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ABSTRACT:

Accurate land use maps, describing the territory from an anthropic utilisation point of view, are useful tools for land management
and planning. To produce them, the use of optical images alone remains limited. It is therefore necessary to make use of several
heterogeneous sources, each carrying complementary or contradictory information due to their imperfections or their different
specifications. This study compares two different approaches i.e. a pre-classification and a post-classification fusion approach for
combining several sources of spatial data in the context of land use classification. The approaches are applied on authoritative
land use data located in the Gers department in the south-west of France. Pre-classification fusion, while not explicitly modeling
imperfections, has the best final results, reaching an overall accuracy of 97% and a macro-mean F1 score of 88%.

1. INTRODUCTION

Land Use (LU) describes the socio-economic human activity of
an area (e.g. agriculture, residential), while Land Cover (LC)
describes its physical surface (e.g. vegetation, built-up). Land
Use and Land Cover (LULC) maps are very useful for under-
standing, monitoring, planning and predicting the evolution of
the territory. There is no direct relation between LU and LC
(Cihlar and Jansen, 2001) as there can be several uses in an area
with the same land cover (e.g. residential or commercial uses in
built-up areas) and several covers for the same use (e.g. garden
and houses in a residential area). Since radiometry and texture
from imagery are closely related to LC, traditional remote sens-
ing techniques encounter limitations for LU classification. For
this reason, several LULC products show a confusion between
land use and land cover (Comber et al., 2008): their nomen-
clatures sometimes mix LU and LC classes at the same level.
However, some previous studies have tried to solve this issue
using only optical imagery: by learning LC and LU classific-
ation simultaneously through iteration (Zhang et al., 2019) or
using graph neural networks to learn topological relationships
between previously segmented LC areas (Li and Stein, 2020;
Liu et al., 2022). A map translation approach has also been im-
plemented by Baudoux et al. (2023).
Another approach is to consider complementary sources of in-
formation, such as imagery from other sensors, LiDAR data,
authoritative databases, volunteered geographic information
(VGI), or involuntary geographic information (iVGI) (See et al.,
2016). For instance, for LU area classification, Tu et al. (2020)
used a Random Forest classifier to classify LU from classical
optical, night lights intensity and radar imagery, Points of In-
terest (POI) from Baidu and demographic data from WorldPop.
Meng et al. (2012) detected residential buildings by combin-
ing images, a Digital Surface Model extracted from LiDAR,
and distance from major roads from an authoritative database
using a decision tree classifier. Liu et al. (2021) fused VGI
from several mapathon campaigns and in-situ assessments us-
ing the Dempster-Shafer Theory (DST) to classify the use of LC
changes. Pan et al. (2013) used iVGI from Taxi GPS traces to
deduce the social function of some places using Support Vec-
tor Machine. He et al. (2021) combined optical images and
user density of the Tencent web application (iVGI) with a con-
∗Corresponding author

volutional neural network to classify LU area. At the feature
level, Fonte et al. (2018) identified building functions using
a rule based classifications of OpenStreetMap (OSM), Face-
book and Foursquare VGI data, individually, whereas Deng et
al. (2022) identified building functions from images, POI and
building footprint from Gaode map (authoritative database) and
distance to OSM roads using a XGBoost classifier.
The fusion process can be done either before or after classific-
ation (Joshi et al., 2016). In pre-classification fusion, all the
attributes are concatenated and a machine learning algorithm
will predict LU classes from all sources simultaneously. The
advantage is that the classifier can exploit the joint information
of the sources. On the other hand, in post-classification fusion,
a prediction is made for each source before they are merged to
obtain a final prediction. Post-classification fusion has a greater
adaptability: it is easier to add a new source. Among the pre-
viously cited articles using data fusion, only Fonte et al. (2018)
and Liu et al. (2021) have a post-classification approach, the
others having a pre-classification approach.
Moreover, some post-classification fusion algorithms can model
the imperfections of the sources and especially the lack of in-
formation for some classes according to some sources. Indeed,
we believe that the imperfections of the data sources need to
be taken into account when combining multiple sources to de-
rive more robustly and precisely LU. Indeed, data sources may
have an imperfect internal quality: errors in geometry or at-
tributes, incompleteness, low accuracy due to fuzzy boundaries
or to low-level nomenclature. Data sources may have external
quality issues if they don’t perfectly fit the user’s objective. It
can for instance come from the source being only partly relev-
ant, from the differences of scale of the sources, or from the am-
biguities in the meaning of the classes for the different sources
(Batton-Hubert et al., 2019).
The OCS GE1 (Large Scale Land Use Land Cover) is a LULC
map produced by the French National Mapping Agency (IGN)
with separated LU and LC nomenclatures. It partitions the
space into non-overlapping polygons and assigns to each of
them a unique LU and a unique LC class (Table 1). LU is
currently assigned to OCS GE polygons through an automatic
rule-based process taking as inputs Land Files and topographic
information, combined with an intensive manual correction step
based on photo-interpretation (IGN, 2022). In previous ver-
1 https://geoservices.ign.fr/ocsge
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LU Classes
Code Description
LU1 Primary production
LU2 Secondary production
LU3 Tertiary production
LU4 Logistic transport networks and infrastructures
LU5 Residential use
LU6 Other use (Areas under construction, Abandoned

areas, Unused areas or Unknown use)
LU235 Secondary, tertiary or residential use

Table 1. Level 1 land use classes of OCS GE.

sions of OCS GE, mainly due to lack of accurate information
on building use, classes LU2 (secondary production, i.e. indus-
trial and manufacturing activities), LU3 (tertiary production,
i.e. commercial and services activities) and LU5 (residential
use) were grouped together into a single class LU235 which
limits the calculation of artificialization indicators.
Hence, the aim of this paper is to compare the pre- and post-
classification data fusion approaches to distinguish these three
LU classes using machine learning techniques. Our hypotheses
are as follows: (1) Multiple data sources are available and com-
plement each other, (2) and a machine learning model can lever-
age these sources to infer LU, (3) resulting in improved per-
formance compared to using a single source.
The major contributions of this work are: (1) to propose a gen-
eral workflow for urban LU classification, (2) to define several
attributes from heterogeneous sources to characterize LU poly-
gons, and (3) to compare several approaches and variants to
identify the best fusion process for LU classification. Note that
our work supposes that the boundaries of LU class exist and are
represented by polygons; in the following they are named LU
polygons.
The paper is organized as follows. The general proposed meth-
odology and its specific application to distinguish LU235 will
first be described (section 2). The results will then be presented
and compared for both pre- and post-classification approaches
(section 3), before being discussed in section 4.

2. METHODOLOGY

2.1 General Workflow to distinguish land use classes

The general workflow of the proposed method is illustrated in
Figure 1. Steps 2.1.1, 2.1.2 and 2.1.4 are common to both
pre- and post-classification approaches. The proposed work-
flow first calculates a set of attributes out of different sources of
information. Then a machine learning workflow is trained out
on labeled LU data to distinguish existing polygons into LU2,
LU3 and LU5. Two variants are considered : a first one rely-
ing on a single classifier using all available attribute vs. another
one involving one classifier per source before these per source
results are merged.

2.1.1 Attributes extraction: The first step is to extract at-
tributes from the different sources to characterize the LU poly-
gons. Each data source is overlapped with LU polygons, and its
data are aggregated to construct attributes at the scale of the LU
polygon.
To take into account the spatial relationships between the dif-
ferent uses, the mean (or majority value if it is a categorical
attribute) of each attribute mentioned above is also computed
over the neighboring adjacent LU polygons, weighted by the
length of the common perimeter. The weights make it possible
to give neighbors a more or less important influence depending

Figure 1. General workflow for Land Use classification using
multiple heterogeneous data sources.

on how much border they share. These averages are then used
as new attributes. The list of used sources and created attributes
are presented in subsection 2.3.

2.1.2 Pre-processing: 80% of the dataset is randomly al-
located for training, and the remaining for testing. Categorical
attributes are ordinal-encoded. A minmax normalization is ap-
plied to each attribute. In order to prevent data leakage, min
and max are calculated on the train set and the same values are
used for the test set. Finally, as there is an important class im-
balance, we choose to upsample the minority classes (LU2 and
LU3) in the train set using the SMOTE-NC algorithm (Syn-
thetic Minority Oversampling Technique for Nominal and Con-
tinuous (Chawla et al., 2011)). The Python library imblearn 2

has been used. Other balancing techniques are tested and dis-
cussed in subsection 4.2. The test set remains unbalanced to
better represent real data and class frequencies.

2.1.3 Inference

a. Pre-classification fusion approach: A machine learning
algorithm is trained on the train set using all attributes from all
sources. It is then evaluated on the test set. We compared three
widely used machine-learning algorithms: Random-Forest (RF)
(Breiman, 2001), Support Vector Machine (SVM) (Vapnik, 1998)
and Gradient Boosted Trees (XGBoost) (Chen and Guestrin,
2016). The Python libraries Scikit-learn3 and XGBoost4 were
2 https://imbalanced-learn.org
3 https://scikit-learn.org 4 https://xgboost.readthedocs.io
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used. Most hyperparameters were kept to their default val-
ues in the Python libraries, but we tuned via a 5-fold cross-
validation some that we considered relevant: n estimators (50,
100, 150, 500, 1000), max attributes (sqrt, log2, 0.2) and max
depth (None, 2, 5, 10, 20, 50) for RF, kernel (linear, poly or
RBF), C (1, 10, 100, 1000) and gamma (0.001, 0.0001) for
SVM, and n estimator (50, 100, 400, 700, 1000) and learn-
ing rate (0.5, 0.2, 0.1, 0.05, 0.02) for XGBoost.

b. Post-classification fusion approach: This second ap-
proach is based on the Dempster-Shafer theory (DST) (Shafer,
1976). The advantages of this framework are its ability to model
explicitly uncertainty, imprecision, and incompleteness (Olteanu-
Raimond et al., 2015).
Let’s define the frame of discernment Θ = {LU2, LU3, LU5},
which contains the exhaustive and exclusive hypotheses of our
problem. The corresponding referential of definition is the power-
set of Θ, 2Θ = {{LU2}, {LU3}, {LU5}, {LU2, LU3}, {LU2,
LU5}, {LU3, LU5}, {LU2, LU3, LU5}}. It doesn’t contain
the empty set because the closed world assumption is made, i.e.
our frame of discernment is truly exhaustive.
Each source of information will make for each LU polygon a
basic belief assignment (bba) and create a mass of belief ms(.) :
2Θ → [0, 1] such that

∑
H∈2Θ

ms(H) = 1.
In order to assign these bba, we trained for each source a one-
vs-all XGBoost classifier per singleton hypothesis. Each clas-
sifier returns a probability PH for a hypothesis H ∈ Θ and
1− PH for ¬H . The bba is then defined as follows:{

m(H) = PH
|Θ| , m(¬H) = 1−PH

|Θ| ∀H ∈ Θ

m(H) = 0 for all the others,
(1)

with |Θ| is the number of singleton hypotheses (here 3). This
method to do the bba assignment is inspired by (Appriou, 1998).
Among other tested method, this one appears to best model the
doubts of the source about the hypothesis.
These bba are then merged using Dempster’s rule of combin-
ation (Shafer, 1976). It is a commutative and associative rule
of fusion that strengthens the mass of belief for the hypotheses
on which the sources agree and that redistributes the conflict κ
(when the sources believe in incompatible hypotheses) propor-
tionally to the masses.
Once all sources have been fused, the final decision for each
LU polygon is made by selecting the hypothesis in the frame
of discernment Θ with the highest pignistic probability (Smets
and Kennes, 1994). An advantage of using pignistic probabil-
ities over other decision functions such as credibility or plaus-
ibility is that the results can be interpreted as probabilities, i.e.
values ranging between 0 and 1 and with a sum for the singleton
hypotheses of Θ equal to 1.

2.1.4 Evaluation of the method: Predicted LU are com-
pared to the ground-truth. As the overall accuracy (OA) can be
biased by the high class imbalance, we focused on the macro-
mean F1 score (mF1). mF1 gives the same weight for the good
classification of each class in terms of both recall and precision.
It is constructed from the confusion matrix M and the per class
recall (r) and precision (p):

ri =
Mii∑c

j=1
Mij

, pi =
Mii∑c

j=1
Mji

, F1i = 2
ripi

ri + pi
(2)

OA =

∑c

i=1
Mii∑c

i,j=1
Mij

, mF1 =
1

c

c∑
i=1

F1i (3)

with c the number of classes and Mij the number of elements
of class i in ground truth that are predicted in class j.

2.2 Study Area

The 2019 edition of OCS GE in the Gers department, in the
South-west of France, has been selected as ground truth. Only
LU2, LU3 and LU5 polygons have been kept. For each source,
its closest available version to 2019 has been used. As Gers is
mostly rural, with a population density of 33/km², there are few
industrial areas and most of the polygons retained are residen-
tial. More precisely, in the ground truth, 89.6% of the 131,224
polygons are LU5, 9.8% are LU3 and 0.6% are LU2. Figure 2
shows an example of these three classes for the town of Auch.
According to the data specifications, the accuracy of the poly-
gons’ borders is about a meter, and the confusion rate between
the classes is less than 5%.

Figure 2. Example of ground truth over Auch, the largest town
of Gers (≈ 20, 000 inhabitants)

2.3 Data Sources and constructed attributes

The following subsection presents the used data sources, grouped
by types, and discusses their imperfections. The attributes con-
structed from the sources are defined. Each attribute can provide
either explicit information about LU (e.g. building functions) or
implicit information that may relate indirectly to LU (e.g. sur-
face of the LU polygon). A total of 152 attributes has been
defined, half of them being neighboring attributes.

2.3.1 LU polygons geometry: First, 25 attributes are defined
based on the shape of the LU polygon itself, to characterize its
geometry. As it is partly linked to LU, these attributes all give
implicit information.

• Surface of the polygon

• Convexity = area(polygon)
area(convex hull(polygon))

, which measures
the regularity of the LU polygon.

• Compactness = 4π area(polygon)

perimeter(polygon)2
, which compares the

shape to a circle.

• Elongation = length(OrientedBoundingBox(polygon))
width(OrientedBoundingBox(polygon))

, which
measures how stretched the polygon is.

• Number of holes in the polygon, which is an indicator
about if there are smaller LU polygons inside.
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• Polygonal signature: it characterizes the shape of the poly-
gon; the polygonal signature is a function which gives for
each point of the border of the polygon its distance to the
center (Méneroux et al., 2022). We normalized it by the
perimeter of the polygon (so that it is scale invariant) and
sampled it with 20 points (so 20 attributes), starting by the
closest point to the center, and turning clock-wise. Two
polygons with similar shapes (within a scale factor) will
have a close signature in the sense of a certain distance
called radial distance, the reciprocal being true for a sub-
set of the polygons.

2.3.2 Optical imagery: We used the 20 cm resolution open-
license French national reference ortho-image database (BD OR-
THO, 2019). Its planimetric accuracy is 80 cm. We computed
the eight following attributes for each LU polygon : mean and
standard deviation of the blue, green, red and near infrared
channels. These attributes provide implicit information.

2.3.3 Land Cover: Three land cover maps have been used:
OCS GE (2019) LC class, CORINE Land Cover (CLC, 2012)
and OSO (2019), which is an open-license land cover map of
France generated yearly (Inglada et al., 2019) out of Sentinel
data. OSO is a raster map, whereas OCS GE LC and CLC are
vector maps. The three maps don’t share the same minimal
mapping unit: 100 m² for OSO, between 500 and 2500 m² for
OCS GE LC (for built-up and unbuilt areas respectively) and
10000 m² for CLC. CLC is therefore more imprecise. The three
maps have an accuracy of about 85% according to their spe-
cifications. For each map, we added as attribute the majority
land cover class within the LU polygon (one attribute per map).
OSO and CLC also include some LU classes mixed in their no-
menclature, especially they both have an ”industrial or commer-
cial area” class. Except for this class, only implicit information
about LU is given, as only indirect links exist between LC and
LU.

2.3.4 Authoritative databases: BD TOPO (2022) is the open-
license French reference vector topographic database. Its pla-
nimetric accuracy is 2.5 m. Three layers are selected giving
explicit or implicit information about LU: ”building”, ”Area of
activity or interest” and ”Establishments Receiving the Public
(ERP)”. The building layer has a completeness of 95%. It in-
dicates a main building function. Nevertheless, about 60% of
them have an undifferentiated use. For each of the 8 building
function (including undifferentiated) the area and the number of
buildings inside the LU polygon are computed. When a build-
ing intersects with more than one LU polygon, it is counted
for each LU polygon and the area attribute of the correspond-
ing building function is increased by the intersected area for
each LU polygon. Another building based-attribute is the av-
erage height (implicit information). However, this information
was lacking for about 10% of buildings, so the average only in-
cludes the buildings for which the height was given, and was
else set to 0. In total, seveteen attributes were defined for build-
ings.
The ”Area of activity or interest” layer describes places with a
specific economic activity. It usually represents bigger zones
than a LU polygon. However, about 40% of the objects from
this layer have a fictive geometry (i.e. they are represented by
a 25 m2 square) when no geographical extent has been entered.
Categories and natures has been mapped to LU2 and LU3, and
the intersecting area has been calculated as attribute for each
LU polygon (explicit information). The ERP layer provides ex-
plicit point information about LU3 so the number of its POI in

each LU polygon has also been added as attribute.The last two
layers are grouped in a single source named ”BD TOPO other”
in the following.

2.3.5 Demography statistical data: This dataset describes
population in 2019 at the IRIS (statistical subdivision of the
municipality) spatial scale produced by the National Institute of
Statistics and Economic Studies (INSEE). Even if this dataset
is too coarse to explicitly distinguish LU5, it may help to detect
globally residential area. Three attributes are derived from this
dataset: population, population density, and the type of IRIS
(i.e. housing, business, and other) which roughly indicates how
the municipality is divided.

2.3.6 Land Files: Land files describe tax parcels. For each
cadastral parcel, an area per land use class in 2019 was obtained
by combining several indicators from Land Files, as described
in Rutkowski et al. (2017). We derived four attributes: LU2,
LU3, and LU5 surfaces, as well as the LU class name with the
highest surface (explicit information). Known issues are that
it is partly based on declarative data and that it fails for public
institutions as they don’t pay taxes.

2.3.7 VGI databases: OpenStreetMap (accessed in 2022)
is a worldwide collaborative mapping project. VGI maps can
complete information absent from authoritative databases, how-
ever they are known to be more incomplete in less populated
areas as there are fewer contributors. For instance, the com-
pleteness of OSM buildings is around 80% for European coun-
tries including France (Zhou et al., 2022). Moreover, the posi-
tion accuracy is metric since 97% of building geometry is com-
ing from authoritative data building (Le Guilcher et al., 2022).
The thematic completeness of buildings is however low, with
only 1% buildings having a tag value different than ”yes”. As
in Fonte et al. (2018), we selected some OSM polygons and
points, and mapped them to LU1, LU2, LU3, LU5 and un-
known5. We then computed the number and surface for each of
these classes for OSM polygons (10 attributes), and the number
of LU2, LU3 and LU5 points (3 attributes).

3. RESULTS

This section first presents the quantitative results for the classi-
fication of LU2, LU3 and LU5 by the two approaches, and then
provides a qualitative analysis of the errors.

3.1 Comparison of metrics

Table 2 compares the global results obtained by the algorithms,
while Table 3 compares the per-class results. Training and test-
ing computing time were measured on a computer with a pro-
cessor AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz.
Overall Accuracy is not very meaningful, as it can be very high
(about 90%) if the algorithm only predicts LU5. In terms of
macro-mean F1 score, XGBoost and Random Forest reach sim-
ilar scores of 88% and 86% respectively. SVM performs here
worst and slowest, for the tested hyperparameter values. In
terms of computation time, XGBoost has the shortest training
time, and XGBoost and DST predict the test set in less than a
second. Testing time is much shorter than training time because
training is more computationally expensive, and is done on a
much larger set since minority classes are oversampled. DST
testing time is very short here as we have only three classes in
our frame of discernment, but DST computational complexity
increases exponentially with the number of classes.
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Approach Algorithm OA mF1 Training time Testing time

Pre-classif
RF 97% 86% 2 h 32 min 7.2 s
SVM 85% 65% 3 h 6 min 12 min 59 s
XGBoost 97% 88% 42 m 0.4 s

Post-classif DST 94% 72% 1 h 43 min 0.3 s

Table 2. Global metrics for the variants of the two approaches.

Approach Algorithm rLU2 rLU3 rLU5 pLU2 pLU3 pLU5

Pre-classif
RF 67% 84% 98% 83% 81% 98%
SVM 66% 49% 89% 62% 33% 94%
XGBoost 78% 82% 99% 81% 89% 98%

Post-classif DST 31% 74% 97% 88% 73% 97%

Table 3. Per-class metrics for the variants of the two approaches.
r: recall, p: precision, LU2: secondary production,

LU3: tertiary production, LU5: residential use.

Looking more closely at the per class results, even though we
have balanced our train set, the minority class LU2 still has a
lower recall for all the algorithms except SVM. The majority
class LU5 is the best predicted in terms of recall and precision.
Table 4 gives the confusion matrix obtained by the best al-
gorithm, XGBoost. For all algorithms, the number of errors
between LU2 and LU5 is lower than the number of errors between
LU2 and LU3 or LU3 and LU5.

Ground Truth Predicted
LU2 LU3 LU5

LU2 131 27 11
LU3 24 2120 431
LU5 7 238 23256

Table 4. Confusion matrix for XGBoost.

3.2 Analysis of errors

This subsection analyses various types and causes of errors.
They are illustrated with errors found with XGBoost, although
similar errors have also been found with the other algorithms.
Errors between LU2 and LU3 are mostly encountered in peri-
urban areas grouping these two uses that results from local gov-
ernment zoning policies, while errors between LU3 and LU5
can sometimes be found in dense town centers where land uses
are mixed, and also spatially scattered.
The classifier tends to over-predict LU5 in case no source pro-
vides explicit information about LU. This may be because a
source is incomplete or because no source maps this type of
element. For instance, the cemetery in Figure 3 (in yellow) is
LU3 in the ground truth but was not present in OSM, nor in the
selected layers of BD TOPO, it was thus predicted LU5.
Another reason for prediction errors are errors in a source. For
example, Figure 4 shows a concrete factory which is LU2 in the
ground truth, but it has a commercial use in Land Files, thus it
has been predicted LU3.
There can also be a geometric overlay between a LU polygon
and another object (e.g. a building) represented in a source,
which would give the classifier incorrect information.

Using the mean of the attributes over the adjacent LU polygons
allows to partially compensate the lack of information. How-
ever, it is limited by two elements:
• Sometimes the LU polygon is separated from what should

give it the information. For instance in Figure 5 a horse rid-
ing track, which is LU3 in the ground truth, has no impli-
cit information and is separated from the stable (for which
Land Files give the LU3 information) by a road, and was
thus predicted LU5.

5 Cf. https://github.com/mcubaud/OSM_to_OCS_GE_LU

Figure 3. Example of a LU3 polygon with no explicit
information in the data sources, predicted LU5.

Figure 4. Example of LU2 polygon with incorrect information in
the data sources, predicted LU3.

• Sometimes the majority neighborhood is not the most rel-
evant (especially the inner neighborhood should have more
weight). For example, in Figure 6, the buildings and its
parking are LU2 in ground truth. The buildings were well
predicted thanks to BD TOPO, but the parking has no ex-
plicit information. As most neighboring polygons are LU3
(in Land Files attributes), it was predicted LU3.

As for intrinsic attributes, geometry shifts can also strongly af-
fect these neighbor attributes. For instance, if an object from a
source overlaps an OCS GE road polygon, which can be very
long, it can give wrong neighborhood information to LU poly-
gons much further away.

3.3 Contribution of the different sources

This subsection investigates several methods to assess the im-
pact of each source on the overall classification.Table 5 shows
the scores obtained by a XGBoost classifier using only the at-
tributes from one source at a time (including neighbor attrib-
utes). No single source achieves high classification perform-
ances, it thus justifies the data-fusion process. Using several
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Figure 5. Example of a LU3 polygon separated from the object
with the relevant information, predicted LU5.

Figure 6. Example of a LU2 polygon where neighbors majority
is not the most relevant, predicted LU3.

sources enabled a better classification, especially for LU2. Land
Files and layers from BD TOPO obtained the highest scores,
which comes from the fact that they carry more information
about land use but also may come that they were partly used to
construct the ground-truth, which can be seen as a limit of our
study. OpenStreetMap is thematically incomplete in Gers and
therefore gives the lowest results.

Source OA mF1 F1LU2 F1LU3 F1LU5

Geometry 82% 41% 8% 26% 89%
Radiometry 83% 46% 10% 39% 90%
OCS GE LC 76% 35% 5% 11% 89%
CLC 72% 37% 5% 23% 84%
OSO 73% 33% 4% 9% 86%
BD TOPO building 91% 63% 34% 59% 95%
BD TOPO other 87% 53% 21% 45% 93%
Demography 65% 36% 6% 23% 78%
Land Files 89% 57% 13% 64% 95%
OSM 29% 21% 2% 17% 45%
All sources 97% 88% 79% 85% 99%

Table 5. Metrics for XGBoost trained only with one source.

LOCO (Leave-One-Covariate-Out) is an attribute importance
metric which measures how much score is lost when the model
is trained with one attribute dropped (Lei et al., 2018). Table 6
shows it for XGBoost when all the attributes from a source are
dropped. It allows to see that most of the time dropping a source
doesn’t impact that much classification quality because inform-
ation may be redundant between several sources. Each source
provides new information for only a few LU polygons. BD
TOPO’s ”Area of activity or interest” layer significantly im-
proves the classification of industrial sites, and Land files the
classification of LU2 and LU3. However, as already mentioned,

Source dropped OA mF1 F1LU2 F1LU3 F1LU5

1

Geometry 0% 1% 1% 0% 0%
Radiometry 0% 1% 4% 0% 0%
OCS GE LC 0% -2% -5% -2% 0%
CLC 0% -1% -3% -1% 0%
OSO 0% 1% 2% -1% 0%
BD TOPO building 0% 1% 1% 1% 1%
BD TOPO other 0% 8% 22% 0% 0%
Demography 0% 1% 1% 0% 0%
Land Files 2% 4% 3% 8% 1%
OSM 0% 1% 1% -1% 0%

2 Without neighbors
mean

0% 4% 9% 0% 1%

3 OCS GE LC and
CLC

0% 0% -1% -1% 0%

Table 6. Score lost when trained without all the attribute from
one source. Negative score lost means that classification actually

improves without the source.

these sources were used for the creation of ground truth. Us-
ing information from the neighbor LU polygons is also one
of the most important contributors to the final result (part 2
of Table 6). On the contrary, OCS GE LC and CLC seem to
worsen the distinction between LU2 and LU3. When both OCS
GE LC and CLC are dropped, the improvement in the score is
relatively smaller, so they must carry a common part of useful
information (part 3 of Table 6).
To explain the differences in the results of the two approaches,
Figure 7 compares the cases where XGBoost (as the best rep-
resentative of approach 1) and DST are wrong or right, in terms
of the number of sources for which the individual prediction is
correct. Most of the time, most of the sources are correct and
both XGBoost and DST perform well. When only a few sources
are correct, XGBoost often outperforms DST because it doesn’t
rely on these individual predictions. However, it can sometimes
fail even though a majority of sources are correct, which is not
possible with DST.

Figure 7. Normalized histogram of the frequency of the number
of correct individual source prediction according to whether the

overall predictions of XGBoost or DST are correct.

4. DISCUSSION

4.1 Conflict in DST

Conflict in DST (the κ =
∑

X∩Y =∅ m1(X)m2(Y ) term in the
denominator of Dempster’s rule ) represents how incompatible
the belief masses of each source are and thus quantifies how
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contradictory the sources are between them. Table 7 shows the
mean conflict between the bba of each pair of sources, averaged
on all test set polygons. There can be an internal conflict when
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Geometry 08% 14% 22% 25% 22% 10% 14% 17% 10% 24%
Radiometry 14% 13% 23% 26% 23% 13% 16% 19% 13% 25%
OCS GE LC 22% 23% 25% 29% 27% 21% 23% 25% 21% 29%
CLC 25% 26% 29% 29% 29% 25% 25% 27% 25% 30%
OSO 22% 23% 27% 29% 25% 21% 23% 25% 21% 28%
BD TOPO building 10% 23% 21% 25% 21% 5% 12% 17% 6% 23%
BD TOPO other 14% 16% 23% 25% 23% 12% 13% 17% 12% 24%
Demography 17% 19% 25% 27% 25% 17% 17% 17% 17% 26%
Land Files 10% 13% 21% 25% 21% 6% 12% 17% 3% 23%
OSM 24% 25% 29% 30% 28% 23% 24% 26% 23% 27%

Table 7. Conflict between the different sources.

trying to combine a source with itself, which comes from the
fact that Dempster’s rule is not idempotent: there is a kind of
contradiction in attributing masses to different non-intersecting
hypotheses of the referential of definition 2Θ. The three land
cover sources (i.e. OCS GE LC, OSO and CLC) and OSM are
the most highly conflicting sources, which can be explained by
the fact that their bba is less accurate. On the contrary, BD
TOPO’s building layer and Land Files are the least conflicting.

4.2 Effects of preprocessing

Table 8 compares the results obtained by XGBoost, RF or DST
when SMOTE-NC, random undersampling (RUS) or nothing
are applied to balance the train set. A focus is made on the
minority class LU2.
While not balancing tends to under-predict the minority class

Sampling
strategy

OA mF1 Training
time

rLU2 pLU2

X
G

B
oo

st No balancing 97% 88% 12 min 73% 87%
RUS 90% 68% 6 s 86% 31%
SMOTE-NC 97% 88% 42 min 78% 81%

R
F

No balancing 97% 85% 1.43 min 62% 87%
RUS 91% 72% 19 s 86% 41%
SMOTE-NC 97% 86% 2.5 h 69% 83%

D
ST

No balancing 90% 35% 1.6 h 0 0
RUS 87% 60% 15 min 67% 18%
SMOTE-NC 94% 72% 1.7 h 31% 88%

SV
M

No balancing 89% 31% 16 min 0 0
RUS 88% 62% 1 min 60% 62%
SMOTE-NC 85% 65% 3.1 h 66% 62%

Table 8. Effects of different balancing of the training set.

and random undersampling to over-predict it, SMOTE-NC pro-
duces more balanced results. This effect is less significant for
XGBoost. For SVM and DST without balancing, no LU2 were
predicted at all: because of the high class imbalance, the prob-
ability for each classifier to predict LU2 is very low and thus so
the final prediction.

4.3 Criticism of the ground truth and the data sources

Some classification errors can arise from imperfections of the
ground truth. They result from the own imperfections of the
sources used to constitute the ground truth and from errors made
during the rule-based process or by the photo-interpreter. Sys-
tematic errors may have been learned by the machine learn-
ing process. For instance, according to specifications, repair
shops, including garages, should be LU3 as they are considered
as a service but are always represented by LU2 polygons in the
ground truth and so in the classifier prediction.
According to OCS GE specifications, cartographic generaliza-
tion is applied to the polygons in the ground truth. For example,

buildings closer than 10 m are aggregated. This triggers more
geometry differences between the sources. Moreover, since
the shape of the LU polygons no longer matches the image,
it makes radiometric and geometric attributes less relevant.
Furthermore, in the current version of OCS GE, there are still
some LU235 polygons that are currently supposed to represent
mixed land use between the three classes. However, they often
still have the old meaning of the LU235 class, i.e. the polygon
has a single main land use, included in LU2, LU3 or LU5. On
the contrary, some LU2, LU3 or LU5 polygons in the ground
truth may have a mixed land use.
The quality (e.g. semantic and positional accuracy, complete-
ness, actuality, resolution, MMU) of the input data can have
an impact on LU classification. In our study, we used both VGI
and authoritative data. For the latter, quality is well documented
in specifications and metadata files (see section 2.3), although
some errors and incompleteness may remain. As far as VGI
is concerned, of the various sources we identified (e.g. Face-
book, Foursquare, OSM), only OSM data was finally selected
on the basis of the data quality analysis provided by the literat-
ure and our qualitative analysis of the area tested. For example,
Foursquare is rich in thematic information, but an initial loca-
tion quality analysis we carried out showed very low position
accuracy. Finally, the analysis of the contribution of different
sources (see section 3.3) can give a hint on data quality and
helps to decide which data sources can ultimately be used.

4.4 Comparison with existing works

The article by Tu et al. (2020) is the closest to this work in terms
of objective and nature of the classified objects. However, we
couldn’t directly compare to its work due to the unavailability of
some sources. Comparing between datasets despite the obvious
limitations involved, the results for all the metrics are in the
same order of magnitude. Our study however benefited from a
larger test set, allowing for more robust evaluation. Moreover,
it introduced novel aspects such as the comparison of pre- and
post-classification fusion approaches and the assessment of the
contributions and limitations of individual data sources.

5. CONCLUSION

Crossing several data sources appears as necessary for an accur-
ate land use classification, however each source can have im-
perfections that can affect the classification process. Through
this article, two data-fusion approaches for land use classifica-
tion have been compared. After having gathered attributes from
the different sources, in the first approach learning is performed
using all attributes from all sources at the same time, while in
the second approach each source is classified independently and
a final prediction is given using the Dempster-Shafer Theory
framework.
Using a XGBoost classifier, an overall accuracy of 97% and
a macro-mean F1-score of 88% were obtained. The import-
ant class imbalance has been partially resolved by using the
SMOTE-NC upsampling algorithm in the train test, but the minor-
ity class is still less well classified. The imperfections of each
source and their contribution to the final results have been ana-
lyzed.
Several limitations and perspectives have been identified. Firstly,
this study was limited to industrial, commercial and residential
uses, considering that other uses were already well classified,
but an interesting perspective is to extend the compared meth-
ods to predicting the other classes. Secondly, the generaliz-
ation capabilities must be assessed by transferring the trained
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model to another area, e.g. a more urban one. Difficulties
may rise from differences in the data sources between the two
areas. Thirdly, another issue is to be able to detect polygons
with mixed land uses (Nabil and Eldayem, 2015), split them if
they are in a horizontal mix (the two uses are in distinct areas
of the same polygon), and give a mixed land use class in case
of vertical mix (e.g. an apartment above a shop).
Finally, other approaches must be compared in future works.
Interesting computer vision techniques such as convolutional
neural network would have had here additional difficulties learn-
ing the generalized representation. Building a new ground truth,
more accurate and closer to the images, is thus a necessary step
for this work. As shown, using spatial context is useful, and
so graph neural networks seem to be promising algorithms for
land use classification (Li and Stein, 2020; Liu et al., 2022).
However, as far as we know, no attempt has been made to use
them in this context with more sources than optical images and
land cover maps yet.
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