurate, colored and
high-resolution point cloud (Figure 6). This involves initially
processing the vehicle’s trajectory, then the raw point cloud and
panoramic images. During the mission, the positioning system
records the absolute trajectory of the platform. This means that
the vehicle’s position needs to be corrected for better precision.
This is done using GNSS observations from a static measure-
ment base set up on a known coordinate point (X,Y,Z) during
the mission. The accuracy of the post-processed trajectory is
around 2 cm in planimetry and 5 cm in altimetry.

On the basis of the corrected trajectory, the raw point cloud and
panoramic images are tied to the coordinate system. In addition,
images are used to assign an RGB (red, green, blue) color to
each point in the cloud.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
65



Figure 6. Geo-referenced and colorized point cloud.

3.2 Pre-processing

A noisy point cloud can affect the accuracy of the 3D models.
Therefore, in order to use LiDAR (Light Detection and Ran-
ging) data correctly and efficiently in the road modeling pro-
cess, a cleaning step is necessary to eliminate noise in the meas-
urement. By using CloudCompare software, two cleaning oper-
ations are performed: manual coarse cleaning using point cloud
interactive segmentation tools, and automatic coarse cleaning
using distance-based filters (Figure 7). The coarse cleaning
eliminates details that do not belong to the road surface. How-
ever, noise removal for a large dataset is more complicated and
two filters are used for automatic cleaning:

The Statistical Outlier Removal (SOR) filter is used to remove
the noisy points within a local neighborhood. It works by com-
puting the mean and standard deviation of the distance between
each point and its k-nearest neighbors. Points that are farther
away from their neighbors than a specified threshold are con-
sidered outliers and removed.

The Noise Filter works in the same way as the SOR filter, but
considers the distance to the underlying surface instead of the
distance to neighbors. Around each point in the cloud, a plane is
fitted locally, based on a radius or a constant number of neigh-
bors, and then any distant point from the plane is removed.

Figure 7. Noise-cleaned point cloud.

3.3 Ground surface extraction

A prior segmentation of the point cloud was performed to sep-
arate ground points from overground points, and thus create a
Digital Terrain Model (DTM).

The Cloth Simulation Filter (CSF) is used for this operation.
Among many ground filtering algorithms, the CSF algorithm
presented the best filtering results and produced the lowest total
errors (Serifoglu Yilmaz et al., 2018). The filter is based on
the Cloth Simulation method, which is an algorithm used in
3D computer graphics to simulate fabric attached to an object.
The first step consists of inverting the LiDAR point cloud, then
a rigid fabric is used to cover the inverted surface. By com-
paring the fabric nodes to the corresponding LiDAR points,
these nodes can be used to generate an approximation of the
ground surface. Finally, ground points can be extracted from
the LiDAR data by comparing the original points to the gener-
ated ground surface (Zhang et al., 2016).

Figure 8. Results of CSF ground points extraction.

3.4 Extraction of linear features

In order to geometrically model the road surface, the ground
surface was used to extract the linear features of the road (Fig-
ure 9). This was done using Autodesk InfraWorks which al-
lows a semi-automatic extraction of linear features (Figure 10).
It first generates the ground surface from the ground points,
then performs extraction by simply selecting at least two points
along the breakline. This linear structure will then allow a
geometric and semantic modeling of the road surfaces. Other
lines are added manually to model the road surface according
to CityJSON specifications.

Figure 9. Ground surface used to extract linear features of road.

3.5 Codification system

As described in Table 1, a codification method has been pro-
posed to assign a predefined code to each extracted linear fea-
ture. Therefore, each section or intersection and each road sur-
face can be modeled separately.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
66



Figure 10. Linear features extracted from the ground surface.

Code Linear feature
TR Sidewalk edge
CH Roadway edge
VT Green space edge
CHTR Boundary between sidewalk and road-

way
CHVT Boundary between green space and

roadway
CHVTH Boundary between the central green

space of a roundabout and a roadway
(H for Hole)

Table 1. Linear features codification system.

For each break line belonging to a single semantic surface, the
code consists of two characters. If it’s a common boundary
between two semantic surfaces, four characters are used, refer-
ring to both surfaces. These characters refer to the name of the
linear feature in French. In addition to these codes, each linear
feature has a tag attribute that specifies the section, intersection
or roundabout to which this line belongs. For example, lines
that belong to the first section might have S1 as tag value, S2
for the second section, R1 for the first roundabout and so on
(Figure 11).

Figure 11. Linear feature attributes.

3.6 3D modeling

The 3D road model is created by fusing these lines to gener-
ate Composite or Multi Surface geometries. This is done using
Safe Feature Manipulation Engine (FME) Workbench, which is
a spatial ETL (Extract, Transform, Load) software.

As shown in Figure 12, the first step consists of separating
the different classes (sections, intersections and roundabouts)
to process them individually. Next, the objects of each class are
separated using the tag attribute.

Figure 12. Process of separating sections, intersections and
roundabouts.

The road surfaces of each section or intersection are modeled
separately. Linear features are filtered based on their pre-
assigned codes and then combined to build three semantic sur-
faces: green space, roadway and sidewalk. The lines of each
surface are connected to to create longer poly-lines then conver-
ted to polygons by linking their start and end vertices (Figure
13).

The orientation of the generated polygons should be adjusted
to control the extrusion direction when generating solids. If the
left hand rule orientation type is chosen, the vertices of the outer
border of the polygon are arranged in the opposite direction of
clockwise. Therefore, the polygons are oriented towards the
positive direction of the Z-axis. This can be verified by calculat-
ing the surface normal. Subsequently, an extrusion is performed
to create solids from the generated polygons. These solids are
then converted to Composite Surfaces in order to comply with
the geometry types of the Road class in CityGML 3.0.

Figure 13. Transforming linear features into polygons.

Semantic information is assigned to each modeled surface by
adding corresponding attributes, according to CityJSON spe-
cifications. Additionally, the images are used to texture the
model (Figure 14).

Figure 14. The textured 3D road model.

3.7 CityJSON validation

The resulting model was exported to a CityJSON file. The data
schema and geometrical primitives need to be validated to en-
sure that any non conformity with CityJSON schemas, and any
topological and/or geometric errors can be detected and then
corrected.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
67



Schema validation was performed using cjval, the official val-
idator for CityJSON files. It verifies the JSON syntax first, fol-
lowed by the compliance with CityJSON schemas. As shown
in Figure 15, the file syntax is valid after applying a patch to
make the following changes:

• The version of the CityJSON file (version);

• The coordinate system (referenceSystem);

• The transform matrix;

• Road object geometry type (MultiSurface or Composite-
Surface instead of MultiLineString);

• Semantic surfaces (semantics).

Figure 15. Data schema validation results.

However, compliance with data schemas alone is not sufficient
to determine whether a CityJSON file is fully valid. The validity
of geometries is also necessary to properly use 3D road mod-
els (Bendiksen, 2021). Therefore, it is essential that the basic
3D surfaces, which define the road surface in three dimensions,
conform to international standards. To detect these geometric
and topological errors, (Ledoux, 2018) proposed a new version
of V al3dity, an open-source software for validating 3D primit-
ives according to the definitions of the ISO 19107 standard. If a
geometry error is reported, the proposed approach is to initially
identify the object carrying the error and the vertices causing
the invalidity. Correcting these errors requires reviewing the
applied transformations used to generate the 3D model. In this
case, two geometry errors were detected: non-planarity error
and self-intersection error.

A polygon must be planar, within a certain tolerance. This plane
is adjusted to the polygon’s vertices using the least squares
method, and if the distance of a vertex exceeds the tolerance, a
planarity error is detected. Self-intersection error can occur due
to duplicate nodes or a polygon intersecting itself at a point. For
a 3D polygon, self-intersection is checked against its projection
onto the best-fit plane (determined by the least squares method)
based on the polygon’s vertices.

3.8 Geometry errors correction

The detected self-intersection errors are caused by combining
lines and closing them to form polygons. This error is corrected
by calculating the intersections between the lines that form the
polygon before connecting them and creating vertices wherever
an intersection occurs (Figure 16).

Figure 16. Self-intersection error correction process.

Correcting non-planarity errors in 3D polygons seems to be
more challenging. One possible solution is to create a Trian-
gulated Irregular Network (TIN) surface by using the combined
poly-line vertices instead of closing them to form a single 3D
polygon. A polygon is triangulated by creating line segments
between the vertices of the polygon without crossing its exter-
ior, thereby subdividing the polygon into triangles (Ohori et al.,
2012).

A second approach can be considered. Instead of triangulating
the non-planar polygon, the vertices are overlaid on a planar
surface, which can be the plane best fitted by the least-squares
method to the point cloud. The resulting polygon is therefore
planar.

3.9 Storage and visualization

A valid CityJSON dataset is then stored in a MongoDB data-
base. Measur3D (https://github.com/GANys/Measur3D) en-
ables storage, retrieval and visualization of CityJSON files. It
offers a RESTful API for manipulating 3D city models on a
document-oriented database. The API endpoints are used to
send data to the servers, and thus import CityJSON models into
the MongoDB database. Data schemas are already defined by
Measur3D. Additionally, the stored data can be retrieved, man-
aged and viewed in a web application.

Figure 17. 3D road model visualized in Measur3D.

Mesaur3D’s user interface features three main components: a
list of stored CityJSON files, a 3D model viewer and an at-
tribute manager. However, the current version does not sup-
port semantic surfaces. The viewer and attribute manager allow
to inspect the objects of a 3D city model and their attributes,
without access to their semantics. This is justified by the fact
that Measur3D client-layer transforms the entire object into a
mesh so it can be added to the 3D scene. Each mesh com-
prises all the combined geometric primitives of the object. Con-
sequently, it is not possible to access semantic surfaces.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
68



The proposed solution consists in parsing the surfaces that
make up the object’s geometry, instead of converting the entire
geometry into a mesh. The code contribution can be viewed
at: https://github.com/GANys/Measur3D/tree/dev-anass. As
shown in Figure 17, the viewer now supports the inspection of
semantic surfaces and their attributes.

4. RESULTS AND DISCUSSION

The proposed methodology brings a valuable contribution to the
3D modeling of road infrastructures. By using mobile mapping
LiDAR data, the approach can semi-automatically generate 3D
models that are geometrically consistent and accurate. This
ensures correct outcomes for analysis and simulation tests on
these models. This method proposes a cost-effective alternative
to traditional manual modeling approaches while maintaining
high levels of accuracy and consistency. Moreover, the use of
an ETL approach enables the reconstruction of road models in
compliance with CityGML 3.0 Transportation module, which is
essential for the integration of these models into 3D city data-
bases. The workflow, based on a sequence of transformers and
scripts, enables complete control of the modeling process, and
therefore quick and efficient troubleshooting of errors or irreg-
ularities within the final model.

As new versions of CityJSON are constantly being released,
changes in the data schema can result in compatibility issues.
To avoid such problems, the output file must be regularly cor-
rected to conform to the latest published version. Additionally,
geometric and topological errors, such as self-intersections or
non-planar surfaces, can affect the accuracy of the 3D models,
ultimately leading to inaccurate simulation outcomes or ana-
lysis results. Therefore, it is essential to ensure that all objects
in the city have valid geometries to guarantee accurate and reli-
able simulations or analysis.

Managing CityJSON datasets using a file system has its draw-
backs in terms of performance. Conversely, storing and retriev-
ing 3D road models from a database is faster and more effi-
cient. Given that CityJSON data is semi-structured, the use of
a document-oriented NoSQL database offers the best storage
solution. Nevertheless, the documents to be stored must respect
some predefined schemas to guarantee consistency.

However, it is important to note that a semi-automatic approach
in an urban context can have limitations. In such contexts, road
networks extend over several kilometers, and a supervised ap-
proach can be inefficient and time-consuming in terms of per-
formance. Therefore, future research should explore the devel-
opment of an automatic approach to the detection and codific-
ation of linear features from point cloud data to improve the
modeling process’s efficiency and scalability.

5. CONCLUSION

Our study presents a systematic approach for generating a
standardized 3D model of road infrastructures that is both cost-
effective and accurate. Our approach involves a semi-automatic
extraction of linear features from mobile mapping LiDAR data,
which enables geometric and semantic modeling of roads. We
also propose a codification system for assigning predefined
codes to each linear feature, allowing for separate modeling
of each section, intersection, and road surface. The resulting
model is validated then stored in a document-oriented data-
base and visualized through a web application. The proposed

methodology brings a valuable contribution to the 3D model-
ing of road infrastructures, and future research should explore
the possibility to improve the modeling process’s efficiency and
scalability.

REFERENCES

Beil, C., Kolbe, T. H., 2017. CITYGML AND THE STREETS
OF NEW YORK - A PROPOSAL FOR DETAILED STREET
SPACE MODELLING. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, IV-
4/W5, 9–16. https://isprs-annals.copernicus.org/articles/IV-4-
W5/9/2017/.

Beil, C., Ruhdorfer, R., Coduro, T., Kolbe, T. H., 2020.
Detailed Streetspace Modelling for Multiple Applications:
Discussions on the Proposed CityGML 3.0 Transportation
Model. ISPRS International Journal of Geo-Information, 9(10).
https://www.mdpi.com/2220-9964/9/10/603.

Bendiksen, T., 2021. Creating a workflow of 3D building
data in a municipality context. https://lup.lub.lu.se/student-
papers/search/publication/9058579. Student Paper.

Boersma, F., 2019. Modelling different levels of de-
tail of roads and intersections in 3D city models.
http://resolver.tudelft.nl/uuid:ebfc48f8-4704-47d3-9654-
cd00c765e0af.

Kutzner, T., Chaturvedi, K., Kolbe, T. H., 2020. CityGML 3.0:
New Functions Open Up New Applications. PFG – Journal of
Photogrammetry, Remote Sensing and Geoinformation Science,
88(1), 43-61. https://doi.org/10.1007/s41064-020-00095-z.

Ledoux, H., 2018. val3dity: validation of 3D GIS prim-
itives according to the international standards. Open
Geospatial Data, Software and Standards, 3(1), 1.
https://doi.org/10.1186/s40965-018-0043-x.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B.,
Labetski, A., Vitalis, S., 2019. CityJSON: a compact
and easy-to-use encoding of the CityGML data model.
Open Geospatial Data, Software and Standards, 4(1), 4.
https://doi.org/10.1186/s40965-019-0064-0.

Nys, G.-A., Billen, R., 2021. From consistency to flexibility: A
simplified database schema for the management of CityJSON
3D city models. Transactions in GIS, 25, 3048 - 3066.

Ohori, K., Ledoux, H., Meijers, M., 2012. Validation and Auto-
matic Repair of Planar Partitions Using a Constrained Trian-
gulation. Photogrammetrie - Fernerkundung - Geoinformation,
2012, 613-630.

Serifoglu Yilmaz, C., Yilmaz, V., Gungor, O., 2018. Investigat-
ing the performances of commercial and non-commercial soft-
ware for ground filtering of UAV-based point clouds. Interna-
tional Journal of Remote Sensing, 39, 5016-5042.

Vitalis, S., Labetski, A., Boersma, F., Dahle, F., Li, X., Ar-
royo Ohori, K., Ledoux, H., Stoter, J., 2020. CITYJSON +
WEB = NINJA. ISPRS Annals of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, VI-4/W1-2020,
167–173. https://isprs-annals.copernicus.org/articles/VI-4-W1-
2020/167/2020/.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
69



Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X.,
Yan, G., 2016. An Easy-to-Use Airborne LiDAR Data Filter-
ing Method Based on Cloth Simulation. Remote Sensing, 8(6).
https://www.mdpi.com/2072-4292/8/6/501.

Zhang, X., Zhong, M., Liu, S., Zheng, L., Chen,
Y., 2019. Template-Based 3D Road Modeling for Gen-
erating Large-Scale Virtual Road Network Environment.
ISPRS International Journal of Geo-Information, 8(9).
https://www.mdpi.com/2220-9964/8/9/364.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-63-2023 | © Author(s) 2023. CC BY 4.0 License.

 
70




