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ABSTRACT:

High-resoulution downscaling of surface climate metrics like urban surface temperature, is a crucial and ongoing research challenge
in urban climatology and environmental studies. In this study we propose a groundbreaking Physics-Inspired Neural Architecture
for Modeling (PINAM) called DeepUrbanModeller(DUM), designed specifically for urban microclimate temperature estimation.
DeepUrbanModeller(DUM) harnesses process-based modelling and satellite remote sensing, and draws upon high-accuracy 3D
point clouds to deliver precise estimations of urban Land Surface Temperature (LST) at ultra-high resolutions. By incorporating
high-accuracy land surface geometric data sourced from 3D point clouds and guided by the principles of atmospheric physics linked
to surface temperature, DeepUrbanModeller(DUM) creates a data-driven framework, informed by physical laws, to accurately
model high-resolution temperature distributions a task challenging for numerical simulations or conventional machine learning.
The DeepUrbanModeller(DUM) design integrates two key components: Global Physical Feature Interpretation (GPFI) and Local
Urban Surface Insight (LUSI). The GPFI captures broader urban physical parameters, ensuring the estimates comply with relevant
physical laws. The LUSI enhances estimation performance at high-resolution levels by utilizing a newly proposed Urban Detail
Orientation Index (UDOI) derived from 3D point clouds. Experimental results demonstrate the DeepUrbanModeller(DUM)’s su-
perior capability in estimating urban LST on a detailed 30-by-30 meter grid, achieving an estimation error of less than 0.2 Kelvin
compared to satellite measurements, a performance surpassing traditional methodologies.

1. INTRODUCTION

Cities, being densely populated and infrastructure-rich, are
heavily impacted by climate change (Grimm et al., 2008), (Daw
et al., 2017)) . Effective urban planning requires high-resolution,
accurate climate predictions, with Land Surface Temperature
(LST) being critical due to its effects on public health, energy
management, infrastructure safety, and resilience against ex-
treme weather events (Georgescu et al., 2014).The temperat-
ure at the surface of urban lands, also known as Land Sur-
face Temperature (LST), is a key climatic factor that garners
significant public attention. Its relevance is directly linked to
several important issues such as alterations in urban climate,
public health implications, strategies for urban energy man-
agement, safeguarding infrastructure, and the resilience of sys-
tems to extreme weather events. For instance, extremely high
temperatures in urban areas can trigger a notable surge in in-
stances of death and illness among humans.(Anderson and Bell,
2011)(Patz et al., 2005)(Huang et al., 2011)energy demand and
power grid failure(Isaac and Van Vuuren, 2009).

In this study we will introduces the High Resolution Urban
Forecaster (HRUF), a physics-inspired neural architecture, for
improving the granularity of urban LST predictions. The HRUF
leverages procedural modeling and satellite-based remote sens-
ing, using detailed 3D point clouds for highly accurate LST
forecasts. By considering atmospheric stimuli and precision
land surface topographic data, HRUF maintains crucial physics
(Zhao et al., 2014).The HRUF model incorporates both the de-
tailed physics of a typical dynamic downscaling model and the
super high-resolution urban surface characteristics, leading to
high precision and wide spatial adaptability. Compared with es-
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tablished downscaling strategies, HRUF has achieved improved
spatial resolution (from 1000m to 30m) and reduced estimation
divergence (below 0.2 Kelvin), surpassing current high-grade
downscaling procedures.

2. RATIONALE AND PROPOSED FRAMEWORK

A. Rationale

The central understanding behind a proposed algorithm which
is related to key physical processes that determine urban surface
temperature. These processes, involving interactions between
urban land and atmosphere, include incoming and reflected solar
radiation, longwave radiation exchanges, heat transfer, and evapo-
transpiration from permeable surfaces, along with the heat stored
in buildings.

These processes are significantly influenced by atmospheric
pressure conditions and surface properties. Dynamic models,
based on these processes, utilize atmospheric pressure variables
and urban surface data to solve physical equations for Land
Surface Temperature (LST), albeit at a broad spatial resolution.
High-resolution modeling is hindered by the complexity of the
urban surface and the prohibitive computational load required
for large domain applications, rendering such models almost
impractical. Based on the considerations described above, the
rationale of this study can be summarized as:

• For fundamental landscapes like metropolitan regions, the
inherent physical procedures can be extraordinarily intric-
ate. This complexity makes it nearly unfeasible to accur-
ately estimate the LST by deciphering the comprehensive
physics.
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(a) Zhang Zhou Harbor satellite imagery (b) Land surface temperature (c) Our estimation

(d) Labeled point cloud data

Figure 1. Fig. 1. Overview of the datasets and the results. (a) Testing area of Zhang Zhou Harbor. (b) Visualized map of the land
surface temperature (LST) captured by Landsat satellite. (c) Our estimation result. (d) Visualized map of the labeled 3D point cloud.

• This study is aim to delve into the intrinsic associations
between the LST and all pivotal components involved in
the dynamic physical procedures. This is achieved by em-
ploying our specially designed physics-aware deep neural
network - DeepUrbanModeller(DUM).

These rationale further implies the necessary datasets (see
Section 3-A).

B. Framework Overview

Land Surface Temperature (LST), which is governed by
various biophysical processes related to the urban surface en-
ergy balance, including both shortwave and longwave surface
radiation balance, the turbulent transport of sensible heat, and
surface evapotranspiration. These factors are contingent on at-
mospheric factors such as solar and atmospheric radiation, air
temperature, wind, air pressure, and humidity, and local urban
surface properties such as greenery, surface roughness, build-
ing heights, and the layout of buildings and streets. Broad-
scale urban surface climate, like average citywide temperature,
is primarily determined by atmospheric forcings, while local-
scale variations are mostly influence urban surface features. The
DeepUrbanModeller (DUM) network is designed to reflect these
physical principles, consisting of two branches: the Global Phys-
ical Feature Interpretation (GPFI) branch and the Local Urban
Surface Insight (LUSI) branch, as illustrated in Figure 2.

The Global Physical Feature Interpretation (GPFI) branch is
designed to establish correlations between meteorological and
climatological factors, including synoptic conditions, climate
shifts, and seasonal variations. However, it falls short in provid-
ing precise high-resolution temperature predictions. To address

this, the Local Urban Surface Insight (LUSI) branch refines the
results by capturing high-resolution variability. A notable ad-
vancement in the LUSI branch is the inclusion of high-definition
urban 3D point cloud data. Traditional methods of downscaling
Land Surface Temperature (LST) have predominantly relied on
2D surface property data like the Normalized Difference Ve-
getation Index (NDVI). Yet, research has shown that the 3D
geometry of a surface, such as surface roughness, significantly
affects urban surface temperature.

C. Global Physical Feature Interpretation Branch (GPFI)

The GPFI (Global Physical Feature Interpretation) branch
integrates key atmospheric variables from urban climate mod-
els into a deep neural network,(Oleson et al., 2008). These vari-
ables, detailed in Table 1, are processed using a multi-layer per-
ceptron (MLP) sourced from the MERRA-2 reanalysis dataset
(Gelaro et al., 2017). The MLP, consisting of four layers and
utilizing the ReLU function, effectively emulates the model dy-
namics and aids in solving physical equations. The GPFI’s role
is to guide initial temperature predictions to align with atmo-
spheric conditions, with further refinement by the Local Surface
Interpretation branch.

D. Local Urban Surface Insight Branch (LUSI)

The Urban Detail Orientation Index (UDOI) encapsulates
local 3D urban geometry in the neural network, eschewing full
3D point cloud input (Qi et al., 2017), (Thomas et al., 2019),
(Xu et al., 2020). This approach addresses system generaliz-
ation challenges arising from urban surface complexity.UDOI
comprises a surface property index and a local geometry in-
dex. The surface property index is defined by the proportion of
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Figure 2. Architecture of the proposed DeepUrbanModeller system.

specific structure categories (water, buildings, vegetation, soil,
and roads/pavements) within a region, following established se-
mantic labeling methods (Hackel et al., 2017) (Fig. 3(a)).The
local geometry index derives from the average cell height, mul-
tiplied by the urban building index. It encapsulates spatial lay-
out, surface roughness, and building verticality, which are cru-
cial for understanding local atmospheric turbulence over urban
surfaces.

Specifically, the whole UDOI is defined by the following
equation:

Ides(l) =
C(Sl)

C(S)
, S ∈ T.ρ (1)

Hdes(lb) = Ides(lb) · avgz(Slb) (2)

where S represents point cloud set centered at a certain cell,
C(·) denotes the number of points in S, Sl denotes the number
of points in S with certain category l, lb denote the label of
building, and avgz(·) calculates the average height of all points
in S.

In Figure 3(b) and (c), we see a sample construction of the
UDOI. For every 30-by-30 meter grid, we generate a standard
m×m×d matrix, where ’d’ symbolizes the feature vector dimen-
sion at a given cell. This matrix defines the Urban Detail Ori-
entation Index (UDOI).

The Local Urban Surface Insight (LUSI) branch leverages
the Urban Detail Orientation Index (UDOI) to extract local sur-
face characteristics, including high-resolution variability of urban
temperature. It comprises a deep residual network with four
stages, each having two residual blocks. Convolution layers,
strides, skip connections, and batch normalization are judiciously
employed to ensure feature preservation.

UDOI matrix expansion is achieved by encompassing a k-
meter range around the central grid. This enhancement aids

in error reduction by incorporating context information. The
processed features and 3D structure information are encoded
into a 1 × 32C size latent vector.

Finally, outputs from LUSI and GPFI branches are com-
bined into a latent feature vector of size 32C+16d, encapsulat-
ing atmospheric forcing factors, high-resolution urban surface
features, and 3D geometric structure information. This is direc-
ted into a regression branch with three fully-connected layers.

E. Loss Functions

Following the previous work (Klambauer et al., 2017), we
employ the mean squared error and the L2 normalization of the
network weights to measure the loss. The overall loss can be
written as:

argmin
W,b

: L(Y, Ŷ ) + λR(W ) (3)

L(Y, Ŷ ) =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

R(W ) = ||W ||2 (5)

Here, Y and Ŷ represent the ground truth set and predicted res-
ults set, W and b are the combined coefficient of weights and
bias terms, yi ∈ Y , ŷi ∈ Ŷ , i = 1, ..., N , N is the data size of
Y , Ŷ , λ is the weight of regularization term.

3. EXPERIMENT RESULTS

A. Datasets Description

For this research, we focused on Zhang Zhou Harbor, a
modestly sized city in China, as our test site. Fig. 1(a) re-
veals that this region spans an area of 150.56 square kilometers
and hosts a diverse set of landscapes, including urban zones,
mountainous regions, and bodies of water (indicated within the
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Table 1. ATMOSPHERIC AND LOCATION DATA.

Feature information Unit
1 Surface absorbed longwave radiation W · m−2

2 Incident shortwave land W · m−2

3 Total precipitation over land kg · m−2 · s−1

4 Surface pressure Pa
5 Air temperature at the reference height K
6 Eastward wind m−1

7 Northward wind m−1

8 Specific humidity kg · kg−1

9 Longitude km
10 Latitude km

red box). To drive our DeepUrbanModeller (DUM) model, we
assembled a collection of datasets sourced from multiple pro-
viders within the studied region, as elaborated below.

• LST.Our primary dataset encompasses land surface tem-
perature data computed from NASA’s Landsat satellite im-
agery. Landsat offers an extensive record of Earth’s ter-
restrial areas since 1973. The data incorporates various
band types (Blue, Red, Green, Near Infrared, etc.), and
specific bands are utilized to estimate LST through estab-
lished algorithms [38], [39]. This dataset can be publicly
accessed from the USGS2 website. For this study, we col-
lected data spanning from July 2013 to July 2020, with a
16-day interval. The dataset’s spatial resolution stands at
a 30-by-30 meter grid. Fig. 1(b) provides a visualization,
where each pixel signifies the LST of a 30-by-30 meter
space.

• NDVI.The second dataset includes the Normalized Differ-
ence Vegetation Index (NDVI) data, also procured from
NASA’s Landsat satellite. NDVI values range from -1 to
1, with larger values indicating denser vegetation. We cur-
ated the data to match the temporal interval and location
of the LST dataset. The resolution of this dataset is also
a 30-by-30 meter grid. It can be accessed from the USGS
website or NASA’s MODIS3.

• Atmospheric forcing. The third dataset pertains to atmo-
spheric forcing data, sourced from NASA’s MERRA-2 reana-
lysis data system [32]. This data outlines the comprehens-
ive characteristics of specific areas, owing to each region’s
unique atmospheric features. The main components of the
atmospheric forcing data are outlined in Table 1. Publicly
available on the NASA MERRA-2 website4, the resolu-
tion of this data is 0.5° latitude x 0.625° longitude.

• Land surface 3D structure. The final dataset encompasses
the 3D point cloud data of the entire Zhang Zhou Har-
bor region, delineating the accurate 3D structure of the
area. Constructed using the DaJiang Inspire-1 UAV and
the RIEGL VMX-450 mobile laser scanning system, which
can produce 1.1 million range measurements per second
and acquire nearly 100GB of point cloud data in an hour,
this data includes varied scenes like urban areas, towns,
and villages. The point cloud data is manually labeled
into eight main categories: water (blue), buildings (red),
vegetation (green), soil (yellow), roads (gray), pavement
(white), vehicles (purple), and others (black).

Finally, we align all data, let each cell (a 30-by-30 meter area)
data can be described by a set of attributes denoted by 4-tuple:

T = {t|t = (τ, η, α, ρ)} (6)

where τ , η, α, ρ are the value of LST, NDVI, atmosphere fea-
tures and the set of point cloud. We have open-sourced all of
the datasets, they can be downloaded from FTP server.

(a) (b) (c)

(d)

Figure 3. The illustration how to generate the LSCI. (a) An
example of the labeled point cloud for a 30-by-30 meter grid. (b)

Visualized result of different categories in a certain cell. (c)
Example of the LSCI matrix with size m × m × d. (d) Illustration

of the aggregation for a grid.

B. Evaluations of the proposed DUM system

(1) Performance.: Our method’s effectiveness was evalu-
ated using ten data sets spanning various seasons throughout a
year. We utilized the root mean squared error (RMSE) as a per-
formance metric. The performance of our proposed approach
is gauged in Kelvin units, with a 70% training data allocation.
The associated results are presented in Table 2. These find-
ings indicate that the average error across the ten data sets is
approximately 0.11K (as shown in the last column), signifying
our method’s ability to deliver consistently precise outcomes
regardless of seasonal variations. The related visualizations are
displayed in Fig. 4. The first line depicts the ground truth (with
a color gradient from deep blue to deep red representing tem-
peratures from 0 Celsius to 40 Celsius), while the second line
presents a map of estimation errors, highlighting different error
levels (ranging from 0K to 1.8K) with various colors.

Quarter-
1

Quarter-
2

Quarter-
3

Quarter-
4

Avg.
Error(K)

0.102 0.122 0.107 0.109 0.116

Table 2. THE RESULTS OF OUR APPROACH IN
DIFFERENT SEASONS.

(2) Effectiveness of the UDOI: In this section, to confirm
the effectiveness of the proposed Urban Detail Orientation In-
dex (UDOI), we employ a point cloud-oriented network, Point-
Net, as a benchmark. We modify the Local Urban Surface In-
sight (LUSI) module using the framework of PosPool, which
incorporates point cloud into the deep residual network. The in-
troduction of point cloud data is shown to reduce the estimation
error, though this enhancement is marginal. The corresponding
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Figure 4. The visualized results of the ground truth, our approach and the error map for quarter 1 to 4

Table 3. HOW THE UDOI AFFECTS THE RESULTS.

Without LUSI branch LUSI branch based on point cloud LUSI branch based on the UDOI
Train/Test error 1.103/1.168 K Train/Test error 0.701/1.002 K Train/Test error 0.112/0.122 K

statistics are outlined in Table 3. The direct inclusion of point
cloud data into the network improves the result by 0.166K, but
this method results in significant overfitting. In contrast, substi-
tuting raw 3D point cloud data with the proposed UDOI signi-
ficantly enhances the performance of the network.

C. Comparison with Traditional Method

To evaluate our approach, we have compared it with sev-
eral traditional Land Surface Temperature (LST) downscaling
methods such as linear regression, KNN regression, and ran-
dom forest regression, all of which were implemented based on
Scikit-learn. These traditional methods are known to have high
computational cost and, while they offer a reasonable accuracy
of about 1K, they cannot achieve high spatial resolution over
city-scale coverage. Hence, we shifted our focus on comparing
with these statistical downscaling techniques.

We selected the same ten datasets that cover different sea-
sons of the year 2017 to assess these various methods. For a fair
comparison, we have incorporated our proposed Urban Detail
Orientation Index (UDOI) into all the methods to encapsulate
the local geometric information. In each method, we reshaped
each dimension of the m × m × d matrix to a 1 × d vector and
imported this vector into various regression methods.

For the linear regression model, the average error was over
1K due to the lack of clear linear relationships between the vari-
ables. When it comes to KNN regression and random forest
regression, we manually adjusted the hyper-parameters to best
fit the ten datasets. Specifically, the number of neighbors in the
KNN regression was set to 4, and in the random forests regres-
sion, the maximum tree depth and the number of trees were set
to 30 and 150, respectively.

The results show that traditional machine learning methods
perform much better than the linear regression model, with er-
rors lower than 1K. However, these methods may suffer from
generalizability issues when applied to multiple cities on a large
scale, due to their hyper-parameter settings.

As for our proposed DeepUrbanModeller (DUM) network,
under 50% training samples, the average estimation error is
about 0.13K, which is significantly lower than the error mag-
nitude of the traditional statistical downscaling methods tested
above. We plan to conduct more comprehensive testing across
various cities in the future.

Table 4. AVERAGE ERROR FOR 10 PIECES OF DATA FOR
DIFFERENT SEASONS IN YEAR 2017.

Method Feb. Jun. Oct. Dec. Avg. Error(K)
Linear Reg 1.634 1.35 1.586 1.533 1.304
KNN Reg 1.099 0.828 1.041 1.031 0.861
RF Reg 0.541 0.452 0.539 0.46 0.426
DUM 0.156 0.151 0.144 0.149 0.131

4. DISCUSSION

• Contribution. From the Experiment section 3, we find
that the proposed DUM system performs considerably well
for the testing area – Zhang Zhou Harbor. Benefiting from
the incorporation of the 3D point cloud, average errors
about 0.15K are observed with 50% of data as training
samples. Major contributions of this work include:

1. It provides a first-of-its-kind solution of surface tem-
perature downscaling over highly-complex urban areas
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by implementing a PINAM-based architecture to in-
corporate both process-based insights and data-driven
information.

2. Future extension of this work to larger-scale domains
(such as regional, national and global scales) and
to include more predicted physical quantities (such
as surface solar radiation, turbulence, surface wind
speed, etc.) would bring new inspirations to the global
climate change, energy flow, and other fields.

• Limitation. One limitation of the proposed work lies in
the range of the testing area. Due to the data availabil-
ity (labeling high precision 3D point cloud data is labor
intensive and thus rather limited for larger-scale experi-
ments), the experiment of the DUM system at the current
stage focuses on a single city in China to validate the al-
gorithm.

• Future Work. Firstly, our work of expanding the DUM
system to cover more cities over a much larger domain is
underway.Secondly,we prepare to incorporate more urban
variables, as well as design improved feature extraction
methods for urban 3D structure point clouds.

5. CONCLUSION

In this paper, we propose a PINAM-based framework, the
DUM network, for high-resolution, high-precision urban sur-
face temperature downscaling. The DUM network leverages
the Global Physical Feature Interpretation (GPFI) branch to cap-
ture broader-scale influences by the atmospheric forcings. Fur-
thermore, the Local Urban Surface Insight (LUSI) branch ex-
tracts the high-precision land surface geometry information by
employing a proposed Urban Detail Orientation Index (UDOI).
With both modules, the DUM network achieves high-accuracy
temperature prediction with the estimated error of less than 0.2K.

The DUM network combines process-based modeling and
deep learning approaches to provide ultra-high resolution urban
LST predictions in a computationally efficient manner. This
network can be adopted in other urban surface climate predic-
tion applications that otherwise would require either computationally-
expensive (and maybe unattainable) dynamic downscaling or
less-accurate traditional statistical methods.

For future work,we prepare to incorporate more urban vari-
ables, as well as design improved feature extraction methods for
urban 3D structure point clouds,and expand the DUM system to
cover more cities
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