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ABSTRACT: 

An important factor that reduced the accuracy of motion trajectories in existing VSLAM (Visual Simultaneous Localization and 

Mapping) systems is the poor estimation of the position pose of the vision odometer. The existing methods generate many incorrect 

matches during the feature matching process, resulting in low computational accuracy of rotations and translations between cameras, 

which further leads to a reduction in the robustness of the overall system. In addition, the sparse feature point maps do not provide a 

detailed description of the surrounding environment, which makes it difficult for the devices equipped with VSLAM systems to perform 

advanced tasks such as navigation, path planning and human-computer interaction. To address the accuracy problem, we select the set 

of matches from existing feature matching algorithms based on the motion consistency constraint and use a random sampling 

consistency algorithm to obtain the best quality matches from the selected samples for computing the geometric transformation model 

and estimating the current pose. To address the problem of sparse map points, we use the depth information from the RGB-D or Stereo 

camera to build a dense map module to ensure that information about the surrounding environment is recorded as a point cloud, which 

provides data support for the implementation of advanced tasks of the device. 

1. INTRODUCTION

A device with SLAM (Simultaneous Localization and Mapping) 

technology can build a real-time map of its surroundings and 

localise itself in an unknown environment based on the data 

collected by sensors (Kazerouni, 2022), which is a prerequisite 

and basis for all tasks such as navigation, obstacle avoidance and 

path planning. Currently, Visual SLAM is one of the hot 

directions in SLAM research as it can acquire rich information 

about the surrounding environment with inexpensive vision 

sensors such as monocular, stereo, and RGB-D cameras (Chen, 

2022). 

There is no doubt that traditional visual SLAM frameworks and 

algorithms have achieved many results and have outstanding 

performance in the ideal indoor environment (Mur-Artal, 2017; 

Campos, 2021). However, these algorithms are suffering from 

problems such as simple manual design of feature descriptors and 

high error rate of feature matching sets, which leads to poor 

quality of point cloud maps with low accuracy of pose estimation. 

In addition, sparse point cloud maps are not helpful for the 

extension of more advanced functions such as navigation and 

human-machine interaction of the device. Therefore, it is 

important to improve the positional accuracy further and to build 

dense point cloud maps. Currently, with the improvement of 

computer hardware performance and the optimization of 

algorithms at the front and back end of visual SLAM. Many 

researchers have considered to migrate the functional modules 

that can only be used for map initialization, which are limited by 

hardware performance, to the whole VSLAM system, thus 

globally improving the accuracy of the positional estimation. 

In this paper, a visual SLAM scheme combining match filtering 

is proposed based on the ORB-SLAM2 algorithm framework to 

address the problem of a large number of incorrect matches in 

feature matching sets. In the visual odometry, the feature 

similarity constraint and geometric similarity constraint are 

successively enforced on the matching sets to obtain a higher 

correct rate of matching sets to improve the accuracy of 

positional estimation and localization. For map reconstruction, 

VSLAM uses the pose information from the visual odometry 

estimation and combines it with the depth information of key 

frames to construct a dense point cloud map. The dense map 

provides an important foundation for the robot to perform tasks 

such as navigation, obstacle avoidance, path planning and 

human-robot interaction. 

Related Work 

2. RELATED WORK

The ORB algorithm (Rublee, 2011) is a binary manual descriptor 

with high matching performance, generated by the FAST (Rosten, 

2006) feature detection algorithm combined with improved 

BRIEF (Calonder, 2010) descriptors, which is widely applicable 

in VSLAM systems. This algorithm is currently the most 

advanced algorithm in visual SLAM compared to traditional 

feature matching algorithms such as SIFT (Lowe, 2004), SURF 

(Bay, 2006), BRISK (Leutenegger, 2011) and KAZE 

(Alcantarilla, 2012). However, its performance is not stable in 

complex and variable scenes such as light and dark changes, 

viewpoint changes and weak textures, and it is prone to many 

incorrect matches, which seriously reduces the accuracy of pose 

estimation and the quality of environmental maps. 

Researchers using deep learning techniques have developed 

many excellent feature matching algorithms as well. LIFT (Yi, 

2016) introduced a novel deep learning network architecture that 

implements a complete pipeline of feature point processing, that 

is, detection, direction estimation and feature description. The 

LIFT-SLAM (Bruno, 2021) system, which uses LIFT as the 

front-end feature extraction module, achieves desirable results in 

texture-rich scenes. SuperPoint (DeTone, 2018) proposes a self-

supervised training framework for interest point detectors and 

descriptors applicable to multi-view geometry problems. The 

method can detect richer interest points than traditional 

algorithms and has better single-strain estimation results 

compared to LIFT, SIFT and ORB. The GIFT (Liu, 2019) 

algorithm proposes a descriptor with transform invariance to 

compute feature descriptions for the corresponding feature points 

but lacks feature point detection functionality. The Patch2Pix 
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(Zhou, 2021) method achieves good performance by detecting 

and matching feature points in two steps: coarse matching and 

fine matching. However, the method is not transforming invariant 

and is not robust to changes in viewpoint. In addition, it cannot 

be further applied in VSLAM due to the absence of 

computational descriptors. 

Whether using traditional feature matching algorithms or deep 

learning technology based visual odometry, good results have 

been achieved to some extent. However, there is a problem in the 

feature matching set that should not be ignored. There are many 

incorrect matches in the existing feature matching methods, 

resulting in reduced accuracy or even non-convergence of the 

positional estimation, as well as causing the constructed 

environment maps to contain many errors. Therefore, how to 

better remove erroneous matches from the matching set becomes 

an important factor to improve the performance of VSLAM. 

CODE (Lin, 2017) proposed a non-linear regression technique, 

using which the coherence-based separability constraint can be 

discovered from high-noise matches and embedded in the 

corresponding likelihood model. Using the model, it is possible 

to filter false matches in the nearest neighbourhood of a matching 

set, but the method is computationally complex and slow, which 

is not conducive to working in image streams. GMS (Bian, 2017) 

is a simple method by wrapping motion smoothing as the 

statistical likelihood of a certain number of matches in a region. 

It can convert a high number of matches into a high match quality, 

thus providing a real-time, robust feature filtering algorithm. 

RFM-SCAN (Jiang, 2019) creatively transforms feature 

matching into a spatial clustering problem with outliers. It does 

so by adaptively clustering the initial set of matches into several 

sets of motion-consistent clusters and an outlier cluster set. In 

addition to this, it devises an iterative clustering strategy to 

ensure improved matching performance in the presence of severe 

data degradation. Where the geometric model is known, the 

application of geometrically constrained models such as 

RANSAC (Fischler, 1981), Graph-Cut RANSAC (Barath, 2018) 

and MAGSAC (Barath, 2020) can likewise greatly improve the 

accuracy of the positional estimation. 

Most of the existing algorithms use a combination of feature 

similarity constraints and geometric constraints to remove outlier 

matches from the matching set, but there are still problems such 

as high complexity of the algorithm, large computation, and 

inability to guarantee real-time, while the addition of deep 

learning techniques will greatly increase the overhead of 

computational resources, which is not conducive to the 

integration and embedding of devices. To address the above 

problems, this paper proposes a visual SLAM algorithm based on 

the ORB-SLAM2 algorithm as a basic framework to construct 

dense point cloud maps with improved matching filtering. 

 

3. METHODOLOGY 

3.1 Overview 

To address the impact of error matching on visual SLAM, this 

paper proposes a visual SLAM algorithm combined with 

matching filtering to build indoor dense point cloud maps, and 

the overall framework of the algorithm is shown in Figure 1. 

ORB-SLAM2 is used as the basic framework, and the matching 

filtering module and the dense map building thread are added to 

remove the effect of incorrect matching on positional estimation 

and map building, while the depth information is used to build a 

dense map of the surrounding environment. 

 
 

Figure 1. Overall flow and framework of the algorithm. 

After system start-up, the RGB-D camera acquires both colour 

and depth images. The tracking module first extracts ORB feature 

points from the colour image. Then, the feature points are 

matched by ORB feature descriptors, and the matching set is 

filtered with the improved GMS algorithm. Finally, the 

geometric transformation model is determined by calculating 

both the homography and the fundamental matrix using the 

matched set, which is decomposed to obtain the positional 

transformation information. In addition, the tracking thread 

determines whether the current image is a keyframe based on the 

conditions. The dense builder module first adds the colour and 

depth images selected as keyframes to the queue. Next, the colour 

and depth images at the top of the queue are fetched and 

combined with the camera's intrinsic matrix to create a local 

colour point cloud. Finally, the local point cloud is stitched 

together based on the pose information of the current frame 

provided by the tracking thread. 

 

3.2 GMS-RANSAC 

The camera sensor has a continuing motion in the real scene, so 

the pixels about the feature points in the image have the same 

motion, therefore a certain number of feature points at both ends 

of the correct match have the same match in their respective 

neighbourhoods, as shown in Figure 2. 

 

Figure 2. Mesh-based Motion Smoothing Constraints. In this 

image, 𝑥𝑖  represents a correct match and the red box is its 

neighbourhood range. The same 3 matches (yellow coloured line 

segments) exist in that neighbourhood range, and we count the 

number of all such matches in the 𝑥𝑖 neighbourhood as the score 

of the neighbourhood it is in. The 𝑥𝑗  represents an incorrect 

match where there is no identical match within its neighbourhood, 

and therefore its neighbourhood score is 0. 

 

The GMS algorithm models the binomial distribution of correct 

and incorrect matches in their respective domains from a 

probability estimation perspective, as shown in equation (1), 

respectively. 

𝑆𝑖~ {
𝐵(𝑛, 𝑝𝑡),       𝑥𝑖 = 𝑡𝑟𝑢𝑒 

𝐵(𝑛, 𝑝𝑓),      𝑥𝑖 = 𝑓𝑎𝑙𝑠𝑒
(1) 
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where 𝑝𝑡 denotes the probability of a correct match, 𝑝𝑓 denotes 

the probability of an incorrect match, and 𝑆𝑖 denotes the support 

of the match for 𝑥𝑖, which is calculated from equation (2), minus 

one to remove the effect of itself. 

𝑆𝑖 = |𝜒𝑖| − 1 (2) 

Finally, whether the match is true or not is judged by comparing 

the support of the match for 𝑆𝑖𝑗 with the threshold 𝜏𝑖, as shown 

in equation (3), where in practice 𝑠𝑓 can be obtained by averaging 

the number of all the matches involved, while the threshold 𝜏𝑖 

represents the cut-off for finding a distinction between correct 

and incorrect matches, as shown in Figure 3. 

 

𝑐𝑒𝑙𝑙 − 𝑝𝑎𝑖𝑟{𝑖，𝑗}𝜖 {
𝑇, 𝑆𝑖𝑗 > 𝜏𝑖 = 𝛼√𝑠𝑓

𝐹,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
(3) 

 

 
 

Figure 3. Probability distribution relationship of neighbourhood 

scores for correct or incorrect matches. In this image, the 

probability of incorrect matches peaks in the low scoring interval 

and correct matches in the high scoring interval. This means that 

the two are obeying different probability distribution models, so 

we can find a value for the appropriate neighbourhood score as a 

threshold that can reasonably distinguish between the two. 

 

The geometric constraints require a predefined transformation 

model, usually a homography (𝐇) or a fundamental matrix (𝐅) in 

VSLAM, and the choice between the two cannot be determined 

without any a priori information, thus the accuracy needs to be 

calculated and compared simultaneously to finalize the 

determination. These problems are usually solved by the 

RANSAC-like (RANdom SAmple Consensus) algorithm. The 

minimum number of matching pairs required for the model to be 

computed is chosen randomly, then the remaining pairs are 

brought into the model to check the score of the model, and 

iterations are performed until the optimal geometric model is 

selected. The number of iterations is therefore particularly 

important, and the number of iterations k is given by the 

RANSAC algorithm as shown in equation (4). 

 

𝑘 =
log(1 − 𝑝)

log(1 − 𝑒𝑚)
(4) 

Where 𝑝  is the probability of obtaining the correct model, m 

denotes the number of points needed to calculate the model, i.e., 

𝑚 = 4 if calculating the single response matrix. 𝑒denotes the 

percentage of internal points is a priori a value that represents the 

ratio of the number of points in the data that fit the true model to 

the total number, however the value of e is difficult to determine 

in practice, but according to equation (4) the higher the 

percentage of internal points, the less iterations the shorter the 

time taken. 

To improve the matching accuracy and reduce the computational 

time consumption, a combined GMS and RANSAC algorithm 

has been developed. First the coarse matching set obtained by the 

feature matching algorithm is filtered for the first time by 

applying the motion consistency constraint to it to obtain a 

matching set with a high internal point rate. This set is then used 

to build a geometric model and the coarse matching set is filtered 

with this model to obtain a set of matches with a high correct rate. 

Finally, the filtered matching set is used to obtain the geometric 

model again. Due to the high quality of the samples for estimating 

the poses, the accuracy of the visual odometer can be greatly 

improved, and the overall stability of the system can be 

guaranteed. 

 

3.3 Dense mapping 

A visual SLAM solution with sparse feature points can achieve 

simple localization functions, but for more advanced tasks such 

as path planning, obstacle avoidance and human-machine 

interaction, a dense point cloud map is indispensable. With the 

development of cameras such as binoculars and RGB-D cameras 

that can acquire image depth information, it is possible to add a 

dense map building module to existing solutions. 

After the current colour image is selected as a keyframe, the 

dense mapping thread will first add the current keyframe and its 

depth image to the queue, and then based on the conversion 

equation (5) from the camera coordinate system to the pixel 

coordinate system, the position of each pixel point in the 

keyframe image can be obtained in the camera coordinate system, 

so that the point cloud of the keyframe can be recovered, as 

shown in Figure 4. 

 

 
 

Figure 4. Point cloud display of key frames. We can use the 

depth image of the keyframe and the camera's internal reference 

matrix to create a point cloud of information about the 

surrounding environment, while using the colour image of the 

keyframe to colourise the point cloud. 

 

𝑠𝒑 = 𝑠 (
𝑢
𝑣

) = 𝐊𝑷𝑐 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑥
𝑦
𝑧

] (5) 

Where 𝑠 denotes the scale relationship factor between the depth 

value and the actual spatial distance, given by the depth camera. 

𝒑 denotes the position in the pixel coordinate system. 𝐊 denotes 

the camera intrinsic matrix, which needs to be calibrated. 𝑷𝑐 

denotes the position in the camera coordinate system. 

We can calculate the position of the point cloud in the world 

coordinate system for each frame by combining the key frame 

poses calculated by the tracking thread, as shown in equation (6). 

Where 𝑇𝑤𝑐  represents the pose of the transformation of the 

camera coordinate system to the world coordinate system and is 

a combination of the rotation matrix 𝐑𝑤𝑐  and the translation 

vector 𝒕𝑤𝑐 . Finally, when the looping detection module finds a 

closure, the essential graph is globally optimized, and the point 

cloud is globally adjusted for stitching and output. 

 

4. EXPERIMENTS AND EVALUATION 

The improved feature matching algorithm in this paper was tested 

using the Mikolajczyk dataset (Mikolajczyk, 2005), which 

provides a variety of common real scenes including zoom and 

rotation, light change, image compression, viewpoint change, 

and realistic camera transformation models. Pose accuracy, 

computational time and dense map building experiments were 

conducted using the RGBD dataset from TUM. 
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Figure 5. Showing the results of different feature matching. 

 

 

Table 1. A comparison of the performance of different feature matching algorithms. 

 

Scene 
Correct matching CMR (%) Times (ms) 

ORB GMS Ours ORB GMS Ours ORB GMS Ours 

Zoom+rotation 1646 1179 1643 32.92 99.41 99.82 105.092 0.819 9.723 

Viewpoint 300 141 279 5.92 12.88 99.29 134.043 1.004 1.926 

Blur 787 346 652 15.74 99.42 99.69 133.224 0.933 12.511 

Light 2044 1808 2042 45.98 99.39 99.95 103.395 0.833 3.792 

JPEG compression 4092 3986 4092 81.84 99.67 99.99 111.423 0.820 1.351 
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Figure 6. Display of point cloud maps and trajectory information. 

 

4.1 Feature Matching 

The performance of the improved feature matching algorithm is 

evaluated in terms of both correct matching rate and time 

consumption. Figure 5 and Table 1 show the matching results of 

the original ORB algorithm (a), the GMS algorithm (b) and the 

Ours (c) algorithm in which 5000 feature points are extracted, 

respectively, and it is easy to see from the figure and table that 

the Ours algorithm has many matches and no obvious errors. 

In Figure 5, the Ours achieves significantly more matches than 

the other feature matching algorithms. Table 1 shows the time 

taken and the correct matching ratio (CMR) of the different 

algorithms, where the GMS and Ours do not calculate the time 

taken by the feature matching algorithms before it, so the actual 

time taken by this class of algorithms in feature matching should 

be increased by the time taken for feature extraction and 

matching. There is no doubt that ours achieves a noticeable 

advantage in viewpoint transformation and blur processing. 

Existing manual feature descriptors are robust in scenes such as 

rotation, scaling, movement, and brightness changes, but are 

weak in scenes such as viewpoint transformations, which are 

associated with more complex forms of motion. However, in 

practical cases, often, the motion involves a combination of 

rotation, scaling, and movement, so better matching of viewpoint 

transformations is fundamental to ensure improved accuracy in 

downstream applications. 
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4.2 Visualization 

Sparse maps in visual SLAM resulting from feature points alone 

cannot provide advanced tasks such as semantic perception and 

indoor navigation for robots. Therefore, the use of colour images 

with its depth information to build dense point clouds offers the 

possibility to solve the above problem. Figure 6 shows the indoor 

scene and estimated camera trajectory recovered using the TUM 

dataset.  

With column (a) we can easily see the actual environment 

information, ensuring that the 3D scene structure is recovered. 

Column (b) shows the camera trajectory information recovered 

by our VSLAM after synchronous alignment with the real 

trajectory information provided by the dataset. The two trajectory 

information are highly overlapping, thus ensuring the accuracy 

of the visual odometry positional estimation.  

 

5. CONCLUSIONS 

In this paper, we address the problem of many mis-matched 

feature points in current visual SLAM systems by applying a 

feature filtering algorithm which combines motion consistency 

constraints and geometric constraints to improve the accuracy of 

the system in estimating the positional transformation. However, 

the addition of the new feature filtering algorithm must increase 

the running time of the system, but it takes negligible time 

compared to the original algorithm, so it can still ensure the real-

time operation of the system. In addition, the point cloud map 

created by the dense mapping module provides the basis for 

advanced tasks such as path planning, obstacle avoidance and 

human-machine interaction. 
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