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ABSTRACT: 
 
Simultaneous Localization and Mapping (SLAM) technology, utilizing Light Detection and Ranging (LiDAR) sensors, is crucial for 
3D environment perception and mapping. However, the absence of absolute observations and the inefficiency of single-robot 
perception present challenges for LiDAR SLAM in indoor environments. In this paper, we propose a multi-robot (MR) collaborative 
mapping method based on the Manhattan descriptor (MD) named MR-MD to overcome these limitations and improve the perception 
accuracy of LiDAR SLAM in indoor environments. The proposed method consists of two modules: MD generation and MD 
optimization. In the first module, each robot builds a local submap and constructs MD by parameterizing the planes in the submap. In 
the second module, the global main direction is updated using the historical MD of each robot, and constraints are built for each robot's 
horizontal and vertical directions according to their current MD and optimized. We conducted extensive comparisons with other multi-
robot and single-robot LiDAR SLAM methods using real indoor data, and the results show that our method achieved higher mapping 
accuracy. 
 
 

1. INTRODUCTION 

1.1 Problem Statement 

Simultaneous Localization and Mapping (SLAM) technology, 
employing Light Detection and Ranging (LiDAR) sensors, is a 
general approach for generating 3D maps of indoor environments. 
With the development of LiDAR SLAM technology, some 
LiDAR SLAM algorithms (Xu et al., 2022; He et al., 2023; Chen 
et al., 2023) can obtain high-precision point cloud maps in small-
scale indoor environments with rich geometric features. However, 
in indoor scenes with unclear geometric features or complex 
environments such as long corridors and staircases, there are still 
challenges, such as scene degradation (Zhang et al., 2016) and 
difficulty eliminating accumulated errors (Liu et al., 2021). 
Moreover, the low efficiency of single-robot perception impedes 
the efficient construction of high-quality maps of large-scale 
indoor 3D environments. Existing multi-robot collaborative 
LiDAR SLAM algorithms (Zhong et al., 2022; Cramariuc et al., 
2022; Huang et al., 2021) primarily address inter-robot 
collaboration issues, yet they continue to encounter challenges in 
the abovementioned complex indoor environments. 
 
1.2 Proposed Solution 

In this paper, we apply the Manhattan World assumption 
(Coughlan et al., 1999), a priori assumption of artificial building 
geometry relationships, to structured indoor environments. In 
visual SLAM, some algorithms (Li et al., 2020; Yunus et al., 
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2021) employ the Manhattan World assumption to enhance the 
robustness and accuracy of the algorithm. In LiDAR SLAM, (Wu 
et al., 2023) apply the Manhattan World assumption to provide 
constraints for single-robot SLAM. However, the application of 
this assumption remains limited. (Dai et al., 2022) used the 
Manhattan World assumption to construct maps based on 
navigation needs but found a slight improvement in mapping 
accuracy. Based on this, we propose a multi-robot collaborative 
mapping method named MR-MD that uses Manhattan 
descriptors (MD) to overcome these limitations and improve the 
perception accuracy of LiDAR SLAM in indoor environments. 
The proposed method consists of two modules: MD generation 
and MD optimization. In the first module, each robot builds a 
local submap and constructs MD by parameterizing the planes in 
the submap. In the second module, the global main direction is 
updated using the historical MD of each robot, and constraints 
are built for each robot's horizontal and vertical directions 
according to their current MD and optimized. We conducted 
extensive comparisons with other multi-robot and single-robot 
LiDAR SLAM methods using real indoor data, and the results 
show that our method achieved higher mapping accuracy. 
 
The remainder of this paper is organized as follows. Section 2 
introduces the principles of the methodology proposed in this 
study. Section 3 presents the experiments conducted in a real-
world environment and analyzes the results. Finally, in Section 4, 
we provide a summary of the paper. 
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2. METHODOLOGY 

The overall process of the proposed algorithm is shown in Figure 
1. We accumulate point cloud submaps using a fixed-size sliding 
window comprising 50 or 30 frames. Input data can originate 
from one or multiple robots and includes raw LiDAR scan point 
cloud data and IMU data. Upon obtaining a submap, we perform 
preprocessing operations such as point cloud downsampling, 
passthrough filtering, and noise removal to obtain point cloud 
data better suited for subsequent processing. 
 
A two-stage MD generation module is employed to extract 
potential planes from the input point cloud and parameterize 
them to calculate their normals. Simultaneously, the module 
computes the necessary values for Manhattan descriptors and 
generates complete Manhattan descriptors. Subsequently, a 
collaborative update of MDs from all robots is performed in the 
MD optimization module. Then, plane constraints are 
constructed based on MDs to facilitate loop closure matching. 
Finally, a global factor graph is constructed, incorporating 
odometry factors, loop closure factors, and plane constraint 
factors, enabling global optimization.  
 
This process results in optimal poses in environments 
conforming to the Manhattan World assumption, ultimately 
generating a globally consistent point cloud map. 
 

 
 

Figure 1. The overall process of the algorithm. 

 
2.1 MD Generation 

According to the Manhattan World assumption, artificial 
buildings have three mutually orthogonal main directions, 
including a horizontal main direction (HMD) approximately 
parallel to the ground and two vertical main directions (VMD) 
perpendicular to the HMD and each other. The two VMDs are 
transformed into one VMD through their orthogonal relationship 
to facilitate the construction of plane constraints. Due to the 
presence of specific accumulated errors in the currently acquired 
point cloud data that have not been processed, the main direction 
angle is extracted from the optimized historical point cloud 
submaps, which is the vertical reference main direction angle 

(VRMD) and the horizontal reference main direction angle 
(HRMD). 
 
We employ a two-stage strategy when generating the MD for 
each robot at a fixed frequency. Firstly, in the first stage, we 
select a point cloud submap from 200 frames before the current 
frame as the reference point cloud. We assume this point cloud 
has undergone partial optimization and has a more minor 
cumulative error. From the reference point cloud, we extract the 
vertical and horizontal planes it contains and calculate their 
respective normal vectors. A point cloud submap may contain 
multiple planes, and we use statistical methods to eliminate 
incorrectly extracted planes, obtaining a statistically best 
estimate of the orientation for the scene. 
 
In the second stage, we obtain a point cloud submap consisting 
of the last 50 frames as the current point cloud submap. We 
extract this point cloud's vertical and horizontal planes while 
calculating their normal vectors. We then use the same statistical 
methods as in the first stage to obtain the current best orientation 
estimate. 
 
In indoor environments such as long corridors, the current 
environment often cannot provide effective constraints for a 
certain direction during loop closure matching (including loop 
closure within a single robot and between multiple robots), 
resulting in unreliable results. However, according to the 
Manhattan World assumption, planes in the environment can be 
divided into three orthogonal categories based on their normal 
directions. Therefore, the area ratio of each category of planes to 
the total plane area can be calculated as the reliability score for 
the current direction of loop closure, which can provide 
constraints for possible subsequent loop closure matching. Based 
on this, the MD of each robot in the current multi-robot 
collaborative 3D LiDAR SLAM system is constructed. The MD 
is defined as the following equation: 
  
 ℎ ℎ ,   (1) 
 
where  Dh, Dv = HMD, VMD 
 Dhr, Dvr = HRMD, VRMD 
 C0, C1, C2 = Confidence level in three directions 
 F = initialization flag 
 
2.2 MD Optimization 

After each robot in the multi-robot system generates its own MD, 
the HRMD and VRMD are collaboratively updated for the MD 
that has completed coordinate alignment. Next, vertical and 
horizontal plane constraints are constructed based on the 
differences between VMD and VRMD, as well as between HMD 
and HRMD. The constructed plane constraints are then added as 
edges in the factor graph (Kaess et al., 2012) between the current 
variable nodes, and optimization is performed using incremental 
smoothing and mapping with Bayesian trees. 
 
In addition, assistance can be provided for the loop closure 
matching based on the MD when a loop closure is detected. When 
a loop closure is detected within a single robot, the MD with the 
closest frame number to the current and historical frames that 
form the loop is first found, and the confidence level information 
in each direction is obtained for the loop closure matching based 
on the confidence level information in both directions of the two 
MDs. At the same time, the difference between the main 
directions of the two MDs can provide a good initial value for 
this loop closure matching, thereby improving the accuracy and 
efficiency of the matching. When a loop closure is detected 
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within multiple robots, the MD closest to the current frame 
number of each robot is found based on the frame numbers and 
robot IDs of the two robots that form the loop. Then, the 
initialization flag is checked. If any robot has not completed 
initialization, only the confidence level information of the MD is 
used, and no initial value is provided for this matching. The result 
of the loop closure matching is added as a constraint between two 
variable nodes in the overall factor graph, and the confidence 
level in each direction calculated at this time is used as the 
confidence level of this constraint. 
 

3. EXPERIMENTS AND ANALYSIS 

To verify the effectiveness of the proposed method in this paper, 
we applied the proposed algorithm to the DCL-SLAM algorithm 
as a plug-in. We used a hand-held device equipped with Livox 
MID-360 LiDAR as the experimental dataset acquisition device, 
as shown in Figure 2. The experimental dataset was collected 
from real indoor environments. Specifically, the dataset shown in 
Figure 3(a) contains long corridors and long stairs, which were 
used to verify the effectiveness of our algorithm for single-robot 
systems. The dataset shown in Figure 3(b) contains data collected 
from two different areas of an underground parking lot 
simultaneously, which were used to verify the effectiveness of 
our algorithm for multi-robot systems. 
 

 
 

Figure 2. Handheld device equipped with MID-360 LiDAR. 

 

 
(a) Indoor corridor and staircase dataset. 

 

(b) Indoor parking lot dataset. 

 

Figure 3. Real-world images from two experimental datasets. 

 
3.1 Single-Robot Mapping Results 

We compared our proposed algorithm with the SOTA (state of 
the art) single-robot LiDAR SLAM algorithm, FAST-LIO2, and 
FAST-LIO2+SC algorithm, which incorporates loop closure 
using ScanContext descriptors, using the indoor corridor and 
staircase dataset. The mapping results of the three methods are 
shown in Figure 4, where the point clouds are colored based on 
their elevation values. 
 
For the indoor corridor and staircase dataset, the data collection 
path starts from the sixth floor of the teaching building, goes 
through the left staircase to the first floor, and returns to the sixth 
floor using the right staircase. 
 
By comparing the left views of the three algorithms in Figure 4, 
it can be observed that there is no significant variation in the Z-
direction among the three methods. Part of this is attributed to the 
larger vertical field of view (FOV) of the Livox MID-360, 
allowing it to capture vertical point cloud features better. 
 
When comparing the front and top views of the three methods in 
Figure 4, it is evident that FAST-LIO2-SC exhibits significant 
errors in corridor areas, with the displayed corridor length far 
exceeding the actual length. This error is attributed to incorrect 
loop closure matching when compared to FAST-LIO2. 
 
Furthermore, FAST-LIO2's front view in Figure 4 is largely 
consistent with our method, but the top view needs to be more 
accurate. This misalignment is due to FAST-LIO2's inability to 
mitigate cumulative errors. Our method demonstrates good 
mapping quality and global consistency. 
 

 

 
(a) FAST-LIO2. 
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(b) FAST-LIO2-SC. 

 
 (c) Ours. 

 

Figure 4. Comparison of three methods on indoor corridor and 
staircase dataset. 

 
To better compare the mapping quality of the three methods, we 
obtained six cross-sectional profiles of the point cloud maps at a 
height of 5 meters with a thickness of 0.2 meters, as shown in 
Figure 5. From the mapping results of the three methods, it can 
be observed that the FAST-LIO2 algorithm exhibits significant 
drift when returning to the sixth floor due to the absence of a loop 
closure module to mitigate cumulative errors. Although the 
FAST-LIO2-SC algorithm incorporates a loop closure module, 
the overall mapping quality is poorer due to inadequate point 
cloud registration when detecting loops on the sixth floor, 
resulting in significant degradation in the long corridor 
environment. On the other hand, our method shows no significant 
degradation or drift and outperforms the other two methods 
regarding mapping quality. 

 

 
(a) FAST-LIO2. 

 
(b) FAST-LIO2-SC. 

 
(c) Ours. 

 

Figure 5. Cross-sectional profiles of the three methods. 

 
To verify the effectiveness of using MD for plane constraint, we 
conducted ablation experiments while keeping other components 
of the algorithm, such as MD generation and the assistance of 
MD for loop closure matching, unchanged. The sole purpose was 
to evaluate the impact of the MD plane constraint on the overall 
mapping quality by turning the MD plane constraint on or off. 
The experimental results are shown in Figure 6. When MD plane 
constraint was not enabled, noticeable stratification was observed 
at the corners of the corridor. However, a globally consistent 
point cloud map without evident stratification was obtained when 
the MD plane constraint was enabled. 

 

 
(a) Our method employs MD for plane constraint. 

 
(b) Our method does not utilize MD for plane constraint. 

 

Figure 6. Ablation experiments of MD for plane constraint. 

 
3.2 Multi-Robot Mapping Results 

In the indoor parking lot dataset, the parking area was divided 
into two parts and data collection was performed using the 
handheld device shown in Figure 2 for both parts. There is a 
partial overlap between the two data collection sessions. Robot A 
and Robot B represent the two data collection sessions, 
respectively. 
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Using the indoor parking lot dataset, we compared our proposed 
algorithm with the multi-robot LiDAR SLAM algorithm, DCL-
SLAM. The mapping results of the two methods are shown in 
Figure 7, where the point clouds are colored based on their 
elevation values. 
 
By comparing the mapping results of Figure 7 on the indoor 
parking lot dataset, there are noticeable differences between 
DCL-SLAM and our method in the overlapping area (where the 
red and yellow overlap). 
 

 
(a) DCL-SLAM. 

 
(b) Ours. 

 

Figure 7. Comparison of two methods on indoor parking lot 
dataset. 

 

We obtained cross-sectional profiles of the mapping results of the 
two methods at a height of 1.3 meters with a thickness of 0.2 
meters, as shown in Figure 8. The cross-sectional profiles provide 
a clearer visualization of the differences in mapping quality 
between the two methods. In Figure 8(a), the DCL-SLAM 
algorithm exhibits significant point cloud overlap in the 
overlapping region between the two robots, indicating the 
method's inability to fuse point cloud maps acquired by different 
robots effectively. In Figure 8(b), our method demonstrates 
smaller point cloud overlap than DCL-SLAM, reflecting our 
method's ability to achieve higher-quality mapping results. 

 

 
(a) DCL-SLAM. 

 
(b) Ours. 

 

Figure 8. Cross-sectional profiles of the two methods. 

 

In Table 1, we selected eight uniformly distributed building 
corners in the overlapping region of the two robots' data 
collection. The distance of point cloud overlap at these corner 
points was manually measured to describe the mapping quality 
of the two algorithms quantitatively. We use bold font to indicate 
more minor overlap errors and use the average overlap error to 
evaluate mapping quality. Our algorithm achieves more minor 
overlap errors at all locations, with an average overlap error 
reduction of 64.4% compared to DCL-SLAM. 
 

Point Number DCL-SLAM Ours 
1 0.113 0.034 
2 0.107 0.016 
3 0.084 0.041 
4 0.092 0.015 
5 0.092 0.060 
6 0.119 0.024 
7 0.094 0.043 
8 0.129 0.064 

Mean 0.104 0.037 

Table 1. Multi-robot Error (m) in Parking Lot Dataset. 

 

4. CONCLUSIONS 

In our study, we conducted experiments involving single-robot 
and multi-robot scenarios to assess the effectiveness of our 
proposed multi-robot collaborative mapping method, MR-MD, 
in indoor environments. Given the absence of ground truth data 
in indoor settings, we employed both qualitative and quantitative 
evaluations to validate the efficacy of our approach. We assessed 
mapping quality and quantified the distance of point cloud 
overlap at corner points as evaluation metrics. 
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Our results demonstrate that our method significantly enhances 
mapping quality compared to the SOTA single-robot algorithm, 
FAST-LIO2, in the scenarios above. Furthermore, compared to 
the SOTA multi-robot algorithm, DCL-SLAM, our method 
reduces the distance of point cloud overlap at corner points by 
64.4%. 
 
It is worth noting that our proposed method does not currently 
exhibit real-time performance. This limitation primarily stems 
from the method's reliance on plane extraction and plane normal 
vector computation, necessitating a high density of point cloud 
submaps for accurate extraction and calculation. As a result, 
maintaining a high-frequency real-time extraction and 
computation process is challenging. 
 
Additionally, our method's effectiveness is constrained by the 
Manhattan World assumption upon which it is based. The 
accuracy and mapping quality improvements are limited in 
atypical environments that do not conform to the Manhattan 
World assumption, such as high-dynamic or outdoor settings.  
 
In the future, our research will continue to address the limitations 
of the method presented in this paper. On the one hand, we will 
explore the feasibility of real-time extraction of reliable planes 
and computation of their normals from point clouds. On the other 
hand, we will endeavor to extend the applicability of our method 
to a broader range of scenarios, such as outdoor environments, to 
enhance its overall versatility. 
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