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ABSTRACT: 

The proliferation of affordable LiDAR technology and photogrammetry sensors has revolutionized 3D data acquisition in built 

environments, enabling comprehensive data capture from citywide scales to interior structures. This data can be transformed into 

digital twins, providing valuable resources for city planners, architects, engineers, and decision-makers. However, current studies 

often overlook the limitations of real-world point cloud datasets derived from LiDAR systems, which are voluminous, noisy, 

incomplete, and lacking information, which hinders monitoring, interpretation, and automated analysis. To address these challenges, 

methods are required to prepare point cloud data, ensuring accurate and reliable 3D representations. This research proposes a detailed 

framework for point cloud data preparation in busy urban environments. It includes precise algorithms, software, and parameter 

guidelines, allowing for the creation of comprehensive point cloud datasets. The framework has been successfully implemented on 

datasets acquired in Toronto, converting point cloud data from various platforms and parameters into an integrated dataset. Results 

demonstrate the framework's effectiveness in producing accurate and complete point cloud datasets for applications such as 

classification, information extraction, 3D model generation, and smart cities' monitoring and management. 

* Corresponding author 

1. INTRODUCTION

LiDAR technology has revolutionized the acquisition of precise 

3D spatial information, thanks to its ability to measure distances 

and capture useful data rapidly and accurately using laser 

scanning techniques (Altuntas, 2023). With recent cost 

reductions, LiDAR has become more accessible and affordable 

for various applications, including smart cities (Tong et al., 

2021), urban planning, infrastructure management (Harrap and 

Lato, 2010), autonomous vehicles (Royo et al., 2019), and 

environmental monitoring (Jeong et al., 2018). 

The efficient processing of point cloud data outputs from 

LiDAR systems has significantly contributed to effective 

decision-making systems and reduced labor costs (Poux et al., 

2018). However, many studies tend to overlook the limitations 

of real-world point cloud datasets obtained from LiDAR 

systems, which can be voluminous, noisy, incomplete and lack 

comprehensive information (Xia et al., 2020). This oversight 

often arises from reliance on idealized, lab-prepared datasets. 

These limitations can hinder the monitoring, interpretation, and 

automated analysis of the acquired data. 

Point cloud data pre-processing encompasses a set of techniques 

and procedures applied to raw point cloud data to enhance its 

quality, remove noise, extract relevant information, and make it 

suitable for further analysis and applications (Khoshelham and 

Elberink, 2012). This preparatory phase is crucial for ensuring 

the accuracy and reliability of 3D models derived from LiDAR 

data. Recognizing the need to address these challenges, 

researchers have developed various methods to enhance the 

quality and usability of point cloud datasets (e.g., Abdelazeem 

et al., 2021; Li et al., 2023; Lee et al., 2021.). However, most 

existing studies focus on individual limitations, and to the best 

of our knowledge, there is a lack of comprehensive frameworks 

that integrate all necessary steps for data preparation, 

particularly in the context of smart cities and built environment 

modeling. 

In this paper, we propose a comprehensive pre-processing 

framework designed to effectively prepare multi-source point 

cloud data for subsequent processing stages. Our approach aims 

to address the challenges associated with real-world point cloud 

data in busy environments, which are critical for digital 

twinning and real-world digitization applications. 

Our proposed framework minimizes human intervention and 

streamlines the conversion of raw point cloud data into 

comprehensive datasets suitable for various processes in the 

Scan-to-BIM pipeline. To evaluate the effectiveness of our 

approach, we applied each step of the framework to multi-

source datasets acquired in Toronto, Canada using our 

laboratory equipment and existing datasets released by the City 

of Toronto. 

The structure of the paper is as follows. Section 2 provides a 

concise review of related works; Section 3 explains the 

methodology, including the datasets, software, tools, and 

algorithms used for each step of the framework (selection, 

sampling, denoising, colorization, fusion, and enhancement); 

Section 4 presents the research results; and Section 5 discusses 

the key findings, limitations, and future directions. 

2. RELATED WORK

High point density settings on LiDAR devices often generate 

excessively dense point clouds, which can hinder effective 

visual exploration and interpretation. Subsampling of point 
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cloud data aims to reduce the number of points while preserving 

essential geometric and spatial characteristics. This process 

plays a crucial role in managing the size and complexity of 

point cloud datasets, enabling efficient storage, transmission, 

and processing. Various subsampling techniques have been 

proposed in the literature, including random subsampling, 

uniform subsampling, voxel grid downsampling, and adaptive 

downsampling (Goldberger, 2005) some of which use deep 

learning methods (e.g. Qi et al., 2017, and Lang et al., 2020). 

Each method employs specific sampling strategies to select 

representative points from the original point cloud, considering 

factors such as point density, spatial distribution, and local 

feature preservation. 

 

In urban environments, data collection poses challenges due to 

noise sources like people, vehicles, and vegetation, leading to 

outliers that compromise data accuracy and processing. Point 

cloud data denoising is essential for removing noise artifacts 

caused by sensor limitations, environmental factors, and 

measurement errors. Denoising techniques enhance the 

reliability and usability of point cloud data for applications such 

as 3D reconstruction, object detection, and scene analysis. 

Various methods have been developed and can mainly be 

categorized into three types (Zhou et al., 2022): Filter-based 

methods employing point positions or point normals; 

Optimization-based methods employing best-fit constraints and 

several parameters identified through careful trial-and-error; and 

Deep learning-based methods through executing the algorithm 

on cases sharing similar geometry and noise characteristics to 

training datasets (Yu et al., 2018). These techniques aim to 

identify and eliminate noisy points while preserving the 

underlying structure and geometry of the scene. 

 

Moreover, the absence of color information in some LiDAR 

scanners poses challenges for stakeholders and non-experts who 

rely on colorization for interpreting 3D point clouds. 

Colorization plays a crucial role in providing additional context 

and realism to point cloud representations. While traditional 

LiDAR systems capture geometric and intensity information, 

the incorporation of color enhances visual understanding, 

improving object recognition, classification, and feature 

extraction. Colorization techniques, such as texture mapping, 

image-based color transfer, and sensor data fusion, seamlessly 

integrate color information with geometric data, preserving 

spatial coherence and accuracy. Generally, image colorization 

techniques can be divided into two categories:   Convolutional  

Neural  Networks  (CNNs)  based colorization (e.g. Johnson et 

al., 2016; Liu et al., 2019) and Generative Adversarial Nets 

(GANs) based colorization  (e.g. Isola et al., 2017). 

 

Furthermore, capturing LiDAR data from terrestrial, mobile, or 

airborne platforms presents limitations in analyzing building 

elements from a single viewing angle. Point cloud data fusion 

addresses this limitation by combining data from different 

perspectives and sensors, enabling a more comprehensive and 

detailed understanding of the captured environment. Fusion 

techniques enhance accuracy (Fowler and Kadatskiy, 2011), 

resolution, and richness in the resulting point cloud 

representation, benefiting applications like urban planning, 

infrastructure management, environmental monitoring, and 

virtual reality. Geometric and statistical algorithms are 

employed for the registration, alignment, and integration of 

point cloud data, ensuring geometric consistency, eliminating 

redundancy, and preserving complementary information from 

multiple sources (Huang et al., 2021). 

 

In this brief state-of-the-art of related work, we highlighted the 

direction that will drive our methodology. First, we should 

identify the most suitable algorithms and parameters for each 

step along the pipeline. Second, the performance and scalability 

should permit extensive point cloud processing. Third, the level 

of human interaction should be minimized by utilizing 

automated algorithms where applicable which allows for a good 

generalization. Finally, we need to ensure having a 

comprehensive approach that covers all the preprocessing steps 

needed for the final dataset to be ready for visualization, 

classification, and 3D model generation. 

 

3. METHODOLOGY 

The applied pre-processing and preparation workflow is 

organized as follows: first, the appropriate datasets for the 

application were chosen to meet the need and availability. 

Second, the point cloud scans were subsampled separately to 

ensure efficient and easy handling of output. Third, an 

appropriate denoising process was identified by analyzing the 

elements needed for the application to eliminate moving and 

irrelevant objects from the scans. Fourth, RGB values were 

incorporated into the point cloud that had no color information 

to increase its realism and alignment with the rest of the 

colorized datasets. Fifth, the different scans from multiple 

platforms and sensors were integrated to form a complete 

outdoor scene reflecting the built environment. Finally, 

visualization and subsampling enhancement were applied by 

calculating shading values and a second iteration of 

simplification to the fused dataset (Figure 1). 

 

Once the pre-processing workflow is completed, and a 

comprehensive dataset is achieved as an output of the workflow, 

it becomes ready for the main processing steps of point clouds, 

including mainly: classification, which identifies the different 

elements in the scene, such as rooftop, façade, street pole, tree, 

etc., and then the conversion of such elements from points to 3D 

models (Figure 1). Although not part of our automated 

workflow in this paper, it forms our next steps and aims, and the 

output dataset from the pre-processing workflow was also tested 

through both classification and 3D modeling applications. 

 

 

Figure 1. Workflow of the methodology. 

 

3.1 Data Selection 

The first crucial step before starting the dataset preparation for 

digital twinning applications was to identify which datasets to 

be used with appropriate properties tailored to the task at hand. 

In our approach, we considered two key elements for 

identifying suitable datasets: platforms and attributes. In a city 

environment, stationary LiDAR platforms, handheld LiDAR 

devices, and vehicle-mounted mobile LiDAR can capture street 

data, including street furnishings, hardscape, softscape, and 
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building facades and interiors. However, airborne platforms, 

such as aircraft or drones, are required to capture rooftop 

details, high pole tops, and tree canopies, if necessary. 

 

For the attributes, in addition to the default X, Y, and Z 

coordinates, additional information was deemed necessary for 

digital twinning applications, including intensity values to help 

with object classification, material identification, and direct 

analysis. RGB values were also found essential for enhancing 

data visualization, interpretation, and certain analysis tasks. 

While density is another consideration when selecting point 

cloud data for an application, the highest resolution is usually 

applied when collecting LiDAR data to suit several tasks as 

needed, and thus, density was not a primary focus. 

 

Based on the specific requirements of the digital twinning 

applications as described above and data availability, three 

datasets were chosen as appropriate for the demonstration and 

experimenting in this research. They included: (1) low-quality 

outdoor airborne data covering a major region of Toronto’s 

downtown area (Figure 2); (2) high-quality outdoor airborne 

dataset focused on a specific block to showcase detailed 

visualization and modeling (Figure 3); (3) high-quality outdoor 

terrestrial data capturing the same block at the street level 

(Figure 4). 

 

 

Figure 2. Low-resolution airborne point cloud – dataset 1. 

 

Figure 3. High-resolution airborne point cloud – dataset 2. 

 

Figure 4. High-resolution street-level point cloud – dataset 3. 

3.2 Subsampling 

Subsampling serves as the initial step in the pre-processing 

workflow, playing a crucial role in facilitating subsequent 

stages and achieving computational efficiency at an early phase. 

Our approach for selecting an appropriate subsampling 

algorithm and related parameters focuses on preserving the 

visual geometric characteristics of the different city elements to 

a level that enables automated classification methods to identify 

the objects, visually interpret the different entities with the 

naked eye, and also to serve as a foundation for manual 

modeling once the complete pre-processed data is obtained if 

needed while reducing the size of data for a better exploration 

and computational experience. 

 

Random subsampling was not considered suitable due to the 

potential loss of data related to certain elements and the 

resulting imbalanced densities, which lead to visually 

unappealing and less interpretable outcomes. Instead, structured 

approaches were emphasized, and various thresholds were 

tested. Among them, the minimum distance method proved to 

be the most effective in meeting the aforementioned criteria. 

 

The 'Space' mode of subsampling in CloudCompare involves 

setting a minimum distance between points to control the 

density of the output cloud. By specifying a value, 

CloudCompare selects points from the original point cloud in a 

way that ensures no point in the resulting cloud is closer to 

another point than the specified distance. The larger the 

specified distance, the fewer points will be retained in the 

output cloud. The algorithm operates by parsing the points in a 

somewhat arbitrary order, organized spatially by the octree 

structure. The first point encountered is marked as 'to be kept'. 

Then, for each subsequent point in the cloud, the algorithm 

queries its neighbors within the defined radius. If none of the 

neighboring points has already been marked as 'to be kept', the 

new point is also flagged accordingly. In the end, only the 

points that have been flagged as 'to be kept' will be included in 

the output cloud (CloudCompare Wiki, 2023). 

 

 

 
 

 

Figure 5. Comparison between structured octree (top) and 

minimum distance (bottom) on preservation/loss of the data. 
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By applying a minimum distance threshold of 3 cm (0.03), the 

algorithm substantially reduced the number of points while 

maintaining a strong geometric representation of the scene's 

elements, as depicted in Figure 5. It is important to note that the 

subsampling algorithm was applied to each scan individually to 

ensure ease of processing and to separate the data simplification 

and enhancement stage from the subsequent fusion phase. 

 

3.3 Denoising 

The next step in the workflow after subsampling the data is to 

remove noise from the scene. Noise in point clouds can be in 

two forms: first, by faulty points resulting from the behavior of 

the LiDAR system and reaction to certain materials, and second, 

by unwanted objects specific to the application. It is worth 

noting that the latter can also be addressed during the main 

processing phase of classification. However, in our approach, 

we performed noise elimination early in the pre-processing 

stage, resulting in better alignment with the intended 

application. In busy environments like Toronto, moving objects 

such as cars and people can hinder effective visualization and 

unnecessarily complicate the classification phase, whereas 

buildings and streets are of primary interest in our case. 

 

Among the investigated software and tools, the "Detect Surface 

Points" algorithm found in the VRMesh software has proven to 

be effective in eliminating faulty objects and isolating complex, 

unstructured elements such as vegetation (Figure 6). While this 

isolation can be achieved through classification, we found it 

faster and easier to group structured and unstructured elements 

in the scene, simplifying further processing. The "Detect 

Surface Points" algorithm was applied to the scans using a 

minimum threshold of 4.8, resulting in a clean separation 

between structured and unstructured groups as can be seen in 

Figure 6. The tolerance factor has also been set to 0.3 to achieve 

the best computational processing. 

 

Although no specific documentation was found detailing the 

inner workings of VRMesh, it is widely known that such a 

process utilizes the RANSAC (Random Sample Consensus) 

algorithm to define all surfaces in the scene and then exclude 

those falling outside the user-defined thresholds. RANSAC is 

mainly an iterative method used for estimating mathematical 

models from data sets containing outliers (a Fischler and Bolles, 

1981). 

 

The identification of faulty points may vary from case to case 

and typically requires visual analysis for identification. 

 

  
 

 

Figure 6. Denoising approach using Detect Surface Points tool. 

However, by sub-grouping surface-based points from 

unstructured points, as we have done herein, all faulty noise 

points were grouped within the unstructured set, while elements 

such as building facades (vertical surfaces) and streets 

(horizontal surfaces) were grouped. If the angle and normal 

information are not available in the data, this group can be 

further split using PCA calculations to distinguish between 

horizontal and vertical faces. Our approach recognizes the 

importance of separating building facades and streets to 

facilitate robust meshing and develop 3D models based on 

surface elements, while the unstructured group can be retained 

as points for visualization purposes or used in further 

classification to identify smaller objects, trees, and actual noise. 

 

3.4 Colorization 

The subsequent step in the workflow focused on ensuring the 

completeness of point cloud data attributes. In the case of 

Dataset 1, discussed in Section 3.1, which comprised low-

quality outdoor airborne data of downtown Toronto, it was 

observed that the dataset lacked color information. However, 

incorporating colorization is crucial for providing an immersive 

and photorealistic display that enhances the user experience. 

Visualizing true imagery overlaid onto point clouds offers 

valuable insights into the discrete characteristics of the data, 

aiding interactive classification, feature digitization, and 

establishing reference points for 3D distance measurements. 

 

To address this, we employed a point cloud colorization 

technique utilizing orthoimages of the same region through the 

"Colorize LAS" tool in ArcGIS Pro, taking advantage of the 

geo-referenced nature of both the point cloud data and the 

orthoimage. The tool is straightforward, requiring inputs of the 

LAS file, image reference, and RGB band assignment from the 

image channels. It functions by applying the pixel's color value 

from the image to each point falling within the same vertical 

extent as that pixel. The accuracy of the results depends on the 

resolution of the input image, with higher-resolution images 

yielding more precise outcomes (ArcGIS Pro, 2023). 

 

While the ideal scenario involves using imagery captured 

simultaneously with the LiDAR flight to achieve optimal 

feature matching, due to data availability constraints we had to 

rely on an orthoimage captured in the same year but with a high 

resolution of 8cm. Given that we are working with multiple-

source point clouds, some of which are already colorized, we 

made efforts to select an image with color variety and tones that 

closely matched the existing RGB values of the colorized point 

clouds as well. The resulting point cloud colorization was 

satisfactory and well-integrated with the other colorized point 

clouds visually, leading to an enhanced visualization and better 

readability of the scene, as depicted in Figure 7 below. 

 

 

Figure 7. High-resolution orthoimage (top left); Original point 

cloud (bottom left); and output colorized point cloud (right). 
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3.5 Multi-source Data Fusion 

The next step in the workflow involves registering and 

combining the subsampled, denoised, and colorized datasets – 

where needed – or after incorporating any additional attributes 

as required for the specific application. If all the datasets are 

geo-referenced with a known coordinate system, the process 

simply involves joining the point cloud sets together after 

applying the appropriate coordinate systems to each in the 

platform. However, in cases where some of the data lack a well-

defined coordinate system, a fusion approach utilizing 

overlapping points is employed. In this research, we utilized a 

two-step registration process in the CloudCompare software: 

coarse registration followed by fine registration. 

 

The coarse registration was performed using the semi-

automated method "Align (Point Pairs Picking)" in which the 

two datasets were aligned by selecting at least three 

corresponding point pairs in both datasets. This method is 

particularly useful for achieving precise alignment of clouds, 

especially when there are significant differences between the 

two clouds over large extents, which may impact the 

effectiveness of the fine registration (ICP) (CloudCompare 

Wiki, 2016). In this exercise, ten points were carefully chosen 

for each alignment, situated at the corners of the buildings 

where the facades meet the roof (specifically at the parapet 

outer edge). These points were also distributed evenly around 

the overlap edges of the datasets. 

 

Following the completion of the coarse registration, the fine 

registration (ICP) was applied using the same approach, with 

the 'Model' being the geo-referenced point cloud (dataset 1) and 

the 'Data' representing each of the other point cloud sets. The 

ICP method automatically refines the registration of two 

datasets assuming an initial coarse registration and a good 

overlap between the datasets. It is an iterative process where the 

registration error gradually decreases. The software terminates 

the process either after a maximum number of iterations is 

reached or when the error (RMS) difference between two 

iterations becomes lower than a user-defined threshold. The 

smaller the threshold, the longer the convergence time, but the 

finer the result (Besl and McKay, 1992). The outcome of this 

exercise was the successful registration of the three point cloud 

datasets with visually acceptable accuracy that can facilitate 

interpretation, classification, and 3D model development, and 

all datasets were now geo-referenced. These datasets can then 

be merged into a single set using the 'Merge multiple clouds' 

tool in CloudCompare, as depicted in Figure 8. 

 

 

Figure 8. All three datasets registered and combined. 

 

3.6 Visualization Enhancements 

The final refinements applied to the point cloud dataset 

involved two aspects. First, since multiple point clouds were 

registered with potential overlap, density variations could occur 

in the overlapping sections, which might affect visualization. To 

address this, an additional iteration of subsampling was 

performed using the same method described in Section 3.2, 

ensuring a uniform distribution of the data with a maximum 

spacing of 3cm. 

 

Second, to enhance the realism of the point cloud data, an 

effective visualization technique involved the application of a 

real-time filter called the Eye Dome Light (EDL) Shader in both 

ArcGIS Pro and CloudCompare software. The EDL Shader is a 

non-photorealistic, image-based shading technique specifically 

designed to improve depth perception in scientific visualization. 

It utilizes post-processing passes implemented on the GPU with 

GLSL shaders, enabling interactive rendering. The shading 

function is computed based solely on the projected depth 

information and applied to the colored scene image (Boucheny, 

2009). However, it is important to note that the EDL Shader 

requires real-time processing, which can be computationally 

expensive and relies on the availability of the shader in the 

visualization software. 

 

To address these limitations, a plug-in named "PCV / ShadeVis 

(Portion de Ciel Visible)", was applied to the data through the 

CloudCompare software. This plug-in calculates the 

illumination of the point cloud as if the light were coming from 

a theoretical hemisphere or sphere around the object or from 

user-defined light directions. Importantly, it utilizes only the 

graphics card for computation (Tarini et al., 2003). The 

algorithm produces a new monochromatic scalar field with 

shadow values calculated at each point, as illustrated in Figure 

9. This scalar field can then be combined with the RGB values 

to identify shadows within the point cloud's RGB attributes, 

eliminating the need for real-time processing while enhancing 

the realism of the data output. 

 

 

Figure 9. PCV / ShadeVis plugin scalar field output applied to 

the combined final point cloud dataset. 

 

4. RESULTS 

The quality and effectiveness of our framework were evaluated 

through various testing scenarios, which we intended to study, 

focusing on visualization enhancement, manual 3D modeling 

development, and automated processing for extracting 

information from the point cloud data. 

 

In the first scenario, we tested different software tools with the 

point cloud output from our pre-processing framework to 

evaluate visualization enhancement and scene completeness for 

an appealing representation and ability for visual interpretation. 

Among the options evaluated, CloudCompare demonstrated 

superior results compared to VRMesh, Autodesk Recap, 

ArcGIS Pro, and Quick Terrain. With its extensive control over 
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the environment and data appearance, CloudCompare facilitated 

effective navigation and handling of datasets containing 100 

million points. Notably, the outcomes around the block with 

multiple viewing angles and scan data appeared more complete, 

as illustrated in Figure 10. Additionally, we utilized the 

animation plug-in in CloudCompare to create a 3D walkthrough 

animation, which provided diverse perspectives for 

interpretation. 

 

 

Figure 10. Snapshot of the visualization outcomes on 

CloudCompare. 

 

Another scenario involved automated classification experiments 

using ArcGIS Pro software to classify ground points, building 

facades, and rooftops. The resulting outputs were subsequently 

presented in CloudCompare with color adjustments to achieve 

non-realistic but distinctive outcomes, aiding visual 

interpretation, as shown in Figure 11. 

 

 

Figure 11. Visualization by classification outcomes. 

 

The output point cloud was also used as a basis for testing 

accuracy and data completeness in the manual modeling 

process. Manual modeling using point cloud data is a well-

established industry practice, allowing surveyors to capture up-

to-date building conditions and shapes without relying on 

blueprints or original models while satisfying the spatial and 

texture information a modeler needs to develop a digital replica. 

However, having a comprehensive dataset is key to success in 

such an approach. For this experiment, we integrated the point 

cloud into SketchUp software using the Undet plug-in. The 

building model was developed by tracing different angles of the 

building elements, resulting in relatively fast and satisfactory 

outcomes for outdoor building models. The texture information 

was also extracted from the point cloud and successfully 

integrated into the 3D model, enhancing its realism. 

 

Finally, we tested the output point cloud as input for a fully 

automated processing approach, following the (Borisov et al., 

2022) method. This automated framework involved ground 

surface and building rooftop classification, filtering, and final 

multipatching. The results included a Digital Elevation Model 

(DEM) of the region, vector footprints of buildings based on the 

rooftop classification results, and 3D models at Level of Detail 

(LoD) 2 using the rooftop classified points, DEM, and vector 

footprints, as displayed in Figure 12. These outcomes further 

demonstrated the potential of our workflow to integrate with 

existing methods and frameworks, enabling the creation of 

comprehensive 3D models and vector representations from 

point cloud data. 

 

 

 

Figure 11. Manual modeling output for a building with sole use 

of the pre-processed point cloud data. 

 

 

Figure 12. Geo-referenced output of the 3D model automated 

workflow on ArcGIS Pro. 

 

In conclusion, our comprehensive framework for point cloud 

data pre-processing has demonstrated its effectiveness and 

potential in visualization and 3D modeling for digital twinning. 

Through a series of experiments, we validated the framework's 

capabilities in visualization enhancement, manual 3D modeling 

development, and automated processing of point cloud data. 

The results show improved visualization quality, accurate and 

efficient manual modeling, and the generation of detailed 3D 

models and vector representations. The framework successfully 

prepared raw data from multiple sensors and integrated them 

into a cohesive dataset that represents the built environment. As 

we continue to refine and optimize our framework, we envision 

its broader application in supporting digital twinning initiatives, 

urban planning, and infrastructure management, contributing to 

the advancement of smart cities and the efficient utilization of 

point cloud data. 
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5. DISCUSSION, FUTURE WORK, & CONCLUSION 

In this article, we present a comprehensive pre-processing 

framework for point cloud data, specifically designed for digital 

twinning and smart cities applications. The framework aims to 

maximize the utilization of point cloud data for visualization 

and further processing stages, ultimately leading to the 

development of 3D models. Throughout each step of the 

framework, a set of algorithms and techniques are applied in a 

semi-automated approach. To evaluate the effectiveness of the 

framework, real-world datasets collected in downtown Toronto 

were utilized. 

 

During the visualization experiments, significant improvements 

were observed. However, challenges related to missing data 

were still prevalent, particularly in street-level areas and 

building facades obstructed by dense vegetation. This indicates 

the need for improved platform selection and dataset acquisition 

strategies that can handle the complexities of the downtown 

region. One potential improvement would involve the use of a 

handheld mobile LiDAR system to capture areas hidden by 

trees, such as the space between facades and sidewalk trees. 

Additionally, including the interiors of buildings in the data 

collection process, using the same handheld mobile approach 

could enable the creation of higher Level of Detail (LoD) 

models. These interior datasets can be registered and combined 

with the selected datasets to provide a more comprehensive 

representation. 

 

 

Figure 13. Present occlusion on the combined dataset on one of 

the building’s facades due to tree coverage. 

 

Throughout the various processing stages, our framework 

utilizes existing software and employs the best-performing 

algorithms. However, the process often requires jumping 

between different applications at each stage. While the 

identified methods are well-established mathematically and 

computationally, we are exploring opportunities to access and 

integrate the underlying codes for each suitable method. This 

integration aims to increase automation and enable the complete 

framework to operate within a single environment, thereby 

enhancing automation and ensuring better alignment of results. 

 

Furthermore, our ongoing efforts involve incorporating the main 

processing phase of point clouds within the framework, to 

achieve a comprehensive approach to pre-processing and 

processing point cloud data for exporting 3D digital models, 

particularly focused on buildings. This will encompass tasks 

such as classification and generating 3D models with varying 

levels of detail, enabling a fully automated point-to-model 

pipeline that caters to digital twinning and smart city 

applications. To facilitate this inclusion, we will conduct 

benchmarking of existing classification algorithms to test and 

compare their outputs, specifically targeting building elements. 

Similarly, we will explore 3D modeling approaches that adhere 

to well-known standards for building models. 

 

Finally, there are opportunities for expansion beyond the current 

scope. For instance, once the framework is complete, future 

work can involve the inclusion of indoor modeling for buildings 

or the modeling of outdoor furnishing and landscaping 

elements. These additions would further enhance the overall 

capabilities of the framework and its applicability to various 

scenarios. 

 

6. CONCLUSION 

Converting LiDAR point cloud data to 3D models has several 

benefits to a number of industries employing digital twins. 

However, such data in its original form are typically 

voluminous, noisy, and incomplete, causing difficulties in 

maximizing its uses. Our pre-processing framework utilizes 

different tools and software to overcome such challenges and 

produces comprehensive point cloud sets that are appealing, and 

visually interpretable, and can facilitate the 3D model 

development through either manual, semi, or complete 

automated approach. Future work will explore the coding 

activities behind each step within the workflow, to combine, 

and fully automate the process in a common working 

environment. We are also working to expand the framework to 

include the 3D model generation steps as can be seen in our 

testing experiments using the current workflow outputs. 
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