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ABSTRACT: 

 

Canopy water mass is an important plant characteristic that can indicate the water status of vegetation. However, the parameter 

remains under-investigated because measuring it requires defoliating the canopy. This study introduced a non-destructive approach 

to estimate canopy water mass using terrestrial laser scanning data. Tree 3D models were generated from dual-wavelength TLS data 

for six forest canopies, then the models were utilized in estimating the canopy LAI, total leaf area, and vertical profiles of canopy 

leaf area. The estimates were then coupled with canopy equivalent water thickness estimates and vertical profiles of canopy water 

mass were generated. The results revealed some over- and underestimation in the estimated LAI, but the obtained accuracy was 

considered sufficient as leaf-on point clouds were used to generate the 3D models. The vertical profiles of canopy water mass 

showed that the leaf area distribution within the canopy, and the canopy architecture were the main parameters affecting the water 

mass distribution within the canopy, with mid canopy layers having higher water mass than the other canopy layers. This study 

showed the potential of TLS to estimate canopy water mass, but controlled experiments that include defoliating canopies are still 

needed for a direct and accurate validation of the TLS estimates of canopy water mass.  
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1. INTRODUCTION 

Forests play a crucial role in sustaining life on Earth, serving as 

a carbon sink and regulating the water cycle (Mengist et al., 

2019). Furthermore, forests protect soil from erosion, resist 

landslides and floods, shelter more than 80% of terrestrial 

biodiversity, and provide humanity with food, fuel, timber, and 

other goods (Aerts et al., 2011). Climate change has severe 

impacts on forests, including the increase in rate and intensity of 

wildfires, the reduction of tree growth and productivity due to 

warmer temperatures and more frequent and intense droughts, 

the spread of pathogens and pests, and the rise of tree mortality 

rate (Keenan, 2015; Sturrock et al., 2011). Such impacts are 

expected to worsen over the next decades, as climate change is 

projected to intensify (Masson-Delmotte et al., 2021), which 

makes continuous monitoring of forest health essential. For this, 

determining forest canopy water status has been a widely 

adopted approach. 

 

Various measurements can reflect the water status of vegetation, 

including the leaf water potential, the leaf Relative Water 

Content (RWC, %), and the leaf Equivalent Water Thickness 

(EWT, g cm-2). Leaf water potential is measured using a 

pressure chamber (Scholander et al., 1964), and is considered an 

accurate indicator of vegetation hydration level (Boyer, 1967; 

Cochard et al., 2001; Rodriguez‐Dominguez et al., 2022). Leaf 

RWC, given as the leaf water content divided by its water 

content when it is fully saturated with water, reflects the balance 

between water in leaf tissue and its transpiration rate (Zhang et 

al., 2012). A drop in leaf RWC corresponds to water deficit 

stress, rendering it a robust indicator of plant water status (Ali et 

al., 2022; Kettani et al., 2023; Yamasaki et al., 1999). Leaf 

EWT is the amount of water per unit leaf area, and like RWC, a 

reduction in EWT indicates a water-stressed plant (Féret et al, 

2019; Tucker et al., 1980). 

 

Nevertheless, obtaining the aforementioned measurements on a 

large scale (canopy and plot levels) is labour intensive, costly, 

and time consuming, as it involves destructive sampling, 

weighing, and drying large amounts of leaves from multiple 

canopy layers (Yilmaz et al., 2008). Thus, numerous studies 

have used remote sensing data in form of vegetation indices to 

retrieve RWC and EWT in a rapid, non-destructive manner 

(Gao et al., 1995; Kothari et al., 2023; Meiyan et al., 2022; 

Seelig et al., 2008). However, applying such indices in 

heterogeneous sites such as forests can be challenging, as they 

are influenced by other vegetation traits, including canopy and 

leaf structure, Leaf Area Index (LAI), and Leaf Mass per Area 

(LMA) (Elsherif et al., 2019; Junttila et al., 2019; Zarco-Tejada 

et al., 2003). Furthermore, estimating vegetation water status 

metrics from optical remote sensing data ignores the vertical 

heterogeneity in canopy biochemical and biophysical traits, 

caused by the different illumination conditions of leaves along 

the canopy foliage-height profile, although such heterogeneity 

determines how light scatters within canopy (Gara et al., 2018; 

Parker et al., 2001). Recent attempts to overcome this limitation 

involved the use of multi-wavelength Terrestrial Laser Scanning 

(TLS) to retrieve canopy water status metrics in three 

dimensions (Batchelor et al., 2023; Elsherif et al., 2019; Junttila 

et al., 2019). However, such attempts have been thus far limited 

to estimating area-based metrics such as EWT. 

 

Another leaf trait that can reflect the vegetation water status is 

the leaf water mass (g), which is the difference between the leaf 

fresh and dry weights. It was reported to be a robust predictor of 

whole-leaf photosynthesis, more so than leaf nitrogen (Wang et 
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al., 2022), and can be used to determine the leaf absolute water 

content (leaf water mass divided by leaf dry mass, g g-1), which 

can accurately describe the water deficiency in plants (Ievinsh, 

2023). In addition, by measuring leaf water mass at canopy 

level, the Canopy Water Content (CWC, kg m-2), a key 

parameter in studying the role of forests in the water cycle, can 

be estimated. Nevertheless, leaf water mass remains under-

investigated, mainly because it is difficult to measure at canopy 

level, as it requires defoliating the canopy (Baldacci et al., 

2017). Recent studies have displayed the potential of terahertz 

quantum cascade lasers to measure leaf water mass non-

destructively (Baldacci et al., 2017; Ievinsh, 2023; Wang et al., 

2022). Nonetheless, the applicability of the method in a real 

forest environment remains unexamined. 

 

In this study, a novel, non-destructive approach was developed 

and used to estimate leaf water mass at canopy level in three 

dimensions for six forest canopies in Wytham Woods, Oxford, 

UK, utilizing the structural and spectral data retrieved from two 

commercial TLS instruments. The TLS data were used to 

generate tree 3D models and 3D distributions of leaf area within 

the canopy. Afterwards, the 3D EWT estimates of the same 

trees, generated in Elsherif et al. (2019), were coupled with the 

3D leaf area distributions to retrieve the distribution of leaf 

water mass at canopy scale. 

 

2. METHODS 

2.1 TLS data and 3D EWT estimates 

The dataset used in this study was acquired in a 35 × 45 m 

rectangular plot at Wytham Woods (51.78° N, 1.31° W) in 

Oxfordshire, UK. The site was scanned with the Leica P40 and 

the Leica P20 TLS instruments (1550 nm and 808 nm, 

respectively) from multiple scanning positions. Elsherif et al. 

(2019) describes in detail how 3D EWT distributions were 

generated and validated at canopy level for 13 trees from four 

different species: Quercus robur (oak), Acer pseudoplatanus 

(sycamore), Fagus sylvatica (beech), and Fraxinus excelsior 

(ash). Firstly, the intensity data from the two TLS instruments 

were calibrated to apparent reflectance then combined on a 

point-by-point basis in a Normalized Difference Index (NDI) 

that was linked to EWT using leaf samples. The NDI was then 

used to estimate EWT at canopy level for the trees of interest, 

and the estimates were validated using an independent set of 

leaf samples (274 leaves). The EWT point-clouds were used to 

separate foliage from wood using a threshold and manual 

refinements. Six out of the thirteen trees, three oak trees, two 

sycamore tree, and one beech tree, were chosen to be included 

in this study. 

 

2.2 Tree 3D models 

The 3D EWT point-clouds of the selected six trees, each split 

into foliage and wood, were imported into CloudCompare v. 

2.11.3 software. The cloud normals were computed by 

assuming that each leaf surface can be approximated as a plane 

oriented in space, consisting of a set of neighbour points. The 

search radius for neighbours was selected by the cloud normals 

computing module to be 30 cm, based on the number of points 

in the point-cloud and the point spacing. Afterwards, a Poisson 

surface reconstruction module, which can generate triangle 

meshes from a point-cloud using the computed cloud normals 

and the algorithm described in detail in Kazhdan et al., (2013), 

was applied to each tree point-cloud and 3D leaf and wood 

models were generated. The octree depth was selected as 10, as 

the default value of 8 produced distorted meshes, whilst values 

more than 10 consumed significantly more processing time 

without producing noticeable improvements to the quality of the 

generated mesh.  

 

Next, remaining noise was removed from the 3D models using 

the density histogram (number of points involved in creating 

each triangle in the mesh) to filter out the triangles that had very 

low point density, guided by visual inspection of the meshes 

and original point clouds. That is, any mesh that occupied an 

area that was empty in the point cloud was erased. To evaluate 

the accuracy of the 3D models creation, canopy LAI of each 

tree was calculated from its 3D model. Although reference 

canopy LAI values for the exact trees used in this study weren’t 

available, the estimated LAI values were compared to the 

forest’s census data for the same tree species. Following the 

noise removal step, foliage 3D model of each tree was split into 

multiple layers (1 m deep), matching the layers of its 

corresponding 3D EWT point cloud. Furthermore, foliage 3D 

models were divided into voxels (0.5 m × 0.5 m × 0.5 m). 

 

2.3 Generating canopy 3D water mass distributions  

For each tree 3D model, vertical profiles of leaf area were 

generated by calculating the total leaf area of each canopy layer 

and plotting it against the layer’s height. In addition, the total 

leaf area of each layer was multiplied by its EWT to estimate 

the layer’s water mass, then water mass vertical profiles were 

generated. Similarly, EWT of each voxel in each layer was 

multiplied by total leaf area in that voxel to estimate the water 

mass per voxel and generate voxel-based canopy 3D water mass 

distribution. 

 

Validating the estimated canopy water mass directly using 

destructing sampling wasn’t possible, as it would have required 

defoliating the whole canopy, or a set of canopy layers, to 

measure the water mass of each leaf then calculate the total 

water mass per canopy or layer. Thus, the accuracy of the water 

mass estimates was evaluated based on the accuracy of canopy 

EWT and LAI retrieval. 

 

3. RESULTS AND DISCUSSION 

Table 1 shows tree height, total leaf area, LAI, and water mass, 

derived from the generated 3D models, whilst Figure 1 displays 

the 3D models (not to scale). The results revealed that the oak 

trees had the highest total canopy leaf area (average of 356 m2), 

while the sycamore tree had an average total leaf area of 

225.6 m2. The lowest leaf area was observed in the beech tree 

(116.4 m2). As for the LAI, the oak trees had an average LAI of 

5.6 m2 m-2, while average LAI of the sycamores was 5.5 m2 m-2. 

The beech tree had the lowest LAI (3.4 m2 m-2). The correlation 

between canopy total leaf area and canopy LAI was moderate 

(R2 = 0.63), as canopy LAI was a factor not only of the canopy 

total leaf area, but also of the canopy projected area.    

 

Tree Species Height 

(m) 

Total 

leaf area 

(m2) 

LAI  

(m2 m-2) 

Water 

mass (kg) 

1 Sycamore 15.5 181.3 5.4 21.4 

2 Sycamore 15 270 5.6 29.1 

3 Oak 17.8 361.6 5.5 43.9 

4 Oak 16.5 400.5 5.9 54.1 

5 Beech 17.5 116.4 3.4 11 

6 Oak 16.4 306.7 5.4 38.8 

Table 1. Structural parameters and canopy water mass obtained 

from the 3D models of the six trees. 
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Figure 1. Tree 3D models: trees 1 and 2 are sycamores, trees 3, 

4, and 6 are oaks, and tree 5 is beech. 

 

According to the census data available for this region of the 

forest, average canopy LAI was 5 m2 m-2. This suggested an 

overestimation of canopy LAI for the sycamore and oak trees by 

an average of 10% and 12%, respectively. The reason for such 

overestimation could have been the noise removal stage during 

the 3D models generation process, as noise filtration was based 

solely on the visual inspection of each 3D model and its 

corresponding point cloud. The overestimation of LAI 

suggested that a percentage of meshes that should have been 

classified as noise remained in the 3D model. A solution for this 

issue is selecting a set of trees to serve as calibration data and 

measuring their canopy LAI in field. The measured LAI values 

can then be used as constraints in the mesh filtering step to 

determine a suitable threshold for noise removal using the 

density histogram.  

 

On the other hand, the beech tree LAI was noticeably 

underestimated by 32% in comparison to the average LAI 

measured in the plot. Furthermore, comparing the estimated 

LAI to beech LAI reported in the literature, which ranged 

between 4.5 and 5.1, confirmed the underestimation observed in 

this study. The reason for this was occlusion, as observed in 

Figure 1, because the beech tree was surrounded by denser oak 

and sycamore trees in the plot that blocked the laser beams. 

Occlusion is a known limitation of using TLS to retrieve forest 

canopy characteristics.  

 

Despite the observed over- and underestimation of canopy LAI, 

the accuracy obtained using the proposed approach was 

considered sufficient as it generated tree 3D models from leaf-

on TLS data, while the more accurate approaches presented in 

the literature, such as the use of a Quantitative Structure Model 

(QSM) to define the structure of canopy woody components, 

then use leaf insertion algorithms to add the leaves require 

scanning the forest plot twice in leaf-off and leaf-on conditions. 

 

The estimated canopy water mass revealed that the oak trees 

contained the highest amount of water with an average of 45.6 

kg, followed by the sycamore trees with an average of 25.3 kg, 

and that the beech tree, for which the estimation was affected by 

the low LAI, had the lowest water mass (11 kg). Figure 2 

displays the relationship between canopy total leaf area and 

canopy water mass. The figure revealed that the two parameters 

were highly correlated (R2 = 0.98). This suggested that by 

measuring canopy LAI using TLS or any other approach, and 

coupling that with measurements of canopy projected area, the 

canopy total leaf area can be estimated, which can then be used 

to retrieve the canopy water mass. 

 

 
 

Figure 2. The relationship between canopy total leaf area and 

canopy water mass. 

 

The vertical profiles of canopy total leaf area and its 

corresponding water mass, shown in Figure 3, further confirmed 

that the leaf area per canopy layer was the main factor affecting 

the water mass in the layer. Furthermore, it was observed that 

the upper canopy layer in all species had less total leaf area than 

the mid canopy layers to allow more radiation to enter and 

scatter within the canopy to improve photosynthesis. The 

highest water mass was observed in the mid canopy layers. In 

addition, the figure showed that trees with similar architecture, 

for instance, tree 3 and tree 4, had similar water mass vertical 

profiles because of the similarities between their vertical leaf 

area distributions.  However, no similarities were observed 

between the vertical profiles of canopy EWT and the 

corresponding water mass vertical profiles. 

 

In all trees, EWT was higher in upper canopy layer than in mid 

and lower canopy layers, whilst the water mass was higher in 

mid canopy layers than the remaining layers. The main reason 

for such observation was that EWT was reported to be highly 

correlated with LMA, meaning that a thicker leaf would be able 

to hold more moisture than a thinner leaf (Elsherif et al., 2019; 

Junttila et al., 2019). On the other hand, this study showed that 

the water mass is dependable on the total leaf area per canopy 

layer, meaning that the denser a canopy layer is, the more water 

mass it can hold.  

 

As for the 3D water mass distributions, it was possible to 

identify individual leaves in tree 3D models and obtain leaf-
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level EWT, surface area, and water mass in lower canopy 

layers, as shown in Figure 4 for a lower canopy layer in tree 2 

(sycamore). This has the potential to revolutionize the way tree 

parameters are retrieved and monitored, as it can provide high 

resolution estimates while eliminating the need for extensive, 

time-consuming destructive sampling.   

 

 
 

Figure 3. Vertical profiles of canopy EWT, adapted from 

Elsherif et al., 2019, vertical profiles of total leaf area, and 

vertical profiles of water mass. 

 
 

Figure 4. A lower canopy layer in tree 2 (sycamore). Upper is 

the point cloud and lower is the generated 3D model of the 

layer. For the highlighted leaf, EWT = 0.009 g cm-2, surface 

area = 120.2 cm2, and water mass = 1.1 g.  

 

Apart from lower canopy layers, it wasn’t possible to identify 

individual leaves and thus parameters were retrieved per voxel. 

Figure 5 shows leaf 3D model of tree 6 (oak) and its 

voxelization (0.5 m × 0.5 m × 0.5 m), where total leaf area, leaf 

area density, EWT, and water mass are known for each 

individual voxel. Figure 6 displays the 3D model of the same 

oak tree and the retrieved voxel-based parameters for a larger 

voxel (2 m × 2 m × 2 m) for the sake of a clearer visualization. 

 

 
 

Figure 5. For tree 6 (oak): left is leaf 3D model, whilst right is 

the voxelized 3D model using 0.5 m × 0.5 m × 0.5 m voxels. 

 

 
 

Figure 6. The 3D model of tree 6 (oak) with a single 2 m × 2 m 

× 2 m highlighted voxel, showing its EWT (g cm-2), total leaf 

area (m2), leaf area density (m2 m-3), and water mass (kg). 
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The voxel-based estimates can allow the studying of the 

distribution of each aforementioned parameter in 3D, examining 

their horizontal and vertical heterogeneity, and identifying and 

establishing relationships between them. Furthermore, 

comparisons between inner and outer canopy parameters can be 

carried out, as well as linking the 3D water mass distribution to 

water path length, water potential, illumination conditions, and 

photosynthesis rate through realistic 3D radiative transfer 

modelling. 

 

4. CONCLUSIONS 

This study introduced a novel approach to generate tree 3D 

models from dual-wavelength TLS data for six forest canopies 

from three different species and used the models to estimate the 

canopy LAI, total leaf area, and vertical profiles of canopy leaf 

area. Some over- and underestimation was observed in the 

estimated LAI, indicating that improvements are needed for the 

proposed approach to enhance the noise removal step during the 

meshing process. However, the obtained accuracy was 

considered sufficient as leaf-on point clouds were used to 

generate the 3D models. In addition, the EWT vertical profiles 

and canopy leaf area vertical profiles were used to generate 

vertical profiles of canopy water mass, which showed that the 

leaf area distribution within the canopy, and the canopy 

architecture were the main parameters affecting the water mass 

distribution within the canopy, with mid canopy layers having 

higher water mass than the other canopy layers. This study 

showed the potential of TLS to estimate canopy water mass, but 

controlled experiments that include defoliating canopies are still 

needed for a direct and accurate validation of the TLS estimates 

of canopy water mass.   
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