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ABSTRACT: 
 
The calibration of the camera and LiDAR is one of the basis for the construction of the multi-sensor fusion mapping system. Planar 
features of walls and grounds in indoor environments provides effective constraints for multi-sensor calibration. In this paper, we proposed 
a new camera-LiDAR calibration method with the constraint of indoor spatial structure. Using the image and point cloud data collected by 
sensors, visual odometry and LiDAR odometry can be constructed to calculate the transformation between sensors. Based on visual 
odometry and LiDAR odometry, structural parameters in indoor environment are extracted from images and point cloud to constrain 
rotation estimation between sensors. In the method proposed in this paper, lines are extracted from the images acquired by the camera 
and used to estimate and track vanishing points. The direction estimated with vanishing points is used as a global constraint to optimize 
the rotation parameter estimation of the camera. The fitted planes from the point cloud acquired by the LiDAR are used to compute a set 
of orthogonal normal vectors corresponding to the ground and wall surfaces, which are used as global constraints to optimize the rotation 
parameter estimation of the LiDAR. The calibration method proposed in this paper is targetless and only constrained by the indoor spatial 
structure. The result shows that the proposed indoor spatial structure constraint calibration method can calibrate LiDAR and camera 
without generating cumulative errors during the rotation estimation process. 
 
 

1. INTRODUCTION 

In the indoor activities of robots, indoor 3D reconstruction (Gu, 
Zhou et al. 2020), mapping and navigation (Wang, Dai et al. 2020) 
have always been a research hotspot in the field of robotics. In 
order to establish a robust indoor surveying and mapping system, 
it is necessary to accurately calibrate various sensors of the robot 
and determine their relative spatial positions to obtain more 
accurate positioning results. Lidar and camera are important 
indoor data acquisition sensors, and calibration between these 
two sensors is crucial. On the basis of continuous frame matching, 
the calibration in this paper adds constraints on the walls and 
floors of the indoor space, which have orthogonal characteristics 
in the indoor space. At the same time, these planes can be 
recognized and parameterized in both images and point clouds. 
Therefore, this paper introduce the method of identifying and 
calculating these plane parameters from images and point clouds, 
and corresponding them to the rotation parameters of the camera 
and LiDAR, in order to calibrate the rotation relationship 
between the camera and LiDAR. 
Among existing calibration methods, most camera-LiDAR 
calibration methods require the assistance of a calibration 
board(Kim and Park 2019), which identifies the calibration 
chessboard plane from the camera image and LiDAR point cloud, 
and calibrates the sensor by aligning the plane normal vector. The 
calibration board can assist visual sensors in precise calibration, 
but it also limits the calibration environment. Therefore, some 
studies tried to attempt to calibrate sensors using scene data 
collected by sensors instead of just using calibration chessboards. 
Liu, Zhang et al. (2022) proposed a targetless calibration method 
for LiDAR, IMU, and camera, which uses the IMU coordinate 
system as a benchmark and calibrates the transformation between 
sensors by aligning the data collected by the visual odometry, 
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LiDAR odometry, and IMU. Koide, Oishi et al. (2023) used the 
Super Glue image matching pipeline to find the 2D-3D 
correspondence between LiDAR and camera data, and estimated 
the initial transformation of LiDAR and camera via RANSAC. 
After giving an initial estimate, the transformation estimation is 
refined through LiDAR camera calibration based on normalized 
information distance. 
In the images acquired from indoor environment, edge features 
are the key elements to describe the boundary of walls and floors. 
By extracting line features from these edge features, the spatial 
structure of the indoor environment can be briefly represented in 
the image plane. Hough transform can be used to find  lines from 
a large number of edge features in the image (Bao, Zhang et al. 
2005). A more efficient method is to use gradients and gradient 
directions around pixels, combined with region growth, to obtain  
lines in the image(Grompone von Gioi, Jakubowicz et al. 2010). 
Due to the constraints of perspective geometry, there exists a 
definitive relationship between lines in the image plane, and these 
lines can be classified by vanishing points algorithms. Vanishing 
points, which are the intersection points of parallel lines in the 
image plane, can be used to classify lines based on their pointing 
directions. Therefore, in indoor three-dimensional space, the 
position and direction of each vanishing point in the camera can 
be determined by parallel line segments in different directions, 
and then the rotation parameters of the camera relative to the 
indoor walls and grounds can be determined. In the vanishing 
point detection algorithm, Lu, Yaoy et al. (2017) proposed a 2-
line RANSAC algorithm that can quickly select two  lines to 
determine a set of orthogonal vanishing point normal vectors, and 
determine the set of vanishing points with the highest probability 
of accuracy based on the hypothesis test results. Li, Kim et al. 
(2020) combined random sampling and Branch and bound 
method to obtain the vanishing point estimation while ensuring 
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the global optimality of the vanishing point. After correctly 
estimating the vanishing point, spatial structure information is 
obtained from the image, and it is also necessary to obtain spatial 
structure information from the point cloud to correspond with the 
image. 
As an important information describing spatial structure in point 
clouds, planes play an important role in both localization and 
scene understanding. Among them, the LiDAR odometry utilizes 
the LOAM algorithm to calculate the smoothness of each point 
based on the coordinates between each point and adjacent points, 
and determines whether the point belongs to a plane through a 
threshold. Finally, the plane features are described by using the 
normal vectors of all planar points in the point cloud. However, 
in real indoor environment, the front and back planes of walls, 
doors and windows have similar plane parameters. and these 
planes may be combined incorrectly. To solve this problem, Zhou, 
Koppel et al. (2021) pointed the normal vector of the plane to the 
origin of the sensor coordinate system when calculating the plane 
parameters, and the front and back of the plane would have 
opposite normal vectors due to different scanning directions. 
Furthermore, the direction of the plane normal vector can be 
directly used to distinguish the front and back sides of these 
double-sided objects. In the indoor environment, the plane fitting 
efficiency of point clouds is also a key factor of plane extraction 
and registration. Magri and Fusiello (2018) proposed a variant of 
the j-linkage algorithm based on min-hashed to quickly identify 
and obtain plane parameters in point clouds, which has a high 
efficiency in processing large point clouds. Wang, Peng et al. 
(2018) used a single line LiDAR to search for indoor planes and 
inflection points. During the point cloud registering process, the 
midpoint and corner points of the line features are used as feature 
points in order to improve the efficiency of the plane registering 
process. 
we proposed a new method of camera-LiDAR calibration with 
only constrained by indoor spatial structure in this paper. This is 
a targetless and global environmental feature based calibration 
method, so it is basically not affected by the accumulated error 
of the odometry during the calibration process. It is a globally 
stable and convenient calibration method, and the characteristics 
of spatial structure constraints can be directly applied to SLAM 
mapping systems as globally stable features to improve 
positioning accuracy. 
 

2. METHODOLOGY 

We proposed a new camera-LiDAR calibration method 
constrained by indoor spatial structure in this paper. By utilizing 
images and point cloud data collected by sensors, visual 
odometry and LiDAR odometry can be constructed to calculate 
spatial transformation parameters between sensors. On the basis 
of LiDAR odometry and visual odometry(Liu, Zhang et al. 2022), 
the structural parameters of indoor spatial environment are 
extracted from image and point cloud data respectively to 
constrain the rotation estimation and time synchronization errors 
between sensors. The global structural parameters of image are 
constructed in the direction pointed by the vanishing points, 
while the global structural parameters of point cloud are 
constructed in the direction pointed by the normal vectors of the 
walls and ground. 
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Figure 1. Flowchart of the proposed calibration method. 

 
2.1 Global rotation extracted from images constrained by 
indoor spatial structure 

In the method of estimating camera rotation using indoor 
acquired image data, feature point matching of consecutive 
frames is the main approach. These methods estimate the rotation 
between two frames of images by comparing the relative 
positions of feature points between consecutive frames. However, 
this continuous estimation process can result in cumulative errors, 
which affect the overall accuracy of the image rotation estimation. 
The vanishing point is the imaging intersection point of a set of 
parallel lines projected on the camera plane in three-dimensional 
space. The vanishing point can be estimated by the intersection 
points generated by multiple sets of  lines extracted from the 
image. Since the estimation of vanishing point is only limited to 
the direction of the line in the space, the direction of vanishing 
point estimated from the image can directly represent the relative 
rotation of the camera and the indoor space. Compared with the 
feature point rotation estimation method, the vanishing point 
estimation rotation method can be estimated separately in each 
frame without cumulative error. 
In this paper, LSD algorithm (Grompone von Gioi, Jakubowicz 
et al. 2010) is used to extract lines from images taken by cameras, 
and BaySAC algorithm (Kang, Zhang et al. 2014) for estimating 
model parameters is used as the algorithm to estimate and track 
vanishing point. When using BaySAC algorithm to estimate the 
vanishing point, it is necessary to obtain the Prior probability of 
all lines. In this paper, due to the small displacement of the 
vanishing point between consecutive images, the Prior 
probability is given by the position of the vanishing point in the 
previous frame, and the formula for calculating the Prior 
probability is 

𝑃௜ = ൝
1 −

𝐷௜

𝑚
(𝐷௜ < 𝑚)

0          (𝐷௜ < 𝑚)
(1) 
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Wherein, is the Prior probability of line i, is the distance from line 
i to the assumed vanishing point, and m is the predefined 
threshold. The adaptive threshold m can be defined by the mean 
square error of the global point. To accurately estimate the 
rotation, it is essential to precisely estimate the vanishing points 
in all three orthogonal directions. Therefore, the prior probability 
of three vanishing points are estimated for each line. The Prior 
probability of each line in three directions corresponding to the 
vanishing point will be compared. One corresponding to the 
highest probability will be selected as the inliers of the vanishing 
point hypothesis. 
After obtaining the prior probability of all lines, select a group of 
lines with the highest prior probability to construct the minimum 
sampling set, and calculate the position of the intersection point 
of the group of lines from the minimum sampling set, as the 
vanishing point hypothesis of the cycle. Afterwards, the 
probabilities of all  lines will be updated, and the simplified 
Bayesian probability update formula is 
 

𝑃௧(𝑖 ∈ 𝐼) = ቐ

𝑘

𝐷
𝑃௧ିଵ(𝑖 ∈ 𝐼) 𝑖 ∈ 𝐻௧

𝑃௧ିଵ(𝑖 ∈ 𝐼) 𝑖 ∉ 𝐻௧

(2) 

Among them, 𝐼 is the set of local points, 𝑃௧(𝑖 ∈ 𝐼) and 𝑃௧ିଵ(𝑖 ∈
𝐼) are the probabilities corresponding to the lines in the t and t-1 
iterations, respectively. k is the number of lines in this iteration 
with a distance less than the threshold from the vanishing point, 
w and D is the total number of lines detected by the LSD 
algorithm in the current image. After iterating to probability 
convergence or reaching the number of cycles, calculate the 
optimal vanishing point parameters from the set of lines with the 
highest number of local points. 
After obtaining the position of the vanishing point, calculate the 
normal vector of the direction pointed by the vanishing point 
relative to the camera coordinate system based on the camera 
focal length and the coordinates of the vanishing point in the 
image plane. After obtaining the normal vector, it is necessary to 
calculate the relative rotation between the camera and the 
direction of the vanishing point in space. In order to correspond 
to the order of each vanishing point between the previous and 
subsequent frames, we use the product of the quantity between 
the vanishing point vectors of the previous frame and the 
vanishing point vectors of the following frame to calculate the 
relative relationship between these vanishing point vectors. The 
calculation formula is 
 

𝜃௜௝ = 𝑉𝐷௟௔௦௧೔
∙ 𝑉𝐷௡௢௪ೕ

(3) 
 
Where  𝜃௜௝ is the dot product of two vanishing directions, 𝑉𝐷௟௔௦௧೔

 
is one of the three vanishing directions of the previous frame, 
𝑝௡௢௪ೕ

 is one of the three vanishing directions of the current frame. 

A preset threshold 𝜃 is used to judge the consistency of the two 
vector. As shown in Fig.2, for each vanishing point  𝑝௜  in the 
previous frame, the calculated maximum 𝜃  indicates the 
association between the vanishing direction of vanishing point 
 𝑝௝  in the subsequent frame and the vanishing subsequent  of 
vanishing point  𝑝௜  in the previous frame. In addition, a third-
order Identity matrix is used as the coordinate axis alignment of 
the vanishing points in the first frame. From the vanishing 
direction 𝑉𝐷௜  of the current frame and the current camera 
coordinate system 𝐶௙௥௔௠௘_௜ , the rotation of the current camera 
coordinate 𝑅஼೑ೝೌ೘೐_೔

 relative to the world coordinate system W of 

the indoor environment can be obtained, which can be used as the 
rotation parameter of the camera coordinate in the current frame. 
According to the vector corresponding to the Vanishing point of 

the previous frame and that of the current frame, the Rotation 
matrix between  𝑅௜ two frames can be calculated. 

 
Figure 2. Vanishing point detection and rotation estimation. 

 
In indoor environment, a set of orthogonal Vanishing point 
estimation results will be used as global constraints to optimize 
camera rotation parameters estimation. The process involves 
tracking the vanishing point across consecutive frames, aligning 
each group of orthogonal directions, and solving for the rotation 
matrix as the continuous estimation result of the camera's rotation 
under the global constraints. 
 
2.2 Global rotation extracted from point clouds constrained 
by indoor spatial structure 

In the method of estimating LiDAR rotation using indoor point 
cloud data, the main focus is on extracting line and plane features 
from point clouds and matching features between consecutive 
frames. In this paper, planes are identified and fitted in order to 
independently extract the relative rotation between the LiDAR 
and the spatial plane from each frame of the point cloud. Based 
on the distribution of normal vectors of each plane in the point 
cloud, the LiDAR sensor coordinate system is counted as a set of 
rotations orthogonal to the walls and ground planes in the point 
cloud. 
When collecting plane parameters from LiDAR point clouds, this 
paper uses the region growing method (Poppinga, Vaskevicius et 
al. 2008) combined with BaySAC to estimate plane parameters. 
Select adjacent points from random seed points and use BaySAC 
to fit the plane parameters. In the process of point cloud plane 
fitting, the parameter estimation and probability update formulas 
of BaySAC are the same as Eq. (1) and Eq. (2). The parameters 
of the plane i in a frame of point cloud can be represented as 
 

𝐴௜𝑥 + 𝐵௜𝑦 + 𝐶௜𝑧 + 𝐷௜ = 0 (4) 
 
Based on the fitted plane parameters, continue to search for 
adjacent points using the region growth method until all adjacent 
points belonging to the plane are correctly identified. After all 
points in the point cloud are searched, record the normal vector 
𝑁௜ = (𝐴௜ , 𝐵௜ , 𝐶௜) of the plane and the number of points in the 
plane. 
Global rotation can be estimated from the plane normal vectors 
in the calculated point cloud. Take the normal vector of each 
plane as the observation value, and use the rotation of the LiDAR 
relative to walls as the parameters to be estimated. In order to 
quickly and effectively obtain global rotation, this paper adopts a 
basic assumption that the plane containing the most points in the 
recorded plane is the indoor ground or walls, and the normal 
vector of the plane is recorded as the first directional constraint. 
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Randomly select a plane parameters from all planes except this 
plane, and calculate the inner product of the normal vector and 
the vector constrained by the first direction. When the inner 
product is less than the threshold, these two directions are 
considered to be basically orthogonal. To satisfy the orthogonal 
constraint of rotation, the projection of this direction on the first 
plane is taken and normalized as the second direction constraint. 
The third directional constraint is obtained by multiplying the 
first two vectors. 
Based on the existing three directional constraints, verify the 
orthogonality of all plane normal vectors with these directional 
constraints, and record the number of points in the plane 
corresponding to all plane normal vectors orthogonal to this set 
of directional constraints. 
 

arg max
௜,௝

෍ ෍ 𝛿൫𝑁௜ , 𝑣௝൯

ଷ

௃ୀଵ

ெ

௜ୀଵ

(5) 

And 

𝛿൫𝑁௜ , 𝑣௝൯ = ൜
𝑛𝑢𝑚௣೔

𝑖𝑓 𝑁௜ ∙ 𝑣௝ > 𝜃

0 otherwise
(6) 

 
Where, 𝑁௜ is the normal vector of plane i in all M planes. 𝑣௝  is 
one of the estimated three directional vectors j. 𝑛𝑢𝑚௣೔

 is the 
number of points contained in plane i. When the product of the 
normal vector 𝑁௜  and the direction vector 𝑣௝  is higher than the 

threshold 𝜃, the value of the function 𝛿൫𝑁௜ , 𝑣௝൯ will be recorded 
as the number of points in the plane. When the number of plane 
points corresponding to the direction vector is the highest, it is 
considered that the correct direction estimation has been obtained. 
With the method in this section, the global rotation of LiDAR 
relative to indoor space can be accurately estimated. Based on the 
spatial structural constraints identified in the image and point 
cloud, the rotation of the camera and LiDAR relative to the 
indoor space wall was obtained. Therefore, the rotation between 
the camera and the LiDAR will be calculated based on the 
relative relationship between these rotations. 
 
2.3 Solving camera-LiDAR rotation parameters based on 
spatial structure constraints 

The global rotation of the indoor spatial structure, determined by 
both the camera and the LiDAR, is constrained by the walls and 
ground of the indoor environment. Through their relative rotation, 
the rotation matrix between the camera and the lidar can be 
calculated. In this section, construct a coordinate system 
orthogonal to the walls and ground of the indoor space as the 
world coordinate system. As shown in Figure 3, the vanishing 
directions 𝑉𝐷ଵ、𝑉𝐷ଶ  and 𝑉𝐷ଷ extracted from the image 
correspond to the dashed arrows of camera, which are parallel to 
the axis of the world coordinate system 𝑊. Calculate the rotation 
between the dashed arrow coordinate system and the camera 
coordinate system to obtain the global rotation of the camera 
𝑅௖௔௠௘௥௔ . Similarly, the direction vector  𝑣ଵሬሬሬሬ⃗、𝑣ଶሬሬሬሬ⃗  and 𝑣ଷሬሬሬሬ⃗  
calculated based on the plane normal vector in the point cloud 
corresponds to the dashed arrow of LiDAR, and these directions 
are also parallel to the world coordinate system axis, which can 
also obtain the global rotation of the LiDAR. Based on the two 
sets of global rotations calculated from multi frame point clouds 
and images, the rotation parameters between the camera and the 
LiDAR can be calculated and optimized. 

 
Figure 3. Calculate the rotation of the camera and LiDAR 

constrained by the indoor spatial structure separately, and use 
these rotation parameters to estimate the transformation 

parameters between sensors.  

 
3. EXPERIMENTAL RESULTS 

Corresponding to the above methods, the experiment in this paper 
is divided into three parts. The first part is the vanishing point 
detection and line classification results of the image. The second 
part is the point cloud plane fitting results. Finally, the rotation 
result were aligned in the camera coordinate system to obtain the 
final calibration result. 
A group of point clouds and image data in the indoor 
environment are collected using the indoor mobile acquisition 
platform of multi-sensor, and used for the experiment of 
registration algorithm. According to the algorithm proposed in 
this paper, experiments were conducted on image and point cloud 
preprocessing and global rotation extraction, respectively. 
Fig.4 shows the results of image vanishing point extraction. The 
left side is a frame of original image from the collected 
continuous image data, and the right side is the classification 
result of the recognized lines and vanishing point detection lines 
in the image. It can be seen that the  lines in Fig.4 are correctly 
classified and correspond to three vanishing points. According to 
this vanishing point detection result, we continuously recognize 
vanishing points from the video, and calculate the camera 
Rotation matrix according to the camera global rotation 
estimation method mentioned in Section 2.  
 

 
Figure 4. The results of vanishing point detection and line 

classification. left: Raw image data. right: Results of vanishing 
point detection, with different colored lines corresponding to 

different vanishing points 
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For the original point cloud obtained by LiDAR, all the planes 
were extracted using the plane fitting algorithm proposed in this 
paper, and the extraction results are shown in Figure 5. Among 
them, (a) displays the point cloud corresponding to the system 

time and image, (b) displays the results of plane fitting, and (c) 
displays the point cloud classification results determined by the 
direction of the plane normal vector.  

 

 
(a) 

 
(b)                                                                                (c) 

Figure 5. Results of plane fitting and classification.(a) Raw data of indoor point cloud. (b) The results of plane fitting using the 
method proposed in this paper. (c) Result of plane classification based on normal vector direction. 

 
In Fig.5(c), it can be seen that the walls, floors, and ceilings in 
the point cloud are all identified correctly. Correspondingly to the 
global rotation estimation of the aforementioned image, the 
global rotation of the point cloud is also obtained using the 
method described in section 2. After calculating the Rotation 
matrix of the lidar, the yaw angle of each frame is continuously 
recognized and displayed in Figure 5.  
The global rotation calculated by the camera and LiDAR is 
determined relative to the indoor space environment, and there is 
a problem of corresponding rotation axes. Therefore, using the 
rotation parameters of continuous frames of the camera and 
LiDAR can solve the problem of corresponding axes. Based on 
the rotation of the camera, calculate the rotation parameters of the 
LiDAR relative to the camera and align them to the 
corresponding rotation of the camera, as shown in Fig.6. The 
optimized continuous rotation of the camera LiDAR can be 
obtained.  
Fig.6 shows the rotation of the camera and LiDAR in each 
direction in global space. Taking the first chart as an example, 
the horizontal axis represents the number of frames of the camera 
and the vertical axis represents the degree of rotation. the blue 

line corresponds to the rotation of the LiDAR, and the red line 
corresponds to the rotation of the camera. Among them, point 
cloud plane recognition has higher robustness and corresponding 
rotations are smoother and more stable. On the other hand, the 
result of vanishing point detection may have a small number of 
incorrectly identified and classified lines, causing the shift of 
vanishing point, resulting in noise during rotation. 
Fig.6 shows the rotation of the camera and LiDAR in each 
direction in global space. Taking the first chart as an example, 
the horizontal axis represents the number of frames of the camera 
and the vertical axis represents the degree of rotation. the blue 
line corresponds to the rotation of the LiDAR, and the red line 
corresponds to the rotation of the camera. Among them, point 
cloud plane recognition has higher robustness and corresponding 
rotations are smoother and more stable. On the other hand, the 
result of vanishing point detection may have a small number of 
incorrectly identified and classified lines, causing the shift of 
vanishing point, resulting in noise during rotation. 
 
 
 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-693-2023 | © Author(s) 2023. CC BY 4.0 License.

 
697



 

 

Figure 6. Global rotation results of camera and LiDAR. 

 

4. CONCLUSION 

We proposed a camera-LiDAR calibration method for indoor 
spatial structure constraints in this paper. The global rotation of 
the camera relative to the world coordinate system is determined 
using the detected vanishing points in the image, and the global 
rotation of the LiDAR relative to the world coordinate system is 
determined using the direction of the detected plane and plane 
normal vector in the point cloud. Both sets of rotations are based 
on the world coordinate system constrained by indoor space, so 
after aligning the various directions of the coordinate axis, the 
rotation transformation between sensors can be quickly 
determined. The experimental results show that the vanishing 
point detection and plane fitting algorithms used in this paper 
have high robustness and can smoothly estimate the global 
rotation of two sets of sensors. The final calibration results show 
that the indoor spatial structure can assist and effectively achieve 
targetless calibration of sensors. 
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